2018高考物理一轮复习20动量守恒定律
- 格式:doc
- 大小:117.00 KB
- 文档页数:3
精品基础教育教学资料,仅供参考,需要可下载使用!
动量与动量守恒
一、、动量与冲量的区别:
二、动量定理:物体所受的合外力的冲量等于物体的动量的变化。
I合=ΔP 或F合t = mv t—mv0(冲量方向与物体动量变化量方向一致)
公式一般用于冲击、碰撞中的单个物体,解题时要先确定正方向。
三、动量守恒定律:一个系统不受外力或受外力矢量和为零,这个系统的总动量保持不变。
P总= P总’或m1v1+m2v2 = m1v1'+m2v2'
公式一般用于冲击、碰撞、爆炸中的多个物体组成的系统,解题时要先确定正方向。
系统在某方向上外力矢量和为零时,某方向上动量守恒。
四、完全弹性碰撞:在弹性力作用下,动量守恒,动能守恒。
非弹性碰撞:在非弹性力作用下,动量守恒,动能不守恒。
完全非弹性碰撞:在完全非弹性力作用下,碰撞后物体结合在一起运动,动
k
mE P 2=m P E k 22
=量守恒,动
能不守恒。
系统机械能损失最大。
五、动量与动能的关系:。
第七章动量守恒定律第1讲动量和动量定理基础对点练题组一动量和冲量的理解与计算1.冬奥会速滑比赛中,甲、乙两运动员的质量分别为m1和m2,若他们的动能相等,则甲、乙动量大小之比是( )A.1∶1B.m1∶m2C.√m1∶√m2D.√m2∶√m12.(多选)颠球是足球的基本功之一,足球爱好者小华在练习颠球时,某次足球由静止自由下落0.8 m,被重新颠起,离开脚部后竖直上升的最大高度为0.45 m。
已知足球与脚部的作用时间为0.1 s,足球的质量为0.4 kg,重力加速度g取10 m/s2,不计空气阻力,下列说法正确的是( )A.足球从下落到再次上升到最大高度,全程用了0.7 sB.足球下落到与脚部刚接触时的动量大小为1.6 kg·m/sC.足球与脚部作用过程中动量变化量大小为0.4 kg·m/sD.足球从最高点下落到重新回到最高点的过程中重力的冲量大小为3.2 N·s题组二动量定理的理解与应用3.(多选)(广东河源模拟)如图所示,在轮船的船舷和码头的岸边一般都固定有橡胶轮胎,轮船驶向码头停靠时,会与码头发生碰撞。
对这些轮胎的作用,下列说法正确的是( )A.增大轮船与码头碰撞过程中所受的冲量B.减小轮船与码头碰撞过程中动量的变化量C.延长轮船与码头碰撞过程中的作用时间D.减小轮船与码头碰撞过程中受到的作用力4.(广东广州模拟)一个质量为0.2 kg的垒球,以20 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为40 m/s,如图所示,设球棒与垒球的作用时间为0.01 s,下列说法正确的是( )A.球棒对垒球不做功B.球棒对垒球做负功C.球棒对垒球的平均作用力大小为400 ND.球棒对垒球的平均作用力大小为1 200 N5.(多选)一质量为1 kg的物块在合力F的作用下从静止开始沿直线运动,其F-t图像如图所示。
则( )A.t=1 s时物块的速度大小为2 m/sB.0~2 s内合力的冲量大小为2 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.0~4 s内合力的冲量大小为2 kg·m/s题组三应用动量定理解决“流体模型”问题6.(四川成都联考)高压清洗广泛应用于汽车清洁、地面清洁等。
六碰撞动量守恒定律第1节动量动量定理动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)表达式:p=mv.(3)单位:千克·米/秒.符号:kg·m/s.(4)特征:动量是状态量,是矢量,其方向和速度方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的变化量.(2)表达式:F合·t=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.3.定律的表达式m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.可写为:p =p ′、Δp =0和Δp 1=-Δp 24.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.[自我诊断]1.判断正误(1)动量越大的物体,其运动速度越大.(×)(2)物体的动量越大,则物体的惯性就越大.(×)(3)物体的动量变化量等于某个力的冲量.(×)(4)动量是过程量,冲量是状态量.(×)(5)物体沿水平面运动,重力不做功,重力的冲量也等于零.(×)(6)系统动量不变是指系统的动量大小和方向都不变.(√)2.(2017·广东广州调研)(多选)两个质量不同的物体,如果它们的( )A .动能相等,则质量大的动量大B .动能相等,则动量大小也相等C .动量大小相等,则质量大的动能小D .动量大小相等,则动能也相等解析:选AC.根据动能E k =12mv 2可知,动量p =2mE k ,两个质量不同的物体,当动能相等时,质量大的动量大,A 正确、B 错误;若动量大小相等,则质量大的动能小,C 正确、D 错误.3.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量解析:选B.由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确.4.