第四章三元合金相图
- 格式:ppt
- 大小:9.86 MB
- 文档页数:80
三元相图1 浓度三角形(成分三角形):☐ 取一等边三角形,三个顶点表示三个纯组元。
☐ 三个边各定为100%,表示三个二元系A-B ,B-C ,C-A 的成分。
☐ 各边表示重量百分比。
2 双线法3 特殊直线 on 线:A 组元的含量相等。
Am 线:B,C 两组元含量之比为一常数。
4 等含量规则 -----MN 线上C 组元的含量相等定比例规则-------CD 线上A 、B 组元的含量之比是一定值。
5 等腰三角形法6 直角三角形法7 直线法则:三元系统两相平衡共存时,合金成分点与两平衡相的成分点必须位于同一条直线上。
MN 为共轭线杠杆定律:-----〉注意:共轭连线不可能位于从三角形顶点引出的直线上,根据选分结晶,液相中低熔点组元与高熔点组元的含量的比值应大于与之共存的固相中低,高熔点组元含量的比值。
8 重心法则:P211 处于三相平衡的合金,其成分点必位于共轭三角形的重心位置 9 三元匀晶相图:三个组元在液态和固态时都能够完全互溶10 P207 固溶体合金结晶过程中的蝴蝶形迹线:三元合金固溶体结晶过程中,反应两平衡对应关系的共轭连线并非是固定长度的水平线,随温度下降,它们一方面下移,另一方面绕成分轴转动。
11 变温截面图:---两种截取方法----从垂直截面图中可以得到准确的转变温度。
但不能确定两平衡相的成分及相对含量--- 与二元匀晶相图的差别:三元系变温截面截取三维相图中液相面及固相面所得的两条曲线并非是固相及液相的成分变化迹线,它们之间不存在相平衡关系,不能用杠杆定律确定相对含量。
12 P224 图5-108 两个垂直截面分析过程A BCM NA BC M N O ED F %100%100⨯=⨯=m n m o w m n on w αβ。
三元合金相图工业上使用的各种材料大多数是多元合金。
多元合金相图的测定比较复杂,所得到的相图也很少,应用较多的多元相图是三元相图。
三元合金相图由两个独立的成分变量,再加上温度变量应该用立体图形来表示;由一些空间曲面构成相图。
但是实际所用的三元相图主要是它们的各种截面图或投影图。
本章除了学习一些典型的立体相图以外,着重进行各种截面图或投影图分析。
§3-1 三元相图的基本知识一.浓度的表示方法三元合金有两个组元的浓度是可以独立变化的,成分常用三角形中的一个点来表示,称为浓度三角形。
三个顶点代表三个纯组元,每个边是一个二元合金系的成分轴。
1.等边三角形在★图9-1浓度三角形中的任意一点(例如O点)均代表一个三元合金。
三个组元的含量按如下规则确定。
过0点作A组元对边平行线交于AC或AB边于b、e两点,bC%或Be%分别表示合金0中的含A%;同理可以求出含B%和含C%。
三元合金0的成分:A%=Cb%= Be%B%=Ac% =Cf%C%=Ba%=Ad%(或1-A%-B%)2.其它三角形当三元合金中各组元含量相差较大时,可以采用其它形式的三角形,否则,合金成分点可能非常靠近一边或某一顶点。
当某一个组元含量远大于其它二组元时,可以采用直角三角形,例如★图9-2直角三角形ABC。
一般把含量最高的组元放在直角位置,两直角边则代表其它两组元的含量。
例如01点所代表的三元合金成分C%=Ac1%B%=Ab1%A%=1-A%-B%当某一个组元含量远小于其它二组元时,可以采用★图9-3等腰三角形。
一般把含量最高的组元放在底边位置,两腰则代表其它两组元的含量。
例如x点所代表的三元合金成分C%=Ac%B%=Ab%A%=Ba%3.成分三角形中两条特殊线浓度三角形中有两条特殊性质的直线(1)过三角形顶点的直线,两个组元浓度之比为定值。
如★图9-4b中CE线上的任意一个三元合金含A%/B%为定值。
(A%/B%=BE/AE)(2)平行于三角形任意一边的直线,一个组元的浓度为定值。
第四章三元相图必要性:工业材料为多元合金本章主要内容:1. 三元相图的表达方式,使用方法2.几种基本的三元相图立体模型3.各种等温截面,变温截面及各相区在浓度三角形上的投影图4.典型合金的凝固过程及组织,各种相变过程及相平衡关系。
一、三元相图的成分表示法1.浓度等边三角形:三个顶点为纯组元,三条边为二元合金,三角形内任一点为三元合金2.三元合金成分确定n 浓度等边三角形3.浓度三角形中特殊线:平行浓度三角形任一边的直线从浓度三角形的一个顶点到对边的任意直线等腰三角形及直角坐标表示浓度二、杠杆定律及重心法则单相平衡勿须计算,四相平衡无从计算1.两相平衡:杠杆定律F4-5 三元相图中杠杆定律与重心法则共线法则:三元合金中两相平衡时合金成分点与两平衡相成分点在浓度三角形的同一直线上杠杆定律表达式α%=EO/DE×100%,β=OD/DE×100%注意:当一个合金O在液相的凝固过程中,析出α相成分不变时,液相成分一定沿α相成分点与O 点连线延长线变化。
