【真卷】2016年陕西省西安市碑林区交大附中中考数学一模试卷含参考答案
- 格式:doc
- 大小:1.19 MB
- 文档页数:25
2016年陕西省西安市中考数学一模试卷一、选择题(共10小题)1.下列四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣2.如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=5 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=34.如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=()A.70° B.90° C.110°D.80°5.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣1 B.1 C.2 D.36.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠B=2∠KB.六边形ABCDEF的周长=六边形GHIJKL的周长C.BC=2HID.S六边形ABCDEF=2S六边形GHIJKL7.若不等式的解集为2<x<3,则A,B值为()A.﹣3,2 B.2,﹣3 C.3,﹣2 D.﹣2,38.伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v和时间t的函数图象(不考虑图象端点情况)大致是()A.B.C.D.9.如图,在四边形ABCD中,∠A=90°,AB=3,AD=,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2 B.3 C.4 D.10.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y2;②当x<0时,x 值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.③④ B.②③ C.②④ D.①④二、填空题11.计算:(﹣2a2)3的结果是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.如图,∠1、∠2、∠3、∠4是五边形ABCDEF的四个角,若∠A=120°,则∠1+∠2+∠3+∠4= .B.若Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的边长为.(用科学计算器计算,结果精确到0.01)13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=上,(点B在点A的右侧),且AB∥x轴,若四边形OABC是菱形,且∠AOC=60°,则k .14.如图,在平面直角坐标系中,若四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).当m的取值范围是时,在边BC上总存在点P,使∠OPA=90°.三、解答题15.计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.16.先化简,再求值:,其中x=﹣2.17.如图,直线l同侧有A、B两点,请利用直尺和圆规在直线l上求作一点P,使AP+BP 值最小.(不写作法,保留作图痕迹)18.为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了不完整的统计图.请根据图中提供的信息,解答下列问题:(1)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(2)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个?19.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.20.如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.21.某酒厂生产A、B两种品牌的酒,每天两种酒共生产700瓶.每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.(1)求出y关于x的函数关系;(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?22.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D位.测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,精确到1米)23.如图,AB是⊙O的直径,点C为⊙O上一点,AD和过C点切线交于点D,和⊙O相交于E,且AC平分∠DAB.(1)求证:∠ADC=90°;(2)若AB=10,AD=8,求CD的长.24.将抛物线沿c1:y=﹣x2+沿x轴翻折,得拋物线c2,如图所示.(1)请直接写出拋物线c2的表达式.(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.25.已知:矩形ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,AE=6厘米,点P是AB 边上一动点.按如下操作:步骤1折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1);步骤2过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2)(1)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:当PA=6厘米时,PT与MN交于点Q1,点Q1的坐标是;(2)当PA=12厘米时,在图3中画出MN,PT(不要求尺规作图,不写画法),并求出MN与PT的交点Q2的坐标;(3)点P在运动过程,PT与MN形成一系列交点Q1,Q2,Q3,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.2016年陕西省西安市西工大附中中考数学一模试卷参考答案与试题解析一、选择题(共10小题)1.下列四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣<0<2,∴四个数中,最小的数是﹣2.故选:C.2.如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:选项A,B,D折叠后都可以围成正方体;而C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=5 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=3【考点】解一元二次方程﹣配方法.【分析】移项后两边配上一次项系数一半的平方可得.【解答】解:∵x2+4x+1=0,∴x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:D.4.如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=()A.70° B.90° C.110°D.80°【考点】平行线的判定与性质;对顶角、邻补角;直角三角形的性质.【分析】首先根据垂直于同一条直线的两直线平行可得a∥b,再根据两直线平行同位角相等可得∠1=∠3.根据对顶角相等可得∠2=∠3,利用等量代换可得到∠2=∠1=70°.【解答】解:∵直线a⊥直线c,直线b⊥直线c,∴a∥b,∴∠1=∠3,∵∠3=∠2,∴∠2=∠1=70°.故选:A.5.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣1 B.1 C.2 D.3【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据关于x轴的对称点的坐标特点可得B(2,﹣m),然后再把B点坐标代入y=﹣x+1可得m的值.【解答】解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1,故选:B.6.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠B=2∠KB.六边形ABCDEF的周长=六边形GHIJKL的周长C.BC=2HID.S六边形ABCDEF=2S六边形GHIJKL【考点】相似多边形的性质.【分析】根据相似多边形的性质对各选项进行逐一分析即可.【解答】解:A、∵六边形ABCDEF∽六边形GHIJKL,∴∠E=∠K,故本选项错误;B、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴六边形ABCDEF的周长=六边形GHIJKL 的周长×2,故本选项错误;C、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴BC=2HI,故本选项正确;D、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴S六边形ABCDEF=4S六边形GHIJKL,故本选项错误.故选C.7.若不等式的解集为2<x<3,则A,B值为()A.﹣3,2 B.2,﹣3 C.3,﹣2 D.﹣2,3【考点】解一元一次不等式组.【分析】根据不等式组的解集得出关于a,b的值即可.【解答】解:解不等式组的解集为﹣a<x<b,因为不等式的解集为2<x<3,所以a=﹣2,b=3,故选D.8.伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v和时间t的函数图象(不考虑图象端点情况)大致是()A.B.C.D.【考点】函数的图象.【分析】往返路程相同,先慢,速度小,时间长,后快,速度大,时间短,由此判断函数图象.【解答】解:依题意,回家时,速度小,时间长,返校时,速度大,时间短,故选A.9.如图,在四边形ABCD中,∠A=90°,AB=3,AD=,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2 B.3 C.4 D.【考点】三角形中位线定理.【分析】根据勾股定理求出BD,根据三角形中位线定理解答即可.【解答】解:连接BD、ND,由勾股定理得,BD==4,∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2,故选:A.10.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y2;②当x<0时,x 值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.③④ B.②③ C.②④ D.①④【考点】二次函数图象上点的坐标特征.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选B.二、填空题11.计算:(﹣2a2)3的结果是﹣8a6.【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方与幂的乘方运算法则计算即可得到结果.【解答】解:原式=﹣8a6,故答案为:﹣8a612.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.如图,∠1、∠2、∠3、∠4是五边形ABCDEF的四个角,若∠A=120°,则∠1+∠2+∠3+∠4= 300°.B.若Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的边长为8.16 .(用科学计算器计算,结果精确到0.01)【考点】计算器—三角函数;计算器—数的开方;多边形内角与外角.【分析】A.先求出∠A的外角,再根据多边形的外角和等于360度可求∠1+∠2+∠3+∠4;B.根据正切函数可求AC的边长.【解答】解:A.∵∠A=120°,∴∠A的外角为180°﹣120°=60°,∴∠1+∠2+∠3+∠4=360°﹣60°=300°.B.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC=BC÷tan42°≈3÷0.900≈3×2.449÷0.900≈8.16.故答案为:300°;8.16.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=上,(点B在点A的右侧),且AB∥x轴,若四边形OABC是菱形,且∠AOC=60°,则k =12.