(2017·河南开封质检)(多选) 如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A .两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零解析:选ACD.当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的物体就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,放开右手后总动量方向也向左,故选项B错,而C、D正确.5.(2017·湖南邵阳中学模拟)一个质量m=1.0 kg的物体,放在光滑的水平面上,当物体受到一个F=10 N与水平面成30°角斜向下的推力作用时,在10 s内推力的冲量大小为________ N·s,动量的增量大小为________ kg·m/s.解析:根据p=Ft,可知10 s内推力的冲量大小p=Ft=100 N·s,根据动量定理有Ft cos 30°=Δp.代入数据解得Δp=50 3 kg·m/s=86.6 kg·m/s.答案:100 86.6考点一动量定理的理解及应用1.应用动量定理时应注意两点(1)动量定理的研究对象是一个质点(或可视为一个物体的系统).(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向.2.动量定理的三大应用(1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.(2)应用I=Δp求变力的冲量.(3)应用Δp=F·Δt求恒力作用下的曲线运动中物体动量的变化量.[典例1] (2016·高考全国乙卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析 (1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ①ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为Δm Δt=ρv 0S ③ (2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12(Δm )v 2+(Δm )gh =12(Δm )v 20④ 在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为 Δp =(Δm )v ⑤设水对玩具的作用力的大小为F ,根据动量定理有F Δt =Δp ⑥由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g 2ρ2v 20S 2⑧ 答案 (1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S 2(1)用动量定理解题的基本思路(2)对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理.1.如图所示,一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,则这一过程中动量的变化量为( ) A.大小为3.6 kg·m/s,方向向左B.大小为3.6 kg·m/s,方向向右C.大小为12.6 kg·m/s,方向向左D.大小为12.6 kg·m/s,方向向右解析:选D.选向左为正方向,则动量的变化量Δp=mv1-mv0=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,D正确.2. 质量为1 kg的物体做直线运动,其速度图象如图所示.则物体在前10 s内和后10 s内所受外力的冲量分别是( )A.10 N·s10 N·sB.10 N·s-10 N·sC.0 10 N·sD.0 -10 N·s解析:选D.由图象可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s,故正确答案为D.3.如图所示,在倾角为θ的斜面上,有一个质量是m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是F f,在整个运动过程中,摩擦力对滑块的总冲量大小为________,方向是________;合力对滑块的总冲量大小为________,方向是________.解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为F f(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sin θ+F f(t1-t2),沿斜面向下.答案:F f(t2-t1) 沿斜面向上mg(t1+t2)sin θ+F f(t1-t2) 沿斜面向下4.如图所示,一质量为M的长木板在光滑水平面上以速度v0向右运动,一质量为m的小铁块在木板上以速度v0向左运动,铁块与木板间存在摩擦.为使木板能保持速度v0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v0.设木板足够长,求此过程中水平力的冲量大小.解析:考虑M、m组成的系统,设M运动的方向为正方向,根据动量定理有Ft=(M+m)v0-(Mv0-mv0)=2mv0则水平力的冲量I=Ft=2mv0.答案:2mv05.