上海市2014届高三寒假作业 数学7Word版含答案
- 格式:doc
- 大小:645.50 KB
- 文档页数:7
上海市松江区2014学年度第一学期高三期末考试数学(文理合卷)试卷参考答案2015.1一、填空题1. i 2± 2. x⎪⎭⎫⎝⎛213.90 4.25. arccos 46.7.20 8. 12π9. 10.1311.(理)(0,1] (文)5[,]()1212k k k Z ππππ-+∈ 12113.()2,43 14. (理)4029 (文) 7二、选择题15.A 16. D 17.C 18.A三、解答题 19. 解:(1)B a b sin 2= B A B sin sin 2sin =∴……………2分0sin >B 21sin =∴A ……………4分 由于c b a <<,A ∴为锐角,6π=∴A ……………6分(2)由余弦定理:2222cos a b c bc A =+-,233221242⨯⨯⨯-+=∴c c ,……………8分 0862=+-c c ,2=c 或4=c由于c b a <<,4=c ……………10分所以1sin 2S bc A ==12分20. 解:(1)()f x 为偶函数,∴对任意的x R ∈,都有()()f x f x -=,……………2分即x bx baa +-+= xb x b +=-+ ……………4分得 0b =。
……………6分 (2)记()x b x bh x x b x b x b+≥-⎧=+=⎨--<-⎩,……………8分①当1a >时,()f x 在区间[)2,+∞上是增函数,即()h x 在区间[)2,+∞上是增函数,∴2b -≤,2b ≥-……………10分②当01a <<时,()f x 在区间[)2,+∞上是增函数,即()h x 在区间[)2,+∞上是减函数但()h x 在区间[),b -+∞上是增函数,故不可能……………12分∴()f x 在区间[)2,+∞上是增函数时,a 、b 应满足的条件为1a >且2b ≥-……14分 21.解(1)开始时,沙漏上部分圆锥中的细沙的高 为216833H =⨯=,底面半径为28433r =⨯=……………22118163333V r H ππ⎛⎫==⨯⨯= ⎪⎝⎭39.71……………5分198602.0=÷V (秒)所以,沙全部漏入下部约需1986秒。
虹口区2013学年高三年级二模数学答案(理科)D O C B A MP一、填空题(每小题4分,满分56分)1、(1,2)-;2、4;3、43π; 4、2()log f x x =; 56、3;7、 3π; 8、710; 9、1; 10、1α,3α; 111; 12、2; 13、304m <<; 14、26 ; 二、选择题(每小题5分,满分20分)15、A ; 16、C ; 17、B ; 18、C ;三、解答题(满分74分)19、(12分) 解:(1) 连MO ,过M 作MD AO ⊥交AO 于点D ,连DC .又PO ==MD ∴=43OC OM ==,. //MD PO ,∴DMC ∠等于异面直线MC 与PO 所成的角或其补角.//MO PB ,∴60MOC ∠=︒或120︒.……………5分当60MOC ∠=︒时,∴MC =∴cos 13MD DMC MC ∠==,∴arccos 13DMC ∠= 当120MOC ∠=︒时,∴MC =∴cos MD DMC MC ∠==∴DMC ∠= 综上异面直线MC 与PO所成的角等于arccos 13或arccos 37.………………8分 (2)三棱锥M ACO -的高为MD,要使得三棱锥M ACO -的体积最大只要底面积OCA ∆的面积最大.而当OC OA ⊥时,OCA ∆的面积最大.…………10分 又OC OP ⊥,此时OC PAB ⊥平面,∴OC PB ⊥,90θ=︒………………12分21、(14分)解:(1)110a =29.5a = 3a = 9 4a = 8.5 ………… 12b = 2b =33b = 4.5 4b = 6.75 ………… ………………………………2分当120n ≤≤且n N *∈,2110(1)(0.5)22n n a n =+-⨯-=-+; 当21n ≥且n N *∈,0n a =. ∴21,120220,21n n n n N a n n N **⎧-+≤≤∈⎪=⎨⎪≥∈⎩且且……………………5分而4415.2515a b +=>,∴132(),1426.75,5n n n n N b n n N -**⎧⋅≤≤∈⎪=⎨⎪≥∈⎩且且………………8分 (2)当4n =时,12341234()()53.25n S a a a a b b b b =+++++++=. 当521n ≤≤时,1212345()()n n n S a a a b b b b b b =++++++++++432[1()](1)1210() 6.75(4)32212n n n n --=+⨯-++--216843444n n =-+- ………………………………11分由200n S ≥ 得216843200444n n -+-≥,即2688430n n -+≤,得31316.3021n -≈≤≤ ……………………13分∴到2029年累积发放汽车牌照超过200万张.…………………………14分22、(16分)解:(1).222x x x =≥,即对于一切实数x 使得()2f x x ≥成立,∴x x f 2)(=“圆锥托底型” 函数.…………………………2分对于3()g x x =,如果存在0M >满足3x M x ≥,而当x =时,由M ≥,∴2M M ≥,得0M ≤,矛盾,∴3()g x x =不是“圆锥托底型” 函数.