【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】过点A作AD⊥x轴于点D,设OA的长度为a,则点A的坐标为(a, a),由点A在双曲线y=(x>0)上,即可求出a值,再根据菱形的性质即可得出点C、B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:过点A作AD⊥x轴于点D,如图所示.设OA的长度为a,则点A的坐标为(a, a),∵点A在双曲线y=(x>0)上,∴a•a=4,∴a=4或a=﹣4(舍去),∴点A(2,2).∵四边形OABC是菱形,∴点C(4,0),∵点O(0,0),∴点B(6,2).∵点B在双曲线y=上,∴k=6×2=12.故答案为:=12.14.如图,在平面直角坐标系中,若四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).当m的取值范围是1≤m≤9 时,在边BC上总存在点P,使∠OPA=90°.【考点】圆周角定理;坐标与图形性质.【分析】由四边形四个点的坐标易得OA=BC=5,BC∥OA,以OA为直径作⊙D,与直线BC分别交于点E、F,根据圆周角定理得∠OEA=∠OFA=90°,如图1,作DG⊥EF于G,连DE,则DE=OD=2.5,DG=2,根据垂径定理得EG=GF,接着利用勾股定理可计算出EG=1.5,于是得到E(1,2),F(4,2),即点P在E点和F点时,满足条件,此时,当,即1≤m≤9时,边BC上总存在这样的点P,使∠OPA=90°.【解答】解:∵O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).∴OA=BC=5,BC∥OA,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,如图,作DG⊥EF于G,连DE,则DE=OD=2.5,DG=2,EG=GF,∴EG==1.5,∴E(1,2),F(4,2),∴当,即1≤m≤9时,边BC上总存在这样的点P,使∠OPA=90°.故答案为:1≤m≤9.三、解答题15.计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何非0数的0次幂等于1进行计算即可得解.【解答】解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.16.先化简,再求值:,其中x=﹣2.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=÷,=×,=﹣=,将x=﹣2代入上式,原式=.17.如图,直线l同侧有A、B两点,请利用直尺和圆规在直线l上求作一点P,使AP+BP值最小.(不写作法,保留作图痕迹)【考点】轴对称﹣最短路线问题.【分析】过A作直线l的垂线,在垂线上取点A′,使直线l是AA′的垂直平分线,连接BA′即可.【解答】解:作A点关于直线l的对称点A′,连接A′B交l于点P,则P点为所求.18.为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了不完整的统计图.请根据图中提供的信息,解答下列问题:(1)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(2)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个?【考点】条形统计图;用样本估计总体;中位数.【分析】(1)根据1~1.5小时的家庭个数除以扇形圆心角所占的比例,可得调查的人数;根据按比例分配,可得答案;(2)根据样本估计总体,可得答案.【解答】解:(1)30÷=240 (个),0~1.5小时240×=72个,2~2.5小时240﹣72﹣90﹣30=48个,如图,用车时间的中位数落在哪个时间段内1~1.5小时;(2)1600×(+)=1080个,答:该社区用车时间不超过1.5小时的约有1080个.19.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【分析】根据等边三角形性质推出BC=AC,CD=CE,∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.【解答】证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠BCA=∠ECD=60°,∠B=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∵∠B=60°,∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.20.如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.【考点】列表法与树状图法.【分析】(1)由爬行方向只能沿直线AB在“向左”或“向右”中随机选择,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两只蚂蚁开始爬行后会“触碰到”的情况,再利用概率公式即可求得答案.【解答】解:(1)∵爬行方向只能沿直线AB在“向左”或“向右”中随机选择,∴甲蚂蚁选择“向左”爬行的概率为:;故答案为:;(2)画树状图得:∵共有4种情况,两只蚂蚁开始爬行后会“触碰到”的2种情况,∴两只蚂蚁开始爬行后会“触碰到”的概率为: =.21.某酒厂生产A 、B 两种品牌的酒,每天两种酒共生产700瓶.每种酒每瓶的成本和利润如下表所示,设每天共获利y 元,每天生产A 种品牌的酒x 瓶.(1)求出y 关于x 的函数关系;(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)设每天共获利y 元,每天生产A 种品牌的酒x 瓶,则生产B 种品牌的酒瓶,根据每天总共获得的利润=A 种酒每瓶获得的利润×生产数量+B 种酒每瓶获得的利润×生产数量即可得出y 关于x 的函数关系式;(2)根据每天投入成本=A 种酒每瓶成本×生产数量+B 种酒每瓶成本×生产数量结合每天至少投入成本30000元即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再利用一次函数的单调性即可解决最值问题.【解答】解:(1)设每天共获利y 元,每天生产A 种品牌的酒x 瓶,则生产B 种品牌的酒瓶, 根据题意得:y=20x+15=5x+10500.(2)∵该厂每天至少投入成本30000元,∴50x+35≥30000,解得:x ≥,∵x 为整数,∴x ≥367.∵y=5x+10500中k=5>0,∴当x=367时,y 取最小值,最小值为12335.答:如果该厂每天至少投入成本30000元,那么每天至少获利12335元.22.如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D位.测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,精确到1米)【考点】解直角三角形的应用﹣方向角问题.【分析】设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.【解答】解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.2+x)•tan45°=9+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•ta n∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.2=x•tan58°﹣(9+x),∴x=≈27.因此,B处距离码头O大约27km.23.如图,AB是⊙O的直径,点C为⊙O上一点,AD和过C点切线交于点D,和⊙O相交于E,且AC平分∠DAB.(1)求证:∠ADC=90°;(2)若AB=10,AD=8,求CD的长.【考点】切线的性质.【分析】(1)由OA=OC知∠OAC=∠OCA,由AC平分∠DAB知∠DAC=∠OAC,从而得∠OCA=∠DAC,即可知AD∥OC,根据⊙O与CD相切,即∠OCD=90°可得∠ADC=180°﹣∠OCD=90°;(2)作OF⊥AD,可知∠OFD=∠OCD=∠CDA=90°,得四边形OCFD是矩形,即可知OC=DF=AB=5、CD=OF,根据勾股定理得OF=CD=4.【解答】解:(1)∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,又∵⊙O与CD相切,∴∠OCD=90°,∴∠ADC=180°﹣∠OCD=90°;(2)过点O作OF⊥AD于点F,则∠OFD=∠OCD=∠CDA=90°,∴四边形OCFD是矩形,∴OC=DF=AB=5,CD=OF,在Rt△OFA中,∵OA=5,AF=AD﹣DF=8﹣5=3,∴OF===4,∴CD=4.24.将抛物线沿c1:y=﹣x2+沿x轴翻折,得拋物线c2,如图所示.(1)请直接写出拋物线c2的表达式.(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】方法一:(1)根据翻折的性质可求拋物线c2的表达式;(2)①求出拋物线c1与x轴的两个交点坐标,分当AD=AE时,当BD=AE时两种情况讨论求解;②存在.理由:连接AN,NE,EM,MA.根据矩形的判定即可得出.方法二:(1)求出翻折后抛物线顶点坐标,并求出抛物线表达式.(2)①抛物线c1平移m个单位长度后,求出点A,B,D,E的坐标,并分类讨论点B在点D左侧和右侧的两种情况,进而求出m的值.②以点A、N、E、M为顶点的四边形是矩形,则AN⊥EN,利用黄金法则二,可求出m的值.【解答】方法一:解:(1)y=x2﹣.(2)①令﹣x2+=0,得x1=﹣1,x2=1则拋物线c1与x轴的两个交点坐标为(﹣1,0),(1,0).∴A(﹣1﹣m,0),B(1﹣m,0).同理可得:D(﹣1+m,0),E(1+m,0).当AD=AE时,(﹣1+m)﹣(﹣1﹣m)= [(1+m)﹣(﹣1﹣m)],∴m=.当BD=AE时,(1﹣m)﹣(﹣1+m)= [(1+m)﹣(﹣1﹣m)],∴m=2.故当B,D是线段AE的三等分点时,m=或2.②存在.理由:连接AN,NE,EM,MA.依题意可得:M(﹣m,),N(m,﹣).即M,N关于原点O对称,∴OM=ON.∵A(﹣1﹣m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形.∵AM2=(﹣m﹣1+m)2+()2=4,ME2=(1+m+m)2+()2=4m2+4m+4,AE2=(1+m+1+m)2=4m2+8m+4,若AM2+ME2=AE2,则4+4m2+4m+4=4m2+8m+4,∴m=1,此时△AME是直角三角形,且∠AME=90°.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.方法二:(1)略,(2)①抛物线C1:y=﹣x2+,与x轴的两个交点为(﹣1,0),(1,0),顶点为(0,),抛物线C2:y=﹣x2﹣,与x轴的两个交点也为(﹣1,0),(1,0),顶点为(0,﹣),抛物线C1向左平移m个单位长度后,顶点M的坐标为(﹣m,),与x轴的两个交点为A(﹣1﹣m,0)、B(1﹣m,0),AB=2,抛物线C2向右平移m个单位长度后,顶点N的坐标为(m,﹣),与x轴的两个交点为D(﹣1+m,0)、E(1+m,0),∴AE=(1+m)﹣(﹣1﹣m)=2(1+m),B、D是线段AE的三等分点,有两种情况.1、B在D的左侧,AB=AE=2,AE=6,∴2(1+m)=6,m=2,2、B在D的右侧,AB=AE=2,AE=3,∴2(1+m)=3,m=.(3)若A、N、E、M为顶点的四边形是矩形,∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣)、M(﹣m,),∴点A,E关于原点对称,点N,M关于原点对称,∴A、N、E、M为顶点的四边形是平行四边形,则AN⊥EN,K AN×K EN=﹣1,∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣),∴=﹣1,∴m=1.25.已知:矩形ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,AE=6厘米,点P是AB 边上一动点.按如下操作:步骤1折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1);步骤2过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2)(1)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:当PA=6厘米时,PT与MN交于点Q1,点Q1的坐标是(6,6);(2)当PA=12厘米时,在图3中画出MN,PT(不要求尺规作图,不写画法),并求出MN与PT的交点Q2的坐标;(3)点P在运动过程,PT与MN形成一系列交点Q1,Q2,Q3,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.【考点】四边形综合题.【分析】(1)如图2中,连接EP.首先求出EP,根据等腰直角三角形的性质,可知△PFQ1是等腰直角三角形,求出PQ1即可.(2)首先求出PE,再证明△APE∽△FQ2P,得=,由此即可求出PQ2解决问题.(3)这些点形成的图象是一段抛物线.利用待定系数法可得函数关系式:y=x2+3(0≤x ≤26).【解答】解:(1)如图2中,连接EP.在Rt△APE中,AE=6.AP=6,∠EAP=90°∴EP==6,∴EF=PF=3,∠APE=∠FPQ1=45°,∴PF=FQ1=3,∴PQ1=PF=6,∴Q1(6,6).故答案为(6,6).(2)如图3中,∵∠APE+∠Q2PF=90°,∠Q2PF+∠PQ2F=90°,∴∠APE=∠PQ2F,∵∠A=∠PFQ2=90°,∴△APE∽△FQ2P,∴=,∴=,∴PQ2=15,∴Q2(12,15).(3)这些点形成的图象是一段抛物线.设抛物线的解析式为y=ax2+bx+c,把(0,3),(6,6),(12,15)代入解析式得到,解得,函数关系式:y=x2+3(0≤x≤26).。