(2017·甘肃兰州一中模拟)如图所示,一质量为M=2 kg的铁锤从距地面h=3.2 m 高处自由下落,恰好落在地面上的一个质量为m=6 kg的木桩上,随即与木桩一起向下运动,经时间t=0.1 s停止运动.求木桩向下运动时受到地面的平均阻力大小.(铁锤的横截面小于木桩的横截面,木桩露出地面部分的长度忽略不计,重力加速度g取10 m/s2) 解析:铁锤下落过程中机械能守恒,则v=2gh=8 m/s.铁锤与木桩碰撞过程中动量守恒,Mv=(M+m)v′,v′=2 m/s.木桩向下运动,由动量定理(规定向下为正方向)得[(M+m)g-f]Δt=0-(M+m)v′,解得f=240 N.答案:240 N6.(2016·河南开封二模)如图所示,静止在光滑水平面上的小车质量M=20 kg.从水枪中喷出的水柱的横截面积S=10 cm2,速度v=10 m/s,水的密度ρ=1.0×103 kg/m3.若用水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.当有质量m=5 kg的水进入小车时,试求:(1)小车的速度大小;(2)小车的加速度大小.解析:(1)流进小车的水与小车组成的系统动量守恒,设当进入质量为m的水后,小车速度为v1,则mv=(m+M)v1,即v1=mvm+M=2 m/s(2)质量为m的水流进小车后,在极短的时间Δt内,冲击小车的水的质量Δm=ρS(v -v1)Δt,设此时水对车的冲击力为F,则车对水的作用力为-F,由动量定理有-FΔt=Δmv1-Δmv,得F=ρS(v-v1)2=64 N,小车的加速度a=FM+m=2.56 m/s2答案:(1)2 m/s (2)2.56 m/s2考点二动量守恒定律的理解及应用1.动量守恒的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp =0,系统总动量的增量为零.[典例2] (2017·山东济南高三质检)光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0④答案 65v 0应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.1.如图所示,在光滑的水平面上放有一物体M ,物体M 上有一光滑的半圆弧轨道,轨道半径为R ,最低点为C ,两端A 、B 等高,现让小滑块m 从A 点由静止开始下滑,在此后的过程中,则( )A .M 和m 组成的系统机械能守恒,动量守恒B .M 和m 组成的系统机械能守恒,动量不守恒C .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动D .m 从A 到B 的过程中,M 运动的位移为mRM +m解析:选B.M 和m 组成的系统机械能守恒,总动量不守恒,但水平方向动量守恒,A 错误,B 正确;m 从A 到C 过程中,M 向左加速运动,当m 到达C 处时,M 向左速度最大,m 从C 到B 过程中,M 向左减速运动,C 错误;在m 从A 到B 过程中,有Mx M =mx m ,x M +x m =2R ,得x M =2mR /(m +M ),D 错误.2.(2016·广东湛江联考)如图所示,质量均为m 的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m 的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v ,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:(1)小孩接住箱子后共同速度的大小;(2)若小孩接住箱子后再次以相对于冰面的速度v 将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.解析:(1)取向左为正方向,根据动量守恒定律可得推出木箱的过程中0=(m +2m )v 1-mv ,接住木箱的过程中mv +(m +2m )v 1=(m +m +2m )v 2.解得v 2=v 2. (2)若小孩第二次将木箱推出,根据动量守恒定律可得4mv 2=3mv 3-mv ,则v 3=v ,故无法再次接住木箱.答案:(1)v 2(2)否 3.(2017·山东济南高三质检)如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端.三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg ,开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 相碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰撞后瞬间A 的速度大小为v A ,C 的速度大小为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ,A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB,A、B达到共同速度后恰好不再与C碰撞,应满足v AB=v C,联立解得v A=2 m/s.答案:2 m/s4.人和冰车的总质量为M,另一木球质量为m,且M∶m=31∶2.人坐在静止于水平冰面的冰车上,以速度v(相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v(相对地面)将球推向挡板.