三元合金相图
- 格式:pdf
- 大小:2.03 MB
- 文档页数:17
等边成分三角形中具有特定意义的点和线平行于三角形某一条边的直线:凡成分位于该线上的合金,它们所含的、由这条边对应顶点所代表的组元的含量为一定——等含量规则通过三角形某顶点的任一直线:凡成分位于该直线上的所有合金,它们所含的由另两个顶点所代表的两组元的含量之比为一——定比规则单相、两相和三相区为一空间。
w Om w Onαβ=平衡相含量的计算:所计算相的成分点、合金成分点和二者连线的延长线与对边的交点组成一个杠杆。
合金成分点为支点。
计算方法'100%'OF w FF γ=×'100%'OD w DD α=×'100%'OE w EE β=×3) 结晶过程分析成分轴的两端不一定是纯组元;注意:液、固相线不一定相交;液、固相线不是成分变化线,不能运用杠杆定律。
(3) 变温截面(平行于浓度三角形AB边的变温截面)合金x的结晶过程:L→BL→A+BL→A+B+C化,不能应用杠杆定律。
计算室温组织组成物含量100%,100%A L oqw Aq Ao w Aq =×=×。
()()100%100%A C A B C Eq Ao w Ef Aq qf Ao w Ef Aq+++=××=××个5.4 其他形式的三元合金相图两个共晶型二元系与一个匀晶型二元系构成的三元相图5.4.2L+α→β+4个液相面5条单变量线三相平衡反应开始面与结束面结束与四相面重合5.4.3 具有四相平衡包晶转变的相图三个液相面三个单相固相面(2) 两相平衡(f=2)立体图:以一对共轭曲面为边界与其两个组成相的单相区相接;等温截面和变温截面:以一对曲线作为两相区和两个组成相的单相区的分界线。
(3) 三相平衡立体图:三棱柱体,棱边是三个平衡相成分的单变量线。
棱边与3个组成相的单相区相接,柱面与组成相两两组成的两相区相连。
三元合金相图工业上使用的各种材料大多数是多元合金。
多元合金相图的测定比较复杂,所得到的相图也很少,应用较多的多元相图是三元相图。
三元合金相图由两个独立的成分变量,再加上温度变量应该用立体图形来表示;由一些空间曲面构成相图。
但是实际所用的三元相图主要是它们的各种截面图或投影图。
本章除了学习一些典型的立体相图以外,着重进行各种截面图或投影图分析。
§3-1 三元相图的基本知识一.浓度的表示方法三元合金有两个组元的浓度是可以独立变化的,成分常用三角形中的一个点来表示,称为浓度三角形。
三个顶点代表三个纯组元,每个边是一个二元合金系的成分轴。
1.等边三角形在★图9-1浓度三角形中的任意一点(例如O点)均代表一个三元合金。
三个组元的含量按如下规则确定。
过0点作A组元对边平行线交于AC或AB边于b、e两点,bC%或Be%分别表示合金0中的含A%;同理可以求出含B%和含C%。
三元合金0的成分:A%=Cb%= Be%B%=Ac% =Cf%C%=Ba%=Ad%(或1-A%-B%)2.其它三角形当三元合金中各组元含量相差较大时,可以采用其它形式的三角形,否则,合金成分点可能非常靠近一边或某一顶点。
当某一个组元含量远大于其它二组元时,可以采用直角三角形,例如★图9-2直角三角形ABC。
一般把含量最高的组元放在直角位置,两直角边则代表其它两组元的含量。
例如01点所代表的三元合金成分C%=Ac1%B%=Ab1%A%=1-A%-B%当某一个组元含量远小于其它二组元时,可以采用★图9-3等腰三角形。
一般把含量最高的组元放在底边位置,两腰则代表其它两组元的含量。
例如x点所代表的三元合金成分C%=Ac%B%=Ab%A%=Ba%3.成分三角形中两条特殊线浓度三角形中有两条特殊性质的直线(1)过三角形顶点的直线,两个组元浓度之比为定值。
如★图9-4b中CE线上的任意一个三元合金含A%/B%为定值。
(A%/B%=BE/AE)(2)平行于三角形任意一边的直线,一个组元的浓度为定值。
第5章 三元合金相图由A-B-C 三组元组成的合金称三元合金,其相图称三元相图。
要确定三元合金的成分,必须给出其中两个组元的成分。
所以,在三元相图中表示成分的坐标轴有两个。
5-1 三元相图成分表示方法在三元相图中表示成分的两个坐标轴原则上可以交成任何角度,但一般采用等边三角形的三个边表示。
设P 为等边三角形内任意点,从P 点分别做三条边的平行线,交三条边于a 、b 、c 点。
根据等边三角形的几何性质:%100==++=++AB Ba Ac Cb Pc Pb Pa 因此,可用Cb 、Ac 、Ba 表示A 、B 、C 的成分。
这样,三角形中每一点都表示一个三元合金的成分。
该三角形称浓度三角形,或成分三角形。
5-2 三元相图中的定量法则一、直线法则二元合金处于两相平衡时,自由度f =2-2+1=1,温度和成分两个变量中只有一个可以独立改变,如当温度一定时,两个平衡相的成分是确定的。
三元合金处于两相平衡时,f =3-2+1=2,当温度一定时,两个平衡相中,只有一个相的成分可独立改变。
当温度和其中一个相的成分一定时,剩余相的成分是确定的。
假设某三元合金的成分点为P ,在某一温度下,该合金处于α、β两相平衡,两相的成分点为a 、b (P133图4)。
可以证明(P133),此时,a 、b 、P 三成分点在一条直线上,且P 点位于a 、b 之间。
这一规律称直线法则。
二、杠杆定律三元相图中的杠杆定律与二元相图中的类似,即同样也只适用于两相区,但形式上略有不同,在直线法则的基础上:%100%⨯=ab Pbα, %100%⨯=ab Paβ三、重心法则三元合金处于α、β、γ三相平衡时,f =3-3+1=1。
当温度一定时,三个平衡相的成分是确定的,其成分点a 、b 、c 构成一个三角形。
若将成分比喻成重量,则合金的成分点P 一定落在成分点a 、b 、c三角形的重心处,这一规律称重心法则。
其数学表达式为(证明见P135)%100%⨯''=a a a P α %100%⨯''=b b b P β %100%⨯''=c c c P γ 其实,重心法则可看作是直线法则和杠杆定律的变形。