……………4分(2)1)(2+=x x f 是“圆锥托底型” 函数,故存在0>M ,使得2()1f x x M x =+≥对于任意实数恒成立.∴当0x ≠时,11M x x x x≤+=+,此时当1x =±时,1x x +取得最小值2,∴2M ≤.…………………………7分而当0x =时,(0)100f M =≥=也成立.∴M 的最大值等于2.……………………8分(3)①当0b =,0k =时,()0f x =,无论M 取何正数,取00x ≠,则有00()0f x M x =<,()0f x =不是“圆锥托底型” 函数.………………10分②当0b =,0k ≠时,()f x kx =,对于任意x 有()f x kx k x =≥,此时可取0M k <≤∴()f x kx =是“圆锥托底型” 函数.………………12分③当0b ≠,0k =时,()f x b =,无论M 取何正数,取0bx M >.有0b M x <,∴()f x b =不是“圆锥托底型” 函数.………………14分④当0b ≠,0k ≠时,b kx x f +=)(,无论M 取何正数,取00b x k =-≠,有00()0<M b f x M x k=-=,∴b kx x f +=)(不是“圆锥托底型” 函数. 由上可得,仅当0,0b k =≠时,b kx x f +=)(是“圆锥托底型” 函数.…………16分x23、(18分)解:(1)由222202y k x b x p k x p b x p y=+⎧⇒--=⎨=⎩,得122x x pk +=,122x x pb ⋅=-点2(,)D pk pk b +…………………………2分 设切线方程为y kx m =+,由222202y k x m x p k x p m x p y=+⎧⇒--=⎨=⎩,得22480p k pm ∆=+=,22pk m =-,切点的横坐标为pk ,得2(,)2pk C pk …………4分 由于C 、D 的横坐标相同,∴CD 垂直于x (2)22222211212)448h x x x x x x p k pb =-=+-=+(,∴22248h p k b p -=.………8分 232211122216ABC pk h S CD x x h pk b p∆=⋅-=+-=.……………………11分 C AB ∆的面积与k 、b 无关,只与h 有关.………………12分 (本小题也可以求AB h =,切点到直线l 的距离2d ==(3)由(1)知CD 垂直于x 轴,2C A B C h x x x x -=-=,由(2)可得CE A ∆、CF B ∆的面积只与2h 有关,将316ABC h S p ∆=中的h 换成2h ,可得31816ACE BCF h S S p ∆∆==⋅.……14分记3116ABC h a S p ∆==,321416ACE BCF h a S S p∆∆=+=⋅,按上面构造三角形的方法,无限的进行下去,可以将抛物线C与线段AB所围成的封闭图形的面积,看成无穷多个三角形的面积的和,即数列{}n a的无穷项和,此数列公比为14.所以封闭图形的面积3114131214a hS ap===-…………………………18分。
【原创】高三数学寒假作业(二)一、选择题,每小题只有一项是正确的。
1.设集合{}{}212,log 2A x x B x x =−≤=<,则A B ⋃=A. []1,3−B. [)1,4−C. (]0,3D. (),4−∞ 2.已知函数sin ,0,()(1),0,x x f x f x x π≤⎧=⎨−>⎩那么)32(f 的值为 A. 21− B. 23− C. 21 D. 23 3.已知函数f (x)=267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩ 则 f (0)+f (−1)= ( ) (A) 9 (B)7110 (C) 3 (D) 1110 4.已知函数()22x f x =−,则函数|()|y f x =的图像可能是………………………………..( )5.若互不相等的实数c b a ,,成等差数列,b a c ,,成等比数列,且103=++c b a ,则=a ( )A. 4B. 2C. -2D. -46.下列各式中值为的是( )A . sin45°cos15°+cos45°sin15°B . sin45°cos15°﹣cos45°sin15°C . cos75°cos30°+sin75°sin30°D .7.设实数x ,y 满足条件⎪⎩⎪⎨⎧≥≥≥+−≤−−0,00820104y x y x y x ,若目标函数z =ax +by(a >0,b >0)的最大值为12,则23a b +的最小值为( )8.已知函数()f x 满足1()()f x f x =, 当[]1,3x ∈时,()ln f x x =,若在区间1,33⎡⎤⎢⎥⎣⎦内,曲线()()g x f x ax =−与x 轴有三个不同的交点,则实数a 的取值范围是 ( )A.10,e ⎛⎫⎪⎝⎭ B.10,2e ⎛⎫ ⎪⎝⎭ C.ln 31,3e ⎡⎫⎪⎢⎣⎭ D.ln 31,32e ⎡⎫⎪⎢⎣⎭9.圆心在直线y =x 上,经过原点,且在x 轴上截得弦长为2的圆的方程为()A .(x -1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2D .(x -1)2+(y +1)2=或(x +1)2+(y -1)2=2二、填空题10.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是__________ .11.