求人推多少次后不能再接到球?解析:设第1次推球后人的速度为v1,有0=Mv1-mv,第1次接球后人的速度为v1′,有Mv1+mv=(M+m)v1′;第2次推球(M+m)v1′=Mv2-mv,第2次接球Mv2+mv=(M+m)v2′……第n次推球(M+m)v n-1′=Mv n-mv,可得v n=n-mv M,当v n≥v时人便接不到球,可得n≥8.25,取n=9.答案:9次课时规范训练[基础巩固题组]1.关于物体的动量,下列说法中正确的是( )A.物体的动量越大,其惯性也越大B.同一物体的动量越大,其速度不一定越大C.物体的加速度不变,其动量一定不变D.运动物体在任一时刻的动量方向一定是该时刻的速度方向解析:选 D.惯性大小的唯一量度是物体的质量,如果物体的动量大,但也有可能物体的质量很小,所以不能说物体的动量大其惯性就大,故A错误;动量等于物体的质量与物体速度的乘积,即p=mv,同一物体的动量越大,其速度一定越大,故B错误;加速度不变,速度是变化的,所以动量一定变化,故C错误;动量是矢量,动量的方向就是物体运动的方向,故D正确.2. 运动员向球踢了一脚(如图),踢球时的力F=100 N,球在地面上滚动了t=10 s停下来,则运动员对球的冲量为( )A.1 000 N·s B.500 N·sC.零D.无法确定解析:选D.滚动了t=10 s是地面摩擦力对足球的作用时间.不是踢球的力的作用时间,由于不能确定人作用在球上的时间,所以无法确定运动员对球的冲量.3.(多选)如图所示为两滑块M、N之间压缩一轻弹簧,滑块与弹簧不连接,用一细绳将两滑块拴接,使弹簧处于锁定状态,并将整个装置放在光滑的水平面上.烧断细绳后到两滑块与弹簧分离的过程中,下列说法正确的是( )A.两滑块的动量之和变大B.两滑块与弹簧分离后动量等大反向C.如果两滑块的质量相等,则分离后两滑块的速率也相等D.整个过程中两滑块的机械能增大解析:选BCD.对两滑块所组成的系统,互推过程中,合外力为零,总动量守恒且始终为零,A错误;由动量守恒定律得0=m M v M-m N v N,显然两滑块动量的变化量大小相等,方向相反,B正确;当m M=m N时,v M=v N,C正确;由于弹簧的弹性势能转化为两滑块的动能,则两滑块的机械能增大,D正确.4.(多选)静止在湖面上的小船中有两人分别向相反方向水平抛出质量相同的小球,先将甲球向左抛,后将乙球向右抛.抛出时两小球相对于河岸的速率相等,水对船的阻力忽略不计,则下列说法正确的是( )A.两球抛出后,船向左以一定速度运动B.两球抛出后,船向右以一定速度运动C.两球抛出后,船的速度为0D.抛出时,人给甲球的冲量比人给乙球的冲量大解析:选CD.水对船的阻力忽略不计,根据动量守恒定律,两球抛出前,由两球、人和船组成的系统总动量为0,两球抛出后的系统总动量也是0.两球质量相等,速度大小相等,方向相反,合动量为0,船的动量也必为0,船的速度必为0.具体过程是:当甲球向左抛出后,船向右运动,乙球抛出后,船静止.人给甲球的冲量I甲=mv-0,人给乙球的冲量I2=mv-mv′,v′是甲球抛出后的船速,方向向右,所以乙球的动量变化量小于甲球的动量变化量,乙球所受冲量也小于甲球所受冲量.5.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t -mg C.m gh t +mg D.m gh t-mg 解析:选A.由动量定理得(mg -F )t =0-mv ,得F =m 2gh t +mg .选项A 正确. 6. (多选)静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则下列说法中正确的是( )A .0~4 s 内物体的位移为零B .0~4 s 内拉力对物体做功为零C .4 s 末物体的动量为零D .0~4 s 内拉力对物体的冲量为零解析:选BCD.由图象可知物体在4 s 内先做匀加速后做匀减速运动,4 s 末的速度为零,位移一直增大,A 错;前2 s 拉力做正功,后2 s 拉力做负功,且两段时间做功代数和为零,故B 正确;4 s 末的速度为零,故动量为零,故C 正确;根据动量定理,0~4 秒内动量的变化量为零,所以拉力对物体的冲量为零,故D 正确.7.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可当成质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v (相对于空间站)将物体A 推出?(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.解析:(1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的方向为正方向,则有:M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,有:M2v0=(M2-m)v1+mv代入数据联立解得v1=0.4 m/s,v=5.2 m/s(2)以甲为研究对象,由动量定理得,Ft=M1v1-(-M1v0)代入数据解得F=432 N答案:(1)5.2 m/s (2)432 N[综合应用题组]8. (多选)如图把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面拉出,解释这些现象的正确说法是( )A.在缓慢拉动纸带时,重物和纸带间的摩擦力大B.