2016-2017学年陕西省西安市碑林区交大附中八年级(上)开学数学试卷一、选择题1.在,0,,,﹣0.333…,,3.1415926,0.010010001…(相邻两个1之间依次多1个0)中,无理数有()A.1个 B.2个 C.3个 D.4个2.下列事件发生的概率为0的是()A.将来的某年会有370天B.小强的体重只有25公斤C.小明的爸爸买体彩中了大奖D.未来三天必有强降雨3.如图是各种汽车的标志,其中是轴对称图形的有()个.A.1个 B.2个 C.3个 D.4个4.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.90°5.3(22+1)(24+1)(28+1)…+1的个位数是()A.4 B.5 C.6 D.86.若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.47.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处 B.2处 C.3处 D.4处8.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,一直散步(没有停留),然后回家了C.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回D.从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了9.如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S2>S3B.S1+S2=S3 C.S1+S2<S3D.无法确定10.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°二、填空题11.的平方根是.12.如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2=度.13.若直角三角形的两边长分别是2和3,则第三边长是.14.等腰三角形的一个内角是80°,则另外两个内角的度数分别为.15.已知x2﹣5x+1=0,则x2+=.16.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.三、解答题17.计算:(1);(2)先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(﹣2x),其中x=﹣2,y=.18.在我市08年春季田径运动会上,某校七年级(1)班的全体同学荣幸成为拉拉队队员,为了在明天的比赛中给同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如下图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).19.小明同学骑车去郊游,如图表示他离家的距离y(km)与所用时间x(h)之间的关系图象:(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发2.5h离家多远?(3)小明出发多长时间距离家12km?20.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数.21.在一个不透明的口袋中,装有分别标有数字2,3,4的3个小球(小球除数字不同外,其余都相同),甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数,若该两位数能被4整除,则甲胜,否则乙胜,问这个游戏公平吗?请说明理由.22.已知:如图,在△ABC中,AB=AC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=CF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=20°,求∠EFC的度数.23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=°,∠AED=°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.2016-2017学年陕西省西安市碑林区交大附中八年级(上)开学数学试卷参考答案与试题解析一、选择题1.在,0,,,﹣0.333…,,3.1415926,0.010010001…(相邻两个1之间依次多1个0)中,无理数有()A.1个 B.2个 C.3个 D.4个【考点】无理数;零指数幂.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,0.010010001…(相邻两个1之间依次多1个0)是无理数,故选:C.2.下列事件发生的概率为0的是()A.将来的某年会有370天B.小强的体重只有25公斤C.小明的爸爸买体彩中了大奖D.未来三天必有强降雨【考点】概率的意义.【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、将来的某年会有370天,是不可能事件,事件发生的概率为0,符合题意;B、小强的体重只有25公斤,是随机事件,事件发生的概率不可能为0,不合题意;C、小明的爸爸买体彩中了大奖,是随机事件,事件发生的概率不可能为0,不合题意;D、未来三天必有强降雨,是随机事件,事件发生的概率不可能为0,不合题意;故选:A.3.如图是各种汽车的标志,其中是轴对称图形的有()个.A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项判断即可.【解答】解:第1,2,4个图形都是轴对称图形;第3个图形不是轴对称图形.故选:C.4.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.90°【考点】方向角.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:由题意可知∠1=30°,∠3=15°,∠ABC=30°+15°=45°故选C.5.3(22+1)(24+1)(28+1)…+1的个位数是()A.4 B.5 C.6 D.8【考点】平方差公式.【分析】原式中的3变形为22﹣1,反复利用平方差公式计算即可得到结果.【解答】解:3(22+1)(24+1)(28+1)…+1=(22﹣1)(22+1)(24+1)(28+1)…+1 =(24﹣1)(24+1)(28+1)…+1…=264﹣1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选C.6.若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.4【考点】三角形三边关系.【分析】根据已知条件可以得到三角形的另外两边之和,再根据三角形的三边关系可以得到另外两边之差应小于4,则最大的差应是3,从而求得最大边.【解答】解:设这个三角形的最大边长为a,最小边是b.根据已知,得a+b=7.根据三角形的三边关系,得:a﹣b<4,当a﹣b=3时,解得a=5,b=2;故选:C.7.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处 B.2处 C.3处 D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.8.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,一直散步(没有停留),然后回家了C.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回D.从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了【考点】函数的图象.【分析】根据实际意义与图象的变化,可得答案.【解答】解:从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了,D符合题意,故选:D.9.如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S2>S3B.S1+S2=S3 C.S1+S2<S3D.无法确定【考点】勾股定理.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r1)2+(2r2)2的关系,可以求得S1+S2=S3.【解答】解:设大圆的半径是r3,则S3=πr32;设两个小圆的半径分别是r1和r2,则S1=πr12,S2=πr22.由勾股定理,知(2r3)2=(2r1)2+(2r2)2,得r32=r12+r22.所以S1+S2=S3.故选B.10.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°【考点】翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.【分析】作辅助线,由∠BAC的平分线与线段AB的中垂线交于点O,可求出∠OBM,∠OCM的值,再求出BOM和∠COM的值,由折叠性求出∠OEM,即可求出∠CEF.【解答】解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=÷2=50°.故选:B.二、填空题11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±212.如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2=133度.【考点】平行线的性质.【分析】两直线平行,同位角、内错角相等,据此即可解答.【解答】解:过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=43°,∴∠2=∠ABD+∠EBD=133°.故答案为:133.13.若直角三角形的两边长分别是2和3,则第三边长是或.【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:2是直角边,3是斜边;2,3均为直角边;可根据勾股定理求出上述两种情况下第三边的长.【解答】解:当2是直角边,3是斜边时:第三边的长==;当2,3均为直角边时,第三边的长==故答案为:或.14.等腰三角形的一个内角是80°,则另外两个内角的度数分别为50°,50°或20°、80°.【考点】等腰三角形的性质.【分析】80°的角可作底角,也可作顶角,故分两种情况进行计算即可.【解答】解:①当80°的角是顶角,则两个底角是50°、50°;②当80°的角是底角,则顶角是20°.故答案是50°,50°或20°、80°.15.已知x2﹣5x+1=0,则x2+=23.【考点】完全平方公式.【分析】将方程x2﹣5x+1=0,两边同时除以x,可得出x+=5,再平方可得出的值.【解答】解:∵x2﹣5x+1=0,∴x+=5(方程两边同时除以x),故可得则+2=25,解得:=23.故答案为:23.16.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【考点】轴对称﹣最短路线问题.