理:已知集合{}0,2>==x x y y M ,{})2lg(2x x y x N −==,则=N M I .12.已知等差数列{}n a 的前n 项和为n S ,且1533a a a +=,1014a =,则12S =13.抛物线241x y −=上的动点M 到两定点(0,-1)、(1,-3)的距离之和的最小值为 三、计算题14.(本小题满分13分)已知函数)12(log )(21−−=x ax x f (a 为常数).(1)若常数2a <且0a ≠,求()f x 的定义域;(2)若()f x 在区间(2,4)上是减函数,求a 的取值范围.15.(本小题满分12分)已知直三棱柱111C B A ABC −中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =1AA ,D 、E 、F 分别为A B 1、C C 1、BC 的中点.(1)求证:DE ∥平面ABC ;(2)求证:F B 1⊥平面AEF ;(3)求二面角F AE B −−1的余弦值.16.(本小题满分12分) 已知椭圆()2222:10x y C a b a b+=>>3,短轴端点到焦点的距离为2。
(上海版 第03期)2014届高三数学 试题分省分项汇编 专题13 排列组合、二项式定理 理(含解析)一.基础题组1. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知6)1(ax +的展开式中,含3x 项的系数等于160,则实数=a .2. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】二项式291()x x-的展开式中,含3x 的项的系数是___________.3. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】在nx )3(-的展开式中,若第3项的系数为27,则=n .4. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种.5. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】1531⎪⎭⎫ ⎝⎛-x x 的二项展开式的常数项的值是__________.6. 【2013学年第一学期十二校联考高三数学(理)考试试卷】设()887872x a x a x -=++…10a x a +,则87a a ++…0a += .【答案】837.【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】一个五位数abcde 满足,,,a b b c d d e <>><且,a d b e >>(如37201,45412),则称这个五位数符合“正弦规律”.那么,共有 个五位数符合“正弦规律”.8. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】若21()n x x+的二项展开式中,所有二项式系数和为64,则该展开式中的常数项为 .9.【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】若nxx⎪⎭⎫⎝⎛+22展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.120 C.90 D.45。
2014年上海市高考数学(文)解答题三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V .19.解:∵由题得,三棱锥P ABC -是正三棱锥∴侧棱与底边所成角相同且底面ABC ∆是边长为2的正三角形∴由题得,3ABC BCA CAB π∠=∠=∠=,112233PBA PAB P BC PCB P AC PCA ∠=∠=∠=∠=∠=∠ 又∵,,A B C 三点恰好在123,,P P P 构成的123PP P ∆的三条边上 ∴1122333PBA P AB P BC P CB P AC PCA π∠=∠=∠=∠=∠=∠=∴1122332PA PB P B PC PC P A ====== ∴1213234PP PP P P ===,三棱锥P ABC -是边长为2的正四面体∴如右图所示作图,设顶点P 在底面ABC 内的投影为O ,连接BO ,并延长交AC 于D ∴D 为AC 中点,O 为ABC ∆的重心,PO ⊥底面ABC∴233BO BD ==,3PO =112232233V =⋅⋅⋅⋅⋅=20.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。
设常数0≥a ,函数aa x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.20.解:(1)由题得,248()1(,1)(1,)2424x x x f x +==+∈-∞-+∞-- ∴121()2log 1x f x x -+⎛⎫=+ ⎪-⎝⎭,(,1)(1,)x ∈-∞-+∞ (2)∵2()2x x a f x a+=-且0a ≥ ∴①当0a =时,()1,f x x R =∈,∴对任意的x R ∈都有()()f x f x =-,∴()y f x =为偶函数②当1a =时,21(),021x x f x x +=≠-,2112()2112x xx xf x --++-==--, ∴对任意的0x ≠且x R ∈都有()()f x f x =--,∴()y f x =为奇函数③当0a ≠且1a ≠时,定义域为{2log ,}x x a x R ≠∈,∴定义域不关于原定对称,∴()y f x =为非奇非偶函数21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,, 45.1812.38==βα求CD 的长(结果精确到0.01米)?21.