在迅速拉动时,纸带给重物的摩擦力小C.在缓慢拉动纸带时,纸带给重物的冲量大D.在迅速拉动时,纸带给重物的冲量小解析:选CD.在缓慢拉动纸带时,两物体之间的作用力是静摩擦力,在迅速拉动时,它们之间的作用力是滑动摩擦力.由于通常认为滑动摩擦力等于最大静摩擦力,所以一般情况是缓拉摩擦力小,快拉摩擦力大,故判断A、B都错;在缓慢拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量即动量的变化可以很大,所以能把重物带动,快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量改变很小.9.(多选)某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上.则( )A.人和小船最终静止在水面上B.该过程同学的动量变化量为105 kg·m/sC.船最终的速度是0.95 m/sD.船的动量变化量是105 kg·m/s解析:选BD.规定人原来的速度方向为正方向,设人上船后,船与人共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,则由动量守恒定律得:m 人v 人-m 船v 船=(m 人+m 船)v ,代入数据解得:v =0.25 m/s ,方向与人的速度方向相同,与船原来的速度方向相反.故A 错误,C 错误;人的动量的变化Δp 为:Δp =m 人v -m 人v 人=60×(0.25-2)=-105 kg·m/s,负号表示方向与选择的正方向相反;故B 正确;船的动量变化量为:Δp ′=m 船v -m 船v 船=140×(0.25+0.5)=105 kg·m/s;故D 正确.10.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量为m =1.0 kg 的小木块A .现以地面为参照系,给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,但最后A 并没有滑离木板B .站在地面的观察者看到在一段时间内小木块A 正在做加速运动,则在这段时间内的某时刻木板B 相对地面的速度大小可能是( )A .2.4 m/sB .2.8 m/sC .3.0 m/sD .1.8 m/s解析:选A.A 相对地面速度为0时,木板的速度为v 1,由动量守恒得(向右为正):Mv-mv =Mv 1,解得:v 1=83m/s.木块从此时开始向右加速,直到两者有共速为v 2,由动量守恒得:Mv -mv =(M +m )v 2,解得:v 2=2 m/s ,故B 对地的速度在2 m/s ~83m/s 范围内,选项A 正确.11.如图甲所示,物块A 、B 的质量分别是m A =4.0 kg 和m B =3.0 kg.用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触,另有一物块C 从t =0时以一定速度向右运动,在t =4 s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v t 图象如图乙所示,求:(1)物块C 的质量m C ;(2)从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小.解析:(1)由图可知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒,m C v 1=(m A +m C )v 2,代入数据解得m C =2 kg.(2)12 s 时B 离开墙壁,此时B 速度为零,A 、C 速度相等时,v 3=-v 2从物块C 与A 相碰到B 离开墙的运动过程中,A 、C 两物体的动量变化为:Δp =(m A +m C )v 3-(m A +m C )v 2从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小为I =2(m A +m C )v 2,代入数据整理得到I =36 N·s.答案:(1)2 kg (2)36 N·s12. 如图所示,质量为0.4 kg 的木块以2 m/s 的速度水平地滑上静止的平板小车,小车的质量为1.6 kg ,木块与小车之间的动摩擦因数为0.2(g 取10 m/s 2).设小车足够长,求:(1)木块和小车相对静止时小车的速度;(2)从木块滑上小车到它们处于相对静止所经历的时间;(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离.解析:(1)以木块和小车为研究对象,由动量守恒定律可得mv 0=(M +m )v 解得:v =mM +m v 0=0.4 m/s.(2)再以木块为研究对象,由动量定理可得-μmgt =mv -mv 0解得:t =v 0-vμg =0.8 s.(3)木块做匀减速运动,加速度为a 1=F f m =μg =2 m/s 2小车做匀加速运动,加速度为a 2=F f M =μmg M =0.5 m/s 2在此过程中木块的位移为x 1=v 2-v 22a 1=0.96 m车的位移为:x 2=12a 2t 2=12×0.5×0.82m =0.16 m由此可知,木块在小车上滑行的距离为:Δx =x 1-x 2=0.8 m.答案:(1)0.4 m/s (2)0.8 s (3)0.8 m第2节碰撞与能量守恒一、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.