【分析】首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.三、解答题17.计算:(1);(2)先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(﹣2x),其中x=﹣2,y=.【考点】整式的混合运算—化简求值.【分析】(1)根据单项式乘多项式,然后根据合并同类项即可解答本题;(2)先化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(1)==﹣5a2b;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(﹣2x)=[x2+4xy+4y2﹣3x2﹣3xy+xy+y2﹣5y2]÷(﹣2x)=[﹣2x2+2xy]÷(﹣2x)=x﹣y当x=﹣2,时,原式=.18.在我市08年春季田径运动会上,某校七年级(1)班的全体同学荣幸成为拉拉队队员,为了在明天的比赛中给同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如下图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).【考点】作图—应用与设计作图.【分析】在矩形的较短的边上截取线段等于彩旗的短直角边,再作一角等于彩旗的顶角即可.【解答】解:19.小明同学骑车去郊游,如图表示他离家的距离y(km)与所用时间x(h)之间的关系图象:(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发2.5h离家多远?(3)小明出发多长时间距离家12km?【考点】一次函数的应用.【分析】(1)由函数图象可以得出根据y与x的数量关系就可以得出结论;(2)先由待定系数法求出CD的解析式,再将x=2.5时代入解析式求出y的值即可;(3)由待定系数法分别求出AB的解析式和EF的解析式就可以求出结论.【解答】解:(1)由函数图象,得小明到达离家最远的地方需3小时小时;此时离家30千米;(2)设CD的解析式为y=kx+b,由题意,得,解得:.∴y=15x﹣15,当x=2.5时,y=22.5.答:小明出发2.5h离家22.5千米;(3)设AB的解析式为y=kx,由图象,得15=k,y=15x,设EF的解析式为y=kx+b,由图象,得,,y=﹣15x+90,当y=12时,或x=.答:小明出发小时或小时时距离家12km.20.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出A的C,再△ADC中利用勾股定理逆定理得到∠CAD=90°,进而求出∠A的度数.【解答】解:连接AC,∵AB=BC=2,且∠ABC=90°,∴且∠CAB=45°,又∵AD=1,CD=3,∴AD2+AC2=CD2∴∠CAD=90°,∴∠A=∠CAD+∠CAB=135°.21.在一个不透明的口袋中,装有分别标有数字2,3,4的3个小球(小球除数字不同外,其余都相同),甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数,若该两位数能被4整除,则甲胜,否则乙胜,问这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】根据题意列出表格,找出被4整除的情况,求出甲乙各自的概率,比较即可判断出游戏得公平性.【解答】解:根据题意列出表格如下:共有9种可能.22,23,24,32,33,34,42,43,44能被4整除有:24,32,44,即甲胜的概率:,不能被4整除,即乙胜的概率:,∵<∴不公平22.已知:如图,在△ABC中,AB=AC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=CF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=20°,求∠EFC的度数.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)欲证明AE=CF,只要证明△ABE≌△CBF(SAS)即可.(2)根据∠AEB=∠BFC,求出∠BFC,根据∠EFC=∠BFC﹣∠EFB即可解决问题.【解答】(1)证明:在△ABE和△CBF中,,∴△ABE≌△CBF(SAS)∴AE=CF(2)解:∵∠ABC=90°,AB=BC,∴∠CAB=45°,∵∠CAE=20°,∴∠EAB=45°﹣20°=25°,∴∠BCF=∠EAB=25°,∵∠CBF=90°,∴∠BFC=180°﹣25°﹣90°=65°,∵∠EBF=90°,BE=BF,∴∠EFB=45°,∴∠EFC=∠BFC﹣∠EFB=20°.23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=25°,∠AED=65°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【解答】解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∠AED=∠EDC+∠C=40°+25°=65°.(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAE=70°,∴∠AED=180°﹣70°﹣40°=70°∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAE=40°,∴∠DAE=∠ADE∴△ADE的形状是等腰三角形.2017年4月23日第21页(共21页)。
2016-2017学年陕西省西安市碑林区交大附中九年级(上)第一次月考数学试卷一、选择题1.(3分)cos30°=()A.B.C.D.2.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.3.(3分)把△ABC三条边的长度都缩小为原来的,则锐角A的三角函数值()A.也缩小为原来的B.扩大为原来的2倍C.不变D.不能确定4.(3分)如图,在△ABC中,AB=8,∠C=90°,∠A=30°,D、E分别为AB、AC边上的中点,则DE的长为()A.2 B.3 C.2D.45.(3分)已知点(3,﹣2)在反比例函数y=的图象上,则下列点也在该反比例函数y=的图象的是()A.(3,﹣3)B.(﹣2,3)C.(1,6)D.(﹣2,﹣3)6.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.7.(3分)在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是()A.负数B.非正数C.正数D.不能确定8.(3分)某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()A.6米B.7米D.9米9.(3分)函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.10.(3分)如图,在△ABC中,点D在BC上,且BD=2CD,AB⊥AD,若tanB=,则tan ∠CAD=()A. B.C.D.二、填空题11.(3分)若α为锐角,tanα•tan60°=1,则α=.12.(3分)长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.13.(3分)如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB=m(用计算器计算,结果精确到0.1米)14.(3分)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.15.(3分)如图,在平面直角坐标系中,O为原点,直线y=kx(k>0)与双曲线y=(x>0)分别交于A,B两点,则=.16.(3分)如图,将正方形纸片对折,折痕为EF.展开后继续折叠,使点A落在EF上,折痕为GB,则∠ABG的正切值是.三、解答题17.计算:cos45°﹣tan30°•sin60°.18.画出如图所示立体图的三视图.19.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,tan∠B=,且BC=9 cm,求AC,AB及CD的长.20.我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).21.如图.反比例函数与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积;(3)若P(x,y1),Q(x,y2)分别是双曲线和直线y=﹣x+2上的两动点,写出y1≥y2的x的取值范围.22.甲乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图,游戏规则;甲乙两同学分别转动AB两个转盘,当转盘停止后,指针所在区或的数字之和为偶数时甲胜;数字之和为奇数时乙胜,若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.23.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?24.如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是四边形(直接填写结果).(2)四边形ABCD可能是矩形吗?若可能,试求此时k1和k2之间的关系式;若不可能,说明理由.25.在菱形ABCD中,AB=6,∠B=60°,点E是BC边上的一个动点.(1)如图①,求AE的最小值;(2)如图②,若F也是CD边上的一个动点,且BE=CF,求线段EF的最小值;(3)若tan∠AEC=3,问是否在菱形内部存在一点,使得这一点分别到E点,C点、D点的距离相等,若存在,请你求出这个相等的距离;若不存在,说明理由.。
2015-2016学年陕西省西安市碑林区交大附中八年级(下)期末数学试卷一、选择题1.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣22.已知x=2是一元二次方程x2﹣mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或33.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.下列多项式能因式分解的是()A.m2+n B.m2﹣m+n C.m2﹣2mn+n2 D.m2﹣n5.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.56.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8 B.12 C.16 D.187.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为()A.3 B.4 C.5 D.68.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为()A.9.5% B.20% C.10% D.11%9.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1510.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.二、填空题11.分解因式:x3﹣6x2+9x=.12.西安市组织长跑队和自行车队宣传全民健身,全程共10千米,两队同时出发,自行车队速度是长跑队速度的2.5倍,结果长跑队比自行车队晚到终点1小时,则自行车队的速度为千米/时.13.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为.14.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2﹣1)=12,则这个直角三角形的斜边长为.15.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是.三、解答题16.解方程:(1)(5x+3)2﹣4=0;(2)x2+4x﹣1=0.17.解方程:.18.已知线段a、b.求作等腰三角形ABC,使底边AB=a,底边上的高CD=b.(要求用尺规作图,不写作法,保留作图痕迹)19.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.20.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.21.已知:如图,菱形ABCD中,过AD的中点E作AC的垂线EF,交AB于点M,交CB的延长线于点F.