解:(1)由题得,∵2αβ≥,且022πβα<≤<,tan tan 2αβ∴≥ 即2403516400CDCD CD ≥-,解得,CD ≤,∴28.28CD ≈米 (2)由题得,18038.1218.45123.43ADC ∠=--=, ∵3580sin123.43sin18.45AD +=,∴43.61AD ≈米 ∵22235235cos38.12CD AD AD =+-⋅⋅⋅,∴26.93CD ≈米22(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔。
(上海版 第03期)2014届高三数学 试题分省分项汇编 专题15 推理与证明、新定义 文(含解析)一.基础题组1. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】若式子),,(c b a σ满足),,(),,(),,(b a c a c b c b a σσσ==,则称),,(c b a σ为轮换对称式.给出如下三个式子:①abc c b a =),,(σ; ②222),,(c b a c b a +-=σ; ③C B A C C B A 2cos )cos(cos ),,(--⋅=σC B A ,,(是ABC ∆的内角).其中,为轮换对称式的个数是 ………( ). )(A 0 )(B 1 )(C 2 )(D 32. 【2013学年第一学期十二校联考高三数学(文)考试试卷】定义函数D x x f y ∈=),((定义域),若存在常数C ,对于任意D x ∈1,存在唯一的D x ∈2,使得C x f x f =+2)()(21,则称函数)(x f y =在D 上的“均值”为C .已知函数[]100,10,lg )(∈=x x x f ,则函数)(x f y =在[]100,10上的均值为 ( ) (A)101 (B)43 (C) 10 (D) 233. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】给出以下四个命题:(1)对于任意的0>a ,0>b ,则有a b b a lg lg =成立;(2)直线b x y +⋅=αtan 的倾斜角等于α;(3)在空间..如果两条直线与同一条直线垂直,那么这两条直线平行; (4)在平面..将单位向量的起点移到同一个点,终点的轨迹是一个半径为1的圆. 其中真命题的序号是 .。
高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分):1、若2()(1)1f x x a x =+-+是定义在R 上的偶函数,则实数a=________. 2、设1111()1232f n n n n n=+++++++ ,则 2lim [(1)()]n n f n f n →∞+-=___________.3、设O 是ABC ∆的三边中垂线的交点,,,a b c 分别为角,,A B C对应的边,已知4、满足条件{0,1}∪A={0,1}的所有集合A 的个数是 个5、已知函数f(x)=R x x x ∈--+,12cos 3)4(sin 22π,若函数)()(a x f x h +=的图象关于点)0,3(π-对称,且),,0(π∈a 则a 的值为________.6、把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),则无空盒的概率为________.7x b =+有实根,则实数b 的取值范围是 .8、如图,过抛物线22(0)y px p =>的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是 。
9、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是__________________.10、设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.11、直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于__________. 12、设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为____________________. 13、已知函数()y =f x 满足(+1)=(-1)f x f x ,且[1,1]x ∈-时,2()=f x x ,则函数()y =f x 与3log y =|x |的图象的交点的个数是 .14、函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x+1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ③若f :A→B 为单函数,则对于任意b B ∈,它至多有一个原象; ④函数()f x 在某区间上具有单调性,则()f x 一定是单函数. 其中的真命题是_________.(写出所有真命题的编号)二、选择题(每题5分,共20分):15、用数学归纳法证明4221232n n n ++++⋅⋅⋅+=,则当1n k =+时左端应在n=k 的基础上加上 A.21k + B.