二、动量与能量的综合1.区别与联系:动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体所构成的系统,且研究的都是某一个物理过程.但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,决定于系统是否有除重力和弹簧弹力以外的力是否做功.2.表达式不同:动量守恒定律的表达式为矢量式,机械能守恒定律的表达式则是标量式,对功和能量只是代数和而已.[自我诊断]1.判断正误(1)碰撞过程只满足动量守恒,不可能满足动能守恒(×)(2)发生弹性碰撞的两小球有可能交换速度(√)(3)完全非弹性碰撞不满足动量守恒(×)(4)无论哪种碰撞形式都满足动量守恒,而动能不会增加(√)(5)爆炸现象中因时间极短,内力远大于外力,系统动量守恒(√)(6)反冲运动中,动量守恒,动能也守恒(×)2.(2017·山西运城康杰中学模拟)(多选)有关实际中的现象,下列说法正确的是( ) A.火箭靠喷出气流的反冲作用而获得巨大速度B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好。
高三物理第一轮复习要点:动量守恒定律动量守恒定律是说系统内部物体间的相互作用只能改变每个物体的动量,而不能改变系统的总动量,在系统运动变化过程中的任一时刻,单个物体的动量可以不同,但系统的总动量相同,小编整理了高三物理第一轮复习要点:动量守恒定律,供参考。
动量守恒定律知识点总结1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒;5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)动量守恒定律解题技巧例1:质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?分析:取相互作用的两个小球为研究的系统。
由于桌面光滑,在水平方向上系统不受外力.在竖直方向上,系统受重力和桌面的弹力,其合力为零.故两球碰撞的过程动量守恒.解:设向右的方向为正方向,则各速度的正、负号分别为v1=30cm/s,v2=10cm/s,v'2=0. 据动量守恒定律有mlvl+m2v2=m1v'1+m2v'2.解得v'1=-20cm/s.即碰撞后球m1的速度大小为20cm/s,方向向左.通过此例总结运用动量守恒定律解题的要点如下:(1)确定研究对象.对象应是相互作用的物体系.(2)分析系统所受的内力和外力,着重确认系统所受到的合外力是否为零,或合外力的冲量是否可以忽略不计.(3)选取正方向,并将系统内的物体始、末状态的动量冠以正、负号,以表示动量的方向.。
20动量守恒定律一、选择题(1~5题只有一个选项符合题目要求,6~9题有多个选项符合题目要求)1.在匀强电场中,将质子和α粒子由静止释放.假设不计重力,当它们取得相同动能时,质子经历的时刻为t1,α粒子经历的时刻为t2,那么t1:t2为( )A.1:1 B.1:2C.2:1 D.4:12.现有甲、乙两滑块,质量别离为3m和m,以相同的速度v在滑腻水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么该碰撞是( )A.弹性碰撞 B.非弹性碰撞C.完全非弹性碰撞 D.条件不足,无法确信3.如下图,滑腻水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,那么( )A.左方是A球,碰撞后A、B两球速度大小之比为2:5B.左方是A球,碰撞后A、B两球速度大小之比为1:10C.右方是A球,碰撞后A、B两球速度大小之比为2:5D.右方是A球,碰撞后A、B两球速度大小之比为1:104.质量为M的原子核,原先处于静止状态,当它以速度v放射出一个质量为m的粒子时,若是以速度v为正方向,那么剩余部份的速度为( )A.mv/(M-m) B.-mv/(M-m)C.mv/(M+m) D.-mv/(M+m)5.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移-时刻图象(x-t图)如图中ADC 和BDC所示.由图可知,物体A、B的质量之比为( )A.1:1 B.1:2C.1:3 D.3:16.如下图,A、B两物体的质量之比m A:m B=3:2,原先静止在平板车C上,A、B间有一根被紧缩的轻质弹簧,地面滑腻,当弹簧突然释放后,那么( )A.假设A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.假设A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.假设A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.假设A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒7.质量为M的物块以速度v运动,与质量为m的静止物块发生正碰,碰撞后二者的动量正好相等.二者质量之比M:m可能为( )A.2 B.3 C.4 D.58.如下图,质量为m的小球从滑腻的半径为R的半圆槽顶部A由静止滑下,设槽与桌面无摩擦,那么( )A .小球不可能滑到右边最高点B B .小球抵达槽底的动能小于mgRC .小球升到最大高度时,槽速度为零D .