如果FB的长是2,求菱形ABCD的周长.22.某服装柜发现,某童装平均每天可售出20件,每件盈利40元,商城决定采取适当的降价措施,扩大销售量.经过调查发现,每件童装降价4元,平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装降价多少?23.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边长分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.2015-2016学年陕西省西安市碑林区交大附中八年级(下)期末数学试卷参考答案与试题解析一、选择题1.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2,即x的取值应满足:x≠﹣2.故选:D.2.已知x=2是一元二次方程x2﹣mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或3【解答】解:把x=2代入方程x2﹣mx+2=0,可得4﹣2m+2=0,得m=3,故本题选B.3.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【解答】解:应该将②涂黑.故选:B.4.下列多项式能因式分解的是()A.m2+n B.m2﹣m+n C.m2﹣2mn+n2 D.m2﹣n【解答】解:m2﹣2mn+n2=(m﹣n)2,故选:C.5.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=4,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=4,∴BE=BC﹣EC=2.故选:A.6.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8 B.12 C.16 D.18【解答】解:∵正多边形的每个内角为135°,∴每个外角是180°﹣135°=45°,∵多边形的边数为:360÷45=8,则这个多边形是八边形,∴这个多边形的周长=2×8=16,故选:C.7.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为()A.3 B.4 C.5 D.6【解答】解:∵∠C=90°,AD=DC=4,DE=3,∴AE==5,∵DE∥BC,∴AE=BE=5,∴当点D落在BC上时,平移的距离为BE=5.故选:C.8.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为()A.9.5% B.20% C.10% D.11%【解答】解:设每次降价的百分率为x,依题意得:1000(1﹣x)2=810,化简得:(1﹣x)2=0.81,解得:x=0.1或1.9(舍去),所以平均每次降价的百分率为10%.故选:C.9.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.15【解答】解:如图,∵∠AFC=90°,AE=CE,∴EF==6,DE=1+6=7;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=14,故选:C.10.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.【解答】解:依题意得(a+b)2=b(b+a+b),而a=1,∴b2﹣b﹣1=0,∴b=,而b不能为负,∴b=.故选:B.二、填空题11.分解因式:x3﹣6x2+9x=x(x﹣3)2.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.12.西安市组织长跑队和自行车队宣传全民健身,全程共10千米,两队同时出发,自行车队速度是长跑队速度的2.5倍,结果长跑队比自行车队晚到终点1小时,则自行车队的速度为15千米/时.【解答】解:设长跑队的速度是x千米/小时,则自行车的速度是2.5x千米/小时,依题意有﹣=1,解得x=6.经检验,x=6是方程的解,2.5x=2.5×6=15.故自行车队的速度为15千米/小时.故答案为:15.13.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为22.【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG为直角三角形,在Rt△CFG中,FC2=CG2+FG2,即FC2=42+(8﹣FC)2,解得:FC=5,∴△CEF的面积=×FC×BC=10,△BCE的面积=△CGF的面积=×FG×GC=6,则着色部分的面积为:10+6+6=22,故答案为:22.14.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2﹣1)=12,则这个直角三角形的斜边长为2.【解答】解:设t=a2+b2,则由原方程,得t(t﹣1)=12,整理,得(t﹣4)(t+3)=0,解得t=4或t=﹣3(舍去).则a2+b2=4,∵a,b是一个直角三角形两条直角边的长,∴这个直角三角形的斜边长为==2.故答案是:2.15.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5.【解答】解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.故答案为:1.5.三、解答题16.解方程:(1)(5x+3)2﹣4=0;(2)x2+4x﹣1=0.【解答】解:(1)∵(5x+3)2=4,∴5x+3=2或5x+3=﹣2,解得:x=﹣或x=﹣1;(2)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2.17.解方程:.【解答】解:将原方程两边同乘以(x2﹣1),得:(3分)3﹣x2=﹣x(x+1)(5分)3﹣x2=﹣x2﹣xx=﹣3(6分)经检验,x=﹣3不是增根;(7分)所以,原方程的解是x=﹣3.(8分)18.已知线段a、b.求作等腰三角形ABC,使底边AB=a,底边上的高CD=b.(要求用尺规作图,不写作法,保留作图痕迹)【解答】解:如图,△ABD即为所求三角形.19.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.【解答】(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.20.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.21.已知:如图,菱形ABCD中,过AD的中点E作AC的垂线EF,交AB于点M,交CB的延长线于点F.如果FB的长是2,求菱形ABCD的周长.【解答】解:连接BD.∵在菱形ABCD中,∴AD∥BC,AC⊥BD.又∵EF⊥AC,∴BD∥EF.∴四边形EFBD为平行四边形.∴FB=ED=2.∵E是AD的中点.∴AD=2ED=4.∴菱形ABCD的周长为4×4=16.22.某服装柜发现,某童装平均每天可售出20件,每件盈利40元,商城决定采取适当的降价措施,扩大销售量.经过调查发现,每件童装降价4元,平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装降价多少?【解答】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装降价x元,依题意得(40﹣x)(20+2x)=1200,整理得x2﹣30x+200=0,解得x1=10,x2=20,∵要扩大销售量,∴x=20.答:每件童装降价20元.23.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边长分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.【解答】解:(1)如图①AH=AB,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在△ABM与△ADN中,,∴△ABM≌△ADN,∴∠BAM=∠DAN,AM=AN,∵AH⊥MN,∴∠MAH=MAN=22.5°,∵∠BAM+∠DAN=45°,∴∠BAM=22.5°,在△ABM与△AHM中,,∴△ABM≌△AHM,∴AB=AH;故答案为:AH=AB;(2)数量关系成立.如图②,延长CB至E,使BE=DN.∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND中,,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∴∠EAM=∠NAM=45°,在△AEM和△ANM中,,∴△AEM≌△ANM,=S△ANM,EM=MN,∴S△AEM∵AB、AH是△AEM和△ANM对应边上的高,∴AB=AH;(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°,分别延长BM和DN交于点C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD,设AH=x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2,∴52=(x﹣2)2+(x﹣3)2,解得x1=6,x2=﹣1(不符合题意,舍去)∴AH=6.。
2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2 4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A .2对B .3对C .4对D .5对9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .3B .4C .5D .610.已知抛物线y=﹣x 2﹣2x+3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( )A .B .C .D .2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是 .12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .一个多边形的一个外角为45°,则这个正多边形的边数是 .B .运用科学计算器计算:3sin73°52′≈ .(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C ,且AB=2BC ,则这个反比例函数的表达式为 .14.如图,在菱形ABCD 中,∠ABC=60°,AB=2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 .三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4 B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2 D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x ﹣5+)÷. 【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x ﹣1)(x ﹣3)=x 2﹣4x+3.17.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A 作AD ⊥BC 于D ,利用等角的余角相等可得到∠BAD=∠C ,则可判断△ABD 与△CAD 相似.【解答】解:如图,AD为所作.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG 关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,。