()21k +C.()()42112k k +++D.()()()()22221231k k k k ++++++⋅⋅⋅++16、设0a >且1a ≠,则“函数()x f x a =”在R 上是增函数”是“函数()ag x x =”“在(0,)+∞上是增函数”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 17、已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是 (A) //,////m n m n αα若则 (B),,m n m n αα⊥⊥⊥若则 (C),//,m n m n αα⊥⊥若则(D)若m 与α相交,n 与α相交,则m,n 一定不相交18、已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A.4B1C.6-D三、解答题(本大题满分74分):19、(本题满分12分)()sin()f x A x ωϕ=+(其中0,0,A ωπϕπ>>-<< )在6x π=处取得最大值2,其图象与轴的相邻两个交点的距离为2π(I )求()f x 的解析式; (II )求函数426cos sin 1()()6x x g x f x π--=+的值域。
高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分):1、定义在R 上的函数()f x 满足()()f x f x -=-,(1)(1)f x f x +=-,且x Î(-1,0)时,f (x )=2x +65则2(log 20)f = .2、数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a . 3、已知向量a ,b 满足1a = ,2b = , a 与b 的夹角为120°,则a b -=;4、函数()()x x y 2arccos 1arcsin +-=的值域是___________.5、若关于x2kx =+恰有两个实根,则k 的取值范围是_____.数形结合 6、将全体正整数排成一个三角形数阵:按照右图排列的规律,第n 行(n ≥3)从左向右的第3个数为___________.7、已知向量23⎛⎫= ⎪⎝⎭ B 经过矩阵01⎛⎫= ⎪⎝⎭a Ab 变换后得到向量' B ,若向量 B 与向量' B 关于直线y=x 对称,则a+b= .8、椭圆22135x y m n +=和双曲线22123x y m n-=有公共的焦点,那么双曲线的渐近线方程是______. 9、函数sin 2()1cos x f x x=-的最小正周期是10、记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,若直线()1y a x =+与D 公共点,则a的取值范围是______.11、计算121(lg lg25)100=4--÷_______.12、等差数列na 前9项的和等于前4项的和.若141,0k a a a =+=,则k=____________.13、设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 14、设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若1=,则||1a b -<; ④若33||1a b -=,则||1a b -<。
其中的真命题有____________。
(写出所有真命题的编号)二、选择题(每题5分,共20分): 15、函数12()f x x -=的大致图像是( )16、设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞17、已知空间不共面的四点A,B,C,D ,则到这四点距离相等的平面有( )个 A .4B .6C .7D .518、如图,已知(4,0)A 、(0,4)B ,从点P (1,0)射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是 ( )A .B.D.三、解答题(本大题满分74分):19、(本题满分12分)在ABC ∆中,已知3AB AC BA BC = .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 20、(本题满分14分)如图,某校有一块形如直角三角形ABC 的空地,其中B ∠为直角,AB长40米, BC 长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B 为矩形的一个顶点,求该健身房的最大占地面积.21、(本题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BDBC 的值.22、(本题满分16分)在等差数列{}n a 中,2723a a +=-,3829a a +=-.AB C(1)求数列{}n a 的通项公式;(2)设数列{}n n a b +是首项为1,公比为c 的等比数列,求{}n b 的前n 项和nS .23、(本题满分18分)已知圆222:5(0)C x y m m +=>,直线l 过点M(-m,0)且与圆C 相交于,A B 两点.(Ⅰ)如果直线l 的斜率为1,且||6AB =,求m 的值;(Ⅱ)设直线l 与y 轴交于点P ,如果||2||PA PM =,求直线l 的斜率.试题答案1、答案:2- 2答案:323、4、答案:,6ππ⎡⎤⎢⎥⎣⎦5、答案:[)3,2--∪(]2,36、答案:7、答案:1 8、答案:y x = 9、【答案】π【解析】函数x x x x f 2sin 212)2(cos sin )(+=--=,周期ππ==22T ,即函数)(x f 的周期为π。