假设球与槽有摩擦,那么系统水平动量不守恒9.质量为M 、内壁间距为L 的箱子静止于滑腻的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如下图.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子维持相对静止.设碰撞都是弹性的,那么整个进程中,系统损失的动能为( )A.12mv 2B.12mM m +M v 2C.12NμmgL D.NμmgL 二、非选择题10.如下图,质量为m 1=0.2 kg 的小物块A ,沿水平面与小物块B 发生正碰,小物块B 的质量为m 2=1 kg.碰撞前,A 的速度大小为v 0=3 m/s ,B 静止在水平地面上.由于两物块的材料未知,将可能发生不同性质的碰撞,已知A 、B 与地面间的动摩擦因数均为μ=0.2,重力加速度g 取 10 m/s 2,试求碰后B 在水平面上滑行的时刻.11. 如下图,质量为2 kg 的小车甲静止于滑腻水平面上,一个滑腻的14圆弧(其半径R =1 m ,质量可忽略)AB固定在小车左端,其圆心O 恰位于B 点的正上方.小车的上表面粗糙.现将质量m =1 kg 的滑块P(可视为质点)从A 处由静止释放,滑块P 滑上小车后最终未滑离小车,重力加速度g =10 m/s 2.求:(1)滑块P 刚滑上小车时的速度大小.(2)滑块P 与小车组成的系统在整个进程中损失的机械能.12.如下图,滑腻半圆形轨道MNP 竖直固定在水平面上,直径MP 垂直于水平面,轨道半径R =0.5 m .质量为m 1的小球A 静止于轨道最低点M ,质量为m 2的小球B 用长度为2R 的细线悬挂于轨道最高点P.现将小球B 向左拉起,使细线水平,以竖直向下的速度v 0=4 m/s 释放小球B ,小球B 与小球A 碰后粘在一路恰能沿半圆形轨道运动到P 点.两球可视为质点,g =10 m/s 2.试求:(1)B 球与A 球相碰前的速度大小; (2)A 、B 两球的质量之比m 1:m 2. 答案1A 2A 3A 4B 5C 6BCD 7AB 8BC 9BD10假设两物块发生的是完全非弹性碰撞,碰后的一起速度为v 1,那么由动量守恒定律有 m 1v 0=(m 1+m 2)v 1碰后,A 、B 一路滑行直至停下,设滑行时刻为t 1,那么由动量定理有 μ(m 1+m 2)gt 1=(m 1+m 2)v 1 解得t 1=0.25 s假设两物块发生的是弹性碰撞,碰后A 、B 的速度别离为v A 、v B ,那么由动量守恒定律有 m 1v 0=m 1v A +m 2v B 12m 1v 20=12m 1v 2A +12m 2v 2B 设碰后B 滑行的时刻为t 2,那么 μm 2gt 2=m 2v B 解得t 2=0.5 s可见,碰后B 在水平面上滑行的时刻t 知足 0.25 s≤t≤0.5 s11(1)设滑块P 刚滑上小车时的速度为v 1,现在小车的速度为v 2,滑块与小车组成的系统在水平方向动量守恒,有:mv 1-Mv 2=0对系统应用能量守恒有:mgR =12mv 21+12Mv 22解得:v 1=2330 m/s(2)由能量守恒定律可知,系统损失的机械能为: ΔE=mgR =10 J12(1)设B 球与A 球碰前速度为v 1,碰后两球的速度为v 2.B 球摆下来的进程中机械能守恒 12m 2v 20+m 2g·2R=12m 2v 21 解得v 1=6 m/s(2)碰后两球恰能运动到P 点,那么(m 1+m 2)g =(m 1+m 2)v 2PR得v P =gR = 5 m/s碰后两球沿圆弧运动机械能守恒(m 1+m 2)g·2R=12(m 1+m 2)v 22-12(m 1+m 2)v 2P得v 2=5 m/s两球碰撞进程中动量守恒m 2v 1=(m 1+m 2)v 2 解得m 1:m 2=1:5。
高三物理第一轮复习重点:动量守恒定律动量守恒定律是说系统内部物体间的互相作用只好改变每个物体的动量,而不可以改变系统的总动量,在系统运动变化过程中的任一时辰,单个物体的动量能够不一样,但系统的总动量同样,小编整理了高三物理第一轮复习重点:动量守恒定律,供参照。
动量守恒定律知识点总结1、动量守恒定律的条件:系统所受的总冲量为零( 不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的互相作使劲 ) ,即系统所受外力的矢量和为零。
( 碰撞、爆炸、反冲 )注意:内力的冲量对系统动量能否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传达的原由,而外力的冲量是改变系统总动量的原由。
2、动量守恒定律的表达式 m1v1+m2v2=m1v1/+m2v2/(规定正方向 ) △p1=—△ p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
一定注意差别总动量守恒与某一方向动量守恒。
4、碰撞(1)完整非弹性碰撞:获取共同速度,动能损失最多动量守恒 ;(2)弹性碰撞:动量守恒,碰撞前后动能相等 ; 动量守恒, ; 动能守恒 ;5、人船模型——两个本来静止的物体( 人和船 ) 发生互相作用时,不受其余外力,对这两个物体构成的系统来说,动量守恒,且任一时辰的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)动量守恒定律解题技巧例 1:质量 m1=10g的小球在圆滑的水平桌面上以v1=30cm/s 的速率向右运动,恰巧碰上在同一条直线上向左运动的另一个小球 . 第二个小球的质量为 m2=50g,速率v2=10cm/s. 碰撞后,小球 m2恰巧停止 . 那么,碰撞后小球 m1 的速度是多大,方向怎样 ?剖析:取互相作用的两个小球为研究的系统。