2016年陕西省西安市中考数学一模试卷一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,1805.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128°D.140°6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.菱形 D.正方形7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=28.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1 D.h2=h19.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.210.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大二、填空题11.分解因式:mn2+6mn+9m= .14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= .13.用科学计算器计算:12×tan13°=(结果精确到0.01).三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.17.先化简,再求值:,其中.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC 是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x 上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.2016年陕西省西安市远东一中中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【考点】有理数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A .B .C .D .【考点】简单组合体的三视图.【分析】找到从上面所看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从上面看,这个几何体有三行四列,且第一列有3个小正方形,二、四列有1个小正方形、第三列有2个小正方形; 故选C .3.下列计算正确的是( )A .a 3+a 2=a 5B .a 3﹣a 2=a C .a 3•a 2=a 6D .a 3÷a 2=a 【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A 、a 2与a 3不是同类项,不能合并,故本选项错误; B 、a 3与a 2不是同类项,不能合并,故本选项错误; C 、应为a 3•a 2=a 5,故本选项错误; D 、a 3÷a 2=a ,正确. 故选D .4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:则这20户家庭该月用电量的众数和中位数分别是( ) A .180,160 B .160,180 C .160,160 D .180,180 【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:A.5.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128°D.140°【考点】平行线的性质.【分析】根据邻补角的定义求出∠BAC,再根据角平分线的定义求出∠3,然后利用两直线平行,同旁内角互补列式求解即可.【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故选B.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,根据此函数为减函数,利用增减性分析解答即可.【解答】解:如图,可得此一次函数是减函数,因为﹣2<0,所以可得a>b,因为﹣3<﹣1<0,可得c<d<﹣2,故选C.8.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1 D.h2=h1【考点】三角形中位线定理.【分析】直接根据三角形中位线定理进行解答即可.【解答】解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.9.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【考点】垂径定理;勾股定理.【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.二、填空题11.分解因式:mn2+6mn+9m= m(n+3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为 4 、12 .【考点】反比例函数系数k的几何意义;一次函数的图象.【分析】先求出两图象的交点坐标,从而得出矩形面积和周长.【解答】解:把y=6﹣x与y=联立到一个方程组中,解得x=3+和3﹣,y=3﹣和3+.在本题中x1=3﹣,y1=3+,所以矩形面积=x1y1=4,周长=2(x1+y1)=12.故矩形面积和周长分别为4和12.故答案为:4、12.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2 .【考点】切线的性质;垂线段最短.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB 时,即CD是圆的直径的时,EF长度最小,求出即可.【解答】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= 60°.【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.13.用科学计算器计算:12×tan13°= 2.77 (结果精确到0.01).【考点】计算器—三角函数;近似数和有效数字.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:12×tan13°≈12×0.231≈2.77.故答案为:2.77.三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.17.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【考点】作图—复杂作图;角平分线的性质;垂径定理.【分析】作∠AOB的角平分线,作MN的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M点(或N点)的距离为半径作圆.【解答】解:如图所示.圆P即为所作的圆.19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各部分所占的百分比的和等于1求出坐姿不良所占的百分比,然后求出被抽查的学生总人数,然后求出站姿不良与三姿良好的学生人数,最后补全统计图即可;(2)根据(1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:(1)坐姿不良所占的百分比为:1﹣30%﹣35%﹣15%=20%,被抽查的学生总人数为:100÷20%=500名,站姿不良的学生人数:500×30%=150名,三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】本题考查平行四边形性质的应用,要证AB=AF,由AB=CD,可以转换为求AF=CD,只要证明△AEF≌△DEC即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∴∠F=∠2,∠1=∠D.∵E为AD中点,∴AE=ED.在△AEF和△DEC中∴△AEF≌△DEC.∴AF=CD.∴AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC 是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【考点】解直角三角形的应用.【分析】首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域;(2)根据总成本=每吨的成本×生产数量,利用(1)中所求得出即可.【解答】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:,y=﹣x+11(10≤x≤50)(2)当生产这种产品的总成本为280万元时,x(﹣x+11)=280,解得:x1=40,x2=70(不合题意舍去),故该产品的生产数量为40吨.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE 是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt △ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x 上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的顶点坐标的求法得出顶点坐标,再代入一次函数即可求出a 的值;(2)根据二次函数解析式求出与x轴的交点坐标即是A,B两点的坐标;(3)根据平行四边形的性质得出D点的坐标,即可得出D′点的坐标,即可得出答案.【解答】解:(1)∵抛物线y=x2﹣x+a其顶点在直线y=﹣2x上.∴抛物线y=x2﹣x+a,=(x2﹣2x)+a,=(x﹣1)2﹣+a,∴顶点坐标为:(1,﹣+a),∴y=﹣2x,﹣+a=﹣2×1,∴a=﹣;(2)二次函数解析式为:y=x2﹣x﹣,∵抛物线y=x2﹣x﹣与x轴交于点A,B,∴0=x2﹣x﹣,整理得:x2﹣2x﹣3=0,解得:x=﹣1或3,A(﹣1,0),B(3,0);(3)作出平行四边形ACBD,作DE⊥AB,在△AOC和△BDE中∵∴△AOC≌△BED(AAS),∵AO=1,∴BE=1,∵二次函数解析式为:y=x2﹣x﹣,∴图象与y轴交点坐标为:(0,﹣),∴CO=,∴DE=,D点的坐标为:(2,),∴点D关于x轴的对称点D′坐标为:(2,﹣),代入解析式y=x2﹣x﹣,∵左边=﹣,右边=×4﹣2﹣=﹣,∴D′点在函数图象上.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【考点】位似变换;等边三角形的性质;勾股定理;正方形的性质.【分析】(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S= [32+(m﹣n)2]= +(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3﹣3.∴S最大= [9+(m最大﹣n最小)2]= [9+(3﹣3﹣6+3)2]=99﹣54….(S最大≈5.47也正确)综上所述,S 最大=99﹣54,S 最小=.。
2016年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=⨯-2)21(【 】A.-1B.1C.4D.-42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是【 】3.下列计算正确的是【 】A.x 2+3x 2=4x 4B.y x x y x 63222.= C. 2232)3(6x x y x =÷ D. 2222)3(x x =-4.如图,AB//CD,直线EF 平分∠C AB 交直线 CD 于点E ,若∠C=50° ,则∠AED= 【 】A.65°B.115°C.125°D.130°5.设点A (a,b )是正比例函数x y 23-=的图象上任意一点 ,则下列等式一定成立的是【 】 A.2b+3b=0 B.2a-3b=0 C.3a-2b=0 D.3a+2b=06.如图,在△ABC 中,∠ABC=90°,AB=8,BC=6, 若DE 是△ABC 的中位线,若在DE 交△ABC 的外角平分线于点F , 则线段DF 的长为【 】A.7B.8C.9D.107.已知一次函数75+=+=x k y kx y ‘和,假设k>0且k '<0,则这两个一次函数的交点在【 】A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M,N 是AD 上的两点,连接MO 、NO,并分别延长交边BC 于M N ,则图中全等三角形共有【 】A.2对B.3对C.4对D.5对9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC,若∠ABC 和∠BOC 互补,则弦BC 的长度为 【 】 A.33 B. 34 C. 35 D. 3610.已知抛物线322+--=x x y 与x 轴交于A 、B 两点,将这条抛物线的定点记为C ,连接AC 、BC ,则tan ∠CAB 的值为 【 】 A.21 B. 55 C. 552 D. 2 二、填空题(共4小题,每小题3分,计12分)11.不等式0321<+-x 的解集是_________________。