2.三相平衡重心法则(重量三角形重心)x,y,z分别为α,β,γ成分点则nα%=oa/ax×100%,β=ob/by×100%,γ%=oc/cz×100%三、匀晶三元相图1.立体模型液相区,固相区,液、固两相区2.合金凝固过程及组织a.平衡凝固b.蝶形法则:F4-7 匀晶合金凝固中相成分变化凝固中固、液相成分沿固相面、液相面呈曲线变化,每一个温度下的固、液相成分连线在浓度三角形中投影呈蝴蝶3.等温截面匀晶三元系的等温截面两相区中的共轭线等温截面中两相区平衡两相的成分连线,共轭线的确定:实验确定,测定两平衡相中任一相的一个组元含量等温截面作用:1. 该温度下三元系中各合金的相态2.杠杆定律计算平衡相的相对量3.反映液相面、固相面走向和坡度,确定熔点、凝固点变温截面变温截面:某合金不同温度下状态分析合金的相变过程四、简单三元共晶相图1.立体模型: 简单三元共晶相图模型3个初晶液相面3条单变量线或二元共晶线一个三元共晶点,三相区开始面,结束面各相区在浓度三角形上的投影图投影图如图x 合金 n L→A ,L→A+B ,L→A+B+C表4-1 简单三元共晶中合金凝固后组织4. 等温截面 F4-15 简单三元共晶的等温截面二相区: 共轭线三相区:三角形,三个顶点代表成分点5.变温截面:平行于浓度三角形一边的变温截面cdF4-16:变温截面分析合金x的结晶过程:L→B,L→A+B,L→A+B+C练习:分析合金O的结晶过程4-17:通过顶点的变温截面注意:不能用杠杆定律,F4-17中A1g1 非四相平衡,五、固态有限溶解的三元共晶相图1.立体模型F4-18 固态有限溶解三元共晶模型三个液相面三个固溶体相面一个三元共晶固相面三个二元共晶完毕固相面三组二元共晶开始面三组六个固溶度面F4-20:固溶度面三条同析线及构成的一个同析台2.合金的凝固过程和组织合金I、II、III(合金x),VI、V、IV合金VI L→α,L→α+β,nα β,F4-23:凝固过程投影图合金VI:L→β,L→β+γ,L→β+α+γ α → β 同析反应n γ表4-2:各相区合金凝固过程及组织3.等温截面F4-24:不同温度下等温截面.变温截面F4-25:xy变温截面x1:L→α+β,L→α+β+γx2:L→α,L→α+β+γx3:L→α,L→α+γ,L→α+β+γx4:L→α,L→α+γ,α β nγx5:L→α,L→α+γ,α γF4-26:OP变温截面,六、有包共晶反应的三元相图1.立体模型包共晶反应L+A→M+CF4-27:空间模型4个液相面5条单变量线三相平衡反应开始面与结束面(二元n共晶结束与四相面重合)二元包晶反应开始面与F4-29:结束2个水平面,2个四相平衡点2.合金的凝固过程和组织F4-28中各点合金的组织如表4-3(表需修正有错误)如合金I:L→A剩余液相交np于n1:L+A→M 至n2点,A消失,L→M 液相沿e1E:L→M+B液相成分在E点:L→M+B+C3.等温截面4。
三元合金相图1、三元合金相图三元系相图简介相图基本学问三元相图的主要特点——立体图形,主要由曲面构成三元系相图简介垂直轴表示温度。
成分表示在棱柱底,通常是一等边三角形。
棱柱的每个侧面表示三个二元系统,如AB,BC,AC。
三元系相图简介相律:f=C-P+1=3-P+1=4-PP1234f3210完好的三元相图是三维的。
在三元系统中可能存在四相平衡。
在三元系统中存在三相平衡区域。
〔1〕是立体图形,主要由曲面构成;〔2〕可发生四相平衡转变;〔3〕单、两、三相区均占有肯定空间,是变温转变,四相区为恒温水平面。
第一节三元合金相图的表示方法一、成分三角形三角形中特别的点和线〔1〕三个顶点:代表三个纯组元〔2〕三个边:二元系合金〔3〕三个边2、上的点:二元系合金的成分点三角形内任意一点都代表一个三元合金。
第一节三元合金相图的表示方法1〕过O作A角对边的平行线↗2〕求平行线与A 坐标的截距B%C%↘得组元A的含量3〕同理求组元B、C的含量O←A%C第一节三元合金相图的表示方法CBAOa+Ob+Oc=AB=AC=BC=100%A浓度:Oa=Of=CbA浓度:55%B浓度:Ob=Od=AcB浓度:20%C浓度:Oc=BaC浓度:25%?确定合金的成分9010点:IA%=60%8020B%=30%30C%=10%70II点:↗6040A%=20%IIC%B%=50%B%5050↘C%=30%4060III点:I3070A%=40%2080B%=0%C%=60%3、1090III908070605040302021←A%9010?标出802075%A+10%B+15%C30的合金70↗6040C%B%5050↘4060307020801090908070605040302021←A%9010?标出802050%A+20%B+30%C的合金7030↗6040C%B%5050↘4060307020801090908070605040302021←A%第一节三元合金相图的表示方法二、在成分三角形中具有特定意义的直线成分三角形中特别的点和线〔1〕平行于某条边的直线:↗凡成分位于该线上的材料,C%B%↘其合金所含由此边对应顶点所代表的组元的含量相等。