因为桌面光滑,在水平方向上系统不受外力. 在竖直方向上,系统受重力和桌面的弹力,其协力为零. 故两球碰撞的过程动量守恒.解:设向右的方向为正方向,则各速度的正、负号分别为v1=30cm/s ,v2=10cm/s ,v'2=0. 据动量守恒定律有mlvl+m2v2=m1v'1+m2v'2.解得 v'1=-20cm/s.即碰撞后球m1的速度大小为20cm/s ,方向向左 .经过此例总结运用动量守恒定律解题的重点以下:(1)确立研究对象 . 对象应是互相作用的物系统 .(2)剖析系统所受的内力和外力,侧重确认系统所遇到的合外力能否为零,或合外力的冲量能否能够忽视不计 .。
20动量守恒定律
一、选择题(1~5题只有一个选项符合题目要求,6~9题有多个选项符合题目要求)
1.在匀强电场中,将质子和α粒子由静止释放.若不计重力,当它们获得相同动能时,质子经历的时间为t1,α粒子经历的时间为t2,则t1 :t2为( )
A.1 :1 B.1 :2
C.2 :1 D.4 :1
2.现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么该碰撞是( )
A.弹性碰撞 B.非弹性碰撞
C.完全非弹性碰撞 D.条件不足,无法确定
3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( )
A.左方是A球,碰撞后A、B两球速度大小之比为2 :5
B.左方是A球,碰撞后A、B两球速度大小之比为1 :10
C.右方是A球,碰撞后A、B两球速度大小之比为2 :5
D.右方是A球,碰撞后A、B两球速度大小之比为1 :10
4.质量为M的原子核,原来处于静止状态,当它以速度v放射出一个质量为m的粒子时,如果以速度v为正方向,则剩余部分的速度为( )
A.mv/(M-m) B.-mv/(M-m)
C.mv/(M+m) D.-mv/(M+m)
5.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移-时间图象(x-t图)如图中ADC和BDC所示.由图可知,物体A、B的质量之比为( ) A.1 :1 B.1 :2
C.1 :3 D.3 :1
6.如图所示,A、B两物体的质量之比m A :m B=3 :2,原来静止在平板车C上,A、B间有一根被压缩的轻质弹簧,地面光滑,当弹簧突然释放后,则( ) A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒
B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒
C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒
D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒
7.质量为M的物块以速度v运动,与质量为m的静止物块发生正碰,碰撞后两者的动量正好相等.两者质量之比M :m可能为( )
A.2 B.3 C.4 D.5
8.如图所示,质量为m 的小球从光滑的半径为R 的半圆槽顶部A 由静止滑下,设槽与桌面无摩擦,则( )
A .小球不可能滑到右边最高点B
B .小球到达槽底的动能小于mgR
C .小球升到最大高度时,槽速度为零
D .若球与槽有摩擦,则系统水平动量不守恒
9.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )
A.12mv 2
B.12mM m +M
v 2 C.12
N μmgL D .N μmgL 二、非选择题
10.如图所示,质量为m 1=0.2 kg 的小物块A ,沿水平面与小物块B 发生正碰,小物块B 的质量为m 2=1 kg.碰撞前,A 的速度大小为v 0=3 m/s ,B 静止在水平地面上.由于两物块的材料未知,将可能发生不同性质的碰撞,已知A 、B 与地面间的动摩擦因数均为μ=0.2,
重力加速度g 取 10 m/s 2,试求碰后B 在水平面上滑行的时间.
11. 如图所示,质量为2 kg 的小车甲静止于光滑水平面上,一个光滑的14
圆弧(其半径R =1 m ,质量可忽略)AB 固定在小车左端,其圆心O 恰位于B 点的正上方.小车的上表面粗糙.现将质量m =1 kg 的滑块P(可视为质点)从A 处由静止释放,滑块P 滑上小车后最终未
滑离小车,重力加速度g =10 m/s 2.求:
(1)滑块P 刚滑上小车时的速度大小.
(2)滑块P 与小车组成的系统在整个过程中损失的机械能.
12.如图所示,光滑半圆形轨道MNP 竖直固定在水平面上,直径MP 垂直于水平面,轨道半径R =0.5 m .质量为m 1的小球A 静止于轨道最低点M ,质量为m 2的小球B 用长度为2R 的细线悬挂于轨道最高点P.现将小球B 向左拉起,使细线水平,以竖直向下的速度v 0=4 m/s 释放小球B ,小球B 与小球A 碰后粘在一起恰能沿半圆形轨道运动到P 点.两球可视为质点,
g =10 m/s 2.试求:
(1)B 球与A 球相碰前的速度大小;
(2)A、B两球的质量之比m1 :m2. 答案。