2016届陕西省西安市第一中学、陕西师大附中、交大附中等八校高三下学期联考理数试题 (解析版)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数321iz i i =+-(i 为虚数单位)的共轭复数为( ) A .12i - B .12i + C .1i - D .1i - 【答案】B考点: 复数的运算法则、共轭复数的定义.2.已知集合{}0,1A =,{},,B z z x y x A y A ==+∈∈,则B 的子集个数为( ) A .8 B .3 C .4 D .7 【答案】A 【解析】试题分析:{}0,1,A = {},,B z z x y x A y A ==+∈∈{}0,1,2=,所以集合B 的子集的个数为328= ,故选A.考点: 1、集合的表示方法;2、集合的子集个数公式. 3.下列选项中叙述错误的是( )A .命题“若220m n +=,则0m =且0n =”的否命题是“若220m n +≠,则0m ≠或0n ≠” B .命题“若0x =,则20x x -=”的逆否命题为真命题 C .若命题:P n N ∃∈,22n n >,则:P n N ⌝∀∈,22n n ≤ D .若“p q ∧”为假命题,则“p q ∨”为真命题 【答案】D 【解析】试题分析:对于A,否命题是既否定条件又否定结果,所以A 正确;对于B,因为原命题正确,所以逆否命题正确,B 正确;对于C,特称命题的否定是将存在量词变成全称量词然后否定结论,所以C 正确;对于D,当,p q 都假时,“p q ∨”为是假命题,D 错,故选D. 考点: 1、四种命题及真值表;2、特称命题的否定. 4.已知4sin cos 3θθ+=(04πθ<<),则sin cos θθ-的值为( )A .13-B C . D .13 【答案】C考点: 同角三角函数之间的关系.5. 已知O 为正三角形ABC 内一点,且满足(1)0OA OB OC λλ+++=,若OAB ∆的面积与OAC ∆的面积比值为3,则λ的值为( ) A .3 B .12C .1D .2 【答案】B 【解析】试题分析:()10OA OB OC λλ+++=,变为()0OA OC OB OC λ+++= ,如图,D 、E 分别是对应边的中点,由平行四边形法则知2OA OC OE += ,()2OB OC OD λλ+=,故OE OD λ=- ① ,在正三角形ABC 中,111332AOC AOB ABC S S S ∆∆∆==⨯⨯= 1163ABC ADC S S ∆∆=,且三角形AOC 与三角形ADC 同底边AC ,故O 点到底边AC 的距离等于D 到底边AC 的距离的三分之一,故11,32OE DE OE OD=⇒=-②,由①②得12λ=,故选B.考点: 1、 向量的加法运算;2、共线向量的性质.6.已知圆22:4O x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为( )A .-或B .CD .【答案】D考点:1、圆的几何性质;2、点到直线的距离公式.7.下图是函数sin()y A x ωϕ=+,(,0,0,0)2x R A πωϕ∈>><<,在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上所有的点( )A .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变. B .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变C .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变. D .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.【答案】D考点:1、已知三角函数的图象求解析式;2、三角函数的图象伸缩和平移变换.【方法点睛】本题主要考查已知三角函数的图象求解析式以及三角函数的图象伸缩和平移变换,属于中档题.求解析时求参数ϕ是确定函数解析式的关键,由特殊点求ϕ时,一定要分清特殊点是“五点法”的第几个点, 用五点法求ϕ值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与x 轴的交点) 时0x ωϕ+=;“第二点”(即图象的“峰点”) 时2x πωϕ+=;“第三点”(即图象下降时与x轴的交点) 时x ωϕπ+=;“第四点”(即图象的“谷点”) 时32x πωϕ+=;“第五点”时2x ωϕπ+=.8.某实验室至少需要某种化学药品10kg ,现在市场上出售的该药品有两种包装,一种是每袋3kg ,价格为12元;另一种是每袋2kg ,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少( )A .56B .42C .44D .54 【答案】C 【解析】试题分析:设价格为12元的x 袋,价格10元y 袋,花费为Z 百万元,则约束条件为:32105050,x y x y x y N+≥⎧⎪≥≥⎪⎨≥≥⎪⎪∈⎩, 目标函数为1210,z x y =+,作出可行域,使目标函数为1210z x y =+取最小值的整数点(),x y 是()2,2A ,此时44z =,应价格为12元的2袋,价格为10元2袋,花费最少为44元,故选C.考点: 1、可行域的画法及最优解的求法;2、线性规划的应用. 9.某程序框图如图所示,该程序运行后输出的S 的值是( )A .3024B .1007C .2015D .2016 【答案】A考点: 程序框图及循环结构.10.已知P 在双曲线22213x y a -=上,其左、右焦点分别为1F 、2F ,12PF F ∆的内切圆与x 轴相切于点M ,则2MP MF ∙的值为( )A 1B 1C 1D 1 【答案】B考点: 1、双曲线的定义和性质;2、平面向量的数量积公式.11. 已知三棱锥S ABC -所有顶点都在球O 的球面上,且SC ⊥平面ABC ,若1SC AB AC ===,0120BAC ∠=,则球O 的表面积为( )A .52π B .5π C .4π D .53π【答案】B 【解析】试题分析:1,1,120AB AC BAC ==∠=︒ ,BC ∴==∴三角形ABC 的外接圆直径22r ==,1r ∴=,SC ⊥ 面ABC ,1SC =,三角形OSC 为等腰三角形,∴该三棱锥的外接球的半径R ==,∴该三棱锥的外接球的表面积为22445S R πππ==⨯=⎝⎭,故选B.考点: 正弦定理和三棱锥外接球表面积的求法.【方法点睛】本题主要考查正弦定理和三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是利用方法②求解的.12.如图,偶函数()f x 的图象如字母M ,奇函数()g x 的图象如字母N ,若方程(())0f g x =, (())0g f x =的实根个数分别为m 、n ,则m n +=( )A .12B .18C .16D .14 【答案】B考点:1、复合函数的基本含义;2、利用函数图象求方程根的个数.【思路点睛】本题主要考查复合函数的基本含义及利用函数图象求方程根的个数,属于难题.要求m 的值,只需求出(())0f g x =根的个数,由于()y f x =的图象与x 轴有三个交点,所以()0f x =有3个根:0、32-、32,所以只需令()0g x =,()g x =32-,()g x =32,根据数形结合分别判定出三个方程根的个数即得到m 的值,同理可以求出方程(())0g f x =根的个数即得到n 的值,进而得出正确答案.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.在矩形ABCD 中,对角线AC 与相邻两边所成的角分别为α、β,则有22cos cos 1αβ+=, 类比到空间中的一个正确命题是:在长方体1111ABCD A BC D -中,对角线1AC 与相邻三个面所成的角分 别为α、β、γ,则222cos cos cos αβγ++=__________. 【答案】2考点: 1、类比推理;2、直线和平面成的角.14.某校有,A B 两个文学社团,若,,a b c 三名学生各自随机选择参加其中的一个社团,则三人不在同一个社团的概率为___________. 【答案】34【解析】试题分析:甲学生随机选择其中的一个文学社团可有两种选法,同理乙、丙也各有两种选法,根据乘法原理可知:共有328=种选法;其中他们在同一个文学社团的方法只有两种:一种是都到第一文学社团,另一种是都到第二文学社团,则他们不同在一个文学社团的选法有826-=;他们不同在一个文学社团的概率为6384=,故答案为34. 考点: 1、分步计数乘法原理;2、古典概型概率公式.15.在ABC ∆,已知sin 13sin sin A B C =,cos 13cos cos A B C =,则tan tan tan A B C ++的值为___________. 【答案】196考点:1、同角三角函数之间的关系及三角形内角和定理与诱导公式 ;2、两角和的正切、余弦公式. 【思路点睛】本题主要考查同角三角函数之间的关系及三角形内角和定理与诱导公式、两角和的正切余弦公式,属于难题.解三角形问题,一定要细心审题,深挖条件,并且一定要熟练掌握三角公式和各个公式的变形,解答本题的关键是先将前两个条件相比化成角的正切函数之间的关系,然后根据诱导公式与两角和的正切公式将正切的和转化为正切的积求解.16.若函数2()f x x bx c =++(b c R ∈、)在区间(0,1)内有两个零点,则2(1)b c c ++的取值范围是___________. 【答案】10,16⎛⎫⎪⎝⎭【解析】试题分析:设二次函数()2f x x bx c =++的零点为1x 和2x ,且1201x x <<<,则:()1200f c x x ==>,()11f b c =++()()121110x x b c =--=++>,()()201f f c bc c =++()()121211x x x x =--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪⎪⎝⎭⎝⎭,()210116c c b ∴<++<,故答案为10,16⎛⎫⎪⎝⎭. 考点:1、函数的零点和方程根之间的关系;2、利用基本不等式求最值.【方法点睛】本题主要考查函数的零点和方程根之间的关系以及利用基本不等式求最值,属于难题.要解决本题,首先将零点转化为方程的根,再根据韦达定理求出两根之和与两根之积结合函数解析式的特点,可以将2(1)b c c ++转化为()()01f f ,可初步判定其值为正,然后再将2(1)b c c ++化为()()121211x x x x =--利用基本不等式求得上限即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分) 已知数列{}n a 的前n 项和23522n S n n =+,数列{}n b 的通项公式52n b n =+. (1)求数列{}n a 的通项公式;(2)设1n n n c a b =,求证:1225ni i c =<∑;(3)若数列{}n a 与{}n b 中相同的项由小到大构成的数列为{}n d ,求数列{}n d 的前n 项和n T . 【答案】(1)31n a n =+;(2)证明见解析;(3)215122n n -.试题解析:(1)当2n ≥时,2213535(1)(1)312222n n n a S S n n n n n -=-=+----=+,当1n =时,114a S ==也满足,∴31n a n =+.考点: 1、等差数列的通项;2、裂项求和法求和及放缩法证明不等式.18.(本小题满分12分)如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=(R λ∈),且向量PC 与BD 夹角的余弦值为15.(1)求λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.【答案】(1)2λ=;(2(2)易得(2,2,2)PC =- ,(0,2,2)PD =- ,设平面PCD 的法向量(,,)n x y z = ,则0n PC ∙= ,0n PD ∙= ,即0x y z +-=,且0y z -=,所以0x =,不妨取1y z ==,则平面PCD的一个法向量(0,1,1)n = ,又易得(1,0,2)PB =- ,故cos ,5PB n PB n =∙=- ,所以直线PB 与平面PCD所成角的正弦值为5.考点:1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.19.(本小题满分12分)某厂生产一种零件,其质量按测试指标划分为:指标大于或等于8为优质品,小于8大于等于4为正品,小于4为次品,现随机抽取这种零件100件进行检测,检测结果统计如下:若以上述测试中各组的频率作为相应的概率.