10、【答案】1[,4]211、【答案】-20【解析】12121lg 2lg51(lg lg 25)10022lg1020410100--+-÷=-⨯=-⨯÷=-.12、【答案】10 13、【答案】[15,11]- 14、【答案】①④【解析】①221a b -=1))((=+-⇒b a b a ,b a b a ->+ ,1<-b a 所以是真命题;②111b a-=时无法确定1a b -<,是假命题;③4,9==b a时1=,15||>=-b a ,是假命题;④同①可证,为真命题.故选①④ 15、答案:A16、【解答】集合A 讨论后利用数轴可知,111a a ≥⎧⎨-≤⎩或11a a a≤⎧⎨-≤⎩,解答选项为B .17、答案:C 18、答案:B19、【答案】解:(1)∵3A B A C B A B C =,∴c o s =3c o s A B A C A B A B C B ,即c o s =3c o s A C A B C B 。
由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B 。
又∵0<A B <π+,∴c o s 0 c A >B >,。
∴sin sin =3cos cos B AB A即tan 3tan B A =。
(2)∵cos 0C <C <π=,∴sin C =。
∴tan 2C =。
∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-。
∴tan tan 21tan tan A BA B+=-- 。
由 (1) ,得24tan 213tan A A=--,解得1tan =1 tan =3A A -,。
∵cos 0A>,∴tan =1A 。
∴=4A π。
20、【答案】[解]如图,设矩形为EBFP , FP 长为x 米,其中040x <<,健身房占地面积为y 平方米.因为CFP ∆∽CBA ∆, 以FP CF BA CB =,504050x BF -=,求得5504BF x =-, ABCFP E从而255(50)5044y BF FP x x x x =⋅=-=-+25(20)5005004x =--+≤, 当且仅当20x =时,等号成立.答:该健身房的最大占地面积为500平方米.21、【答案】解:(I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC.因为平面ABC ⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB ⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则1110A B AC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩, 令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =,所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (III)设D (,,)x y z 是直线BC1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=.所以(4,33,4)AD λλλ=-.由1·0AD A B = ,即9250λ-=.解得925λ=.因为9[0,1]25∈,所以在线段BC 1上存在点D,使得AD ⊥A 1B. 此时,1925BD BC λ==. 22、答案:(1)解:设等差数列{}n a 的公差是d .依题意 3827()26a a a a d +-+==-,从而3d =-.所以 2712723a a a d +=+=-,解得11a =-.所以数列{}n a 的通项公式为23+-=n a n .(2)解:由数列{}n n a b +是首项为1,公比为c 的等比数列,得1-=+n n n c b a ,即123-=++-n n c b n , 所以123-+-=n n c n b所以21[147(32)](1)n n S n c c c -=++++-+++++21(31)(1)2n n n c c c --=+++++ .从而当1=c 时,2(31)322n n n n n S n -+=+=; 当1≠c 时,(31)121n n n n c S c --=+-. 23、答案:由已知,直线l 的方程为y x m =+,圆心(0,0)到l. 因为|AB|=6,所以2259m -=,解得22m =.由0m >,得m =(II)解:设A(11,y x ),直线l :()y k x m =+,则点P(0, km ).因为||2||P A P M =,所以2PA PM = 或2PA PM =- ,当2P A P M =时,11(,)2(,)x y km m km -=--,所以12x m =-,1y km =-.由方程组222111152x y m x m y km ⎧+=⎪=-⎨⎪=-⎩得1k =±.当2PA PM =-时,11(,)2(,)x y km m km -=---,所以12x m =,13y km =.由方程组2221111523x y m x m y km⎧+=⎪=⎨⎪=⎩得13k =±.综上,直线l 的斜率为±1,13±.。