(1)试估计这种零件的平均质量指标;(2)生产一件零件,若是优质品可盈利40元,若是正品盈利20元,若是次品则亏损20元;现从大量的这种零件中随机抽取2件,其利润之和记为X(单位:元),求X的分布列及数学期望.【答案】(1)6.32;(2)40.(2)由表可得任取一件零件为优质品的概率为2011005=,任取一件零件为正品的概率为3238710010+=,任考点: 1、平均值的求法;2、离散型随机变量分布列的分布列及期望.20.(本小题满分12分) 已知椭圆22221(0)x y a b a b+=>>的离心率为18,1F 、2F 是椭圆的左、右焦点,过2F 作直线l 交椭圆于A 、 B 两点,若1F AB ∆的周长为8.(1)求椭圆方程;(2)若直线l 的斜率不为0,且它的中垂线与y 轴交于Q ,求Q 的纵坐标的范围;(3)是否在x 轴上存在点(,0)M m ,使得x 轴平分AMB ∠?若存在,求出m 的值;若不存在,请说明理 由.【答案】(1)22143x y +=;(2)[]1212;(3)存在,4m =. 【解析】试题分析: (1)由题意列出关于,a b 的方程组,求出,a b 值即可;(2)设出直线方程,与椭圆方程联立后根据韦达定理将AB 中点用斜率k 表示,进而中垂线用k 表示,最后纵坐标用k 表示再利用基本不等式求出最值;(3)假设存在,利用0MA MB k K +=,列出关于,m k 的等式,该等式对任意k 都成立可求得符合条件的m.考点: 1、待定系数法求椭圆的标准方程、基本不等式求最值;2、解析几何中的存在性问题.【方法点晴】本题主要考查待定系数法求椭圆的标准方程、基本不等式求最值以及解析几何中的存在性问题,属于难题.解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在(或者方程有解就存在,没解就不存在),注意:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规方法题很难时采取另外的途径.21.(本小题满分12分)定义在R 上的函数()g x 及二次函数()h x 满足:2()2()9x x g x g x e e+-=+-,(2)(0)1h h -==且 (3)2h -=-. (1)求()g x 和()h x 的解析式;(2)对于1x 、[]21,1x ∈-,恒有11222()5()()h x ax g x x g x ++≥-成立,求实数a 的取值范围; (3)设(),(0)()(),(0)g x x f x h x x >⎧⎨≤⎩,讨论关于x 的方程[]()5f f x a =+的实数解的个数情况. 【答案】(1)2()3,()21x g x e h x x x =-=--+;(2)[3,7]-;(3)当3a =-时,方程有5个解,当238a e -<<-时方程有3个解,当28a e =-时方程有2个解,当287e a -<≤时方程有1个解.(2)设2()()5(2)6x h x ax x a x ϕ=++=-+-+, ()3(3)(1)33x x x F x e x e x e x =---=-+-考点: 1、利用导数研究函数的单调性和最值;2、函数的奇偶性、不等式恒成立问题、方程根的个数问题.【方法点晴】本题主要考查利用导数研究函数的单调性和最值以及函数的奇偶性、不等式恒成立问题、方程根的个数问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.⑤利用()()min max f x g x >.本题(2)就是利用方法方法⑤解答的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,PCE 交圆于,E C 两点,PD 切圆于,D G 为CE 上一点,且PG PD =,连接DG 并延长交圆于 点A ,作弦AB 垂直EP 垂足为F .(1)求证:AB 为圆的直径;(2)若AC BD =,求证:AB ED =.【答案】(1)证明见解析;(2)证明见解析.【解析】(2)连结,BC DC ,则 AB 为圆的直径∴090BDA ACB ∠=∠=在Rt BDA ∆与Rt ACB ∆中,,AB BA AC BD ==,∴Rt BDA Rt ACB ∆∆ ,∴DAB CBA ∠=∠DCB DAB ∠=∠,∴DCB CBA ∠=∠∴//DC ABAB EP ⊥∴DC EP ⊥∴DCE ∠为直角,∴ED 为圆的直径,AB 为圆的直径∴AB ED =.考点: 1、相似三角形;2、圆周角定理及弦切角定理.23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C 的方程为221x y +=,以平面直角坐标系xOy 的原点O 为极点, x 轴的正半轴为极轴,且取相同的单位长度建立极坐标系,已知直线l 的极坐标方程为(2c o s s i n )ρθθ-=.(1)将曲线1C 2倍后得到曲线2C ,试写 出直线l 的直角坐标方程和曲线2C 的参数方程;(2)设P 为曲线2C 上任意一点,求点P 到直线l 的最大距离.【答案】(1)22134x y +=,2sin x y θθ⎧=⎪⎨=⎪⎩;(2)(2)设点P的坐标,2sin)θθ,则点P到直线l的距离为d==∴当cos()16πθ+=-时,maxd==考点:1、极坐标方程与直角坐标的方程互化公式;2、点到直线距离公式及利用三角函数求最值.24.(本小题满分10分)选修4-5:不等式选讲已知0,0,0a b c>>>,3331113abca b c+++的最小值为m.(1)求m的值;(2)解关于x的不等式12x x m+-<.【答案】(1)6m=;(2)7(,)3-+∞.(2)由(1)知6m=,则126x x+-<,即162x x+<+,考点:1、基本不等式求最值;2、绝对值不等式的解法.。
2016年陕西省西安市碑林区交大附中中考数学一模试卷一、选择题1.(3分)9的平方根是()A.±3 B.3 C.﹣3 D.±2.(3分)如图所示,两个紧靠在一起的圆柱体组成的物体,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.(ab)2=ab2B.a2•a3=a4 C.a5+a5=2a5D.(a2)3=a54.(3分)如图,在△ABC中,∠C=90°,EF∥AB,∠CEF=50°,则∠B的度数为()A.50°B.60°C.30°D.40°5.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣46.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE 于点F,若AB=10,BC=8,则EF的长是()A.B.1 C.D.1.57.(3分)设方程x2+x﹣2=0的两个根为α,β,那么(α﹣1)(β﹣1)的值等于()A.﹣4 B.﹣2 C.0 D.28.(3分)已知直线y=kx+b(k≠0)过点(2,﹣3),(﹣2,m),且不经过第一象限,则m的取值范围是()A.m<﹣2 B.m≤3 C.﹣2<m<3 D.﹣3<m≤39.(3分)如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则sin∠CBD的值等于()A.B.C.D.10.(3分)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m二、填空题11.(3分)若a<<b,且a、b是两个连续的整数,则a5=.12.(3分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为.13.(3分)如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=.三、填空题(共2小题,每小题3分,满分6分)14.(3分)在△ABC中,BC=6,点D、E分别在AB、AC上,DE∥BC,AD=2BD,则DE的长为.15.(3分)如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈米.(精确到0.1米)三、解答题16.计算:+|1﹣|﹣+(﹣)﹣2.17.解方程:+=1.18.如图,已知三段公路(线段AB,以及射线AC、BD),请在AB的下方区域用尺规作一点P,使P点到三条公路的距离相等(保留作图痕迹,不写作法).19.为纪念交通大学建校120周年进行宣传,附中中学某年级开展了主题为“交通大学历史知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了如图不完整的表格和扇形统计图.根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为人,表中m的值为.(2)计算等级为“非常了解”的频数在扇形统计图中对应的圆心角的度数.(3)若该校有学生1500人,请根据调查结果估计这些学生中“不太了解”交通大学历史的人数约为多少?20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.21.一种千斤顶利用了四边形的不稳定性.如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?(,结果保留整数)22.为庆祝某家电商场正式营业,该商场推出了两种购物方案,方案一:购买家电不超过3000元按商品售价支付,超出3000元则超出部分可获8折优惠,方案二:如交纳200元会费成为该商场会员,则购买家电可获9折优惠.若用x(元)表示家电售价,y(元)表示顾客支出金额.(1)分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划购买售价为3800元的洗衣机一台,请分析选择哪种方案更省钱?23.两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯.(1)求出甲、乙二人在同一层楼出电梯的概率;(2)若甲、乙在相邻楼层出电梯,试比较这种情况与“在同一层楼出电梯”概率的大小.24.如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O 上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.25.如图,已知抛物线与x轴交于点A、B(点A在B的左侧),与y轴交于点C,抛物线c2与抛物线c1关于y轴对称,点A、B的对称点分别是E、D,连接CD、CB,设AD=m.(1)抛物线c2可以看成抛物线c1向右平移个单位得到.(2)若m=2,求b的值.(3)将△CDB沿直线BC折叠,点D的对应点为G,且四边形CDBG是平行四边形,①△CDB为三角形(按边分);②若点G恰好落在抛物线c2上,求m的值.26.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“等中三角形”.探索体验(1)如图①,点D是线段AB的中点,请画出一个△ABC,使其为“等中三角形”;(2)如图②,在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“等中三角形”;拓展应用(3)如图③,在正方形ABCD中,AB=6,点P、Q分别在BC、CD边上,且PQ ∥BD,是否存在点Q,使△APQ为“等中三角形”?若存在,请求出DQ的长度;若不存在,请说明理由.2016年陕西省西安市碑林区交大附中中考数学一模试卷参考答案与试题解析一、选择题1.(3分)9的平方根是()A.±3 B.3 C.﹣3 D.±【解答】解:±,故选:A.2.(3分)如图所示,两个紧靠在一起的圆柱体组成的物体,它的主视图是()A.B.C.D.【解答】解:从正面看左边是一个正方形,右边是一个矩形,故选:B.3.(3分)下列计算正确的是()A.(ab)2=ab2B.a2•a3=a4 C.a5+a5=2a5D.(a2)3=a5【解答】解:A、应为(ab)2=a2b2,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、a5+a5=2a5,正确;D、应为(a2)3=a6,故本选项错误;故选C.4.(3分)如图,在△ABC中,∠C=90°,EF∥AB,∠CEF=50°,则∠B的度数为()A.50°B.60°C.30°D.40°【解答】解:∵∠C=90°,∴∠CFE=90°﹣∠CEF=40°,又∵EF∥AB,∴∠B=∠CFE=40°.故选D.5.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B6.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE 于点F,若AB=10,BC=8,则EF的长是()A.B.1 C.D.1.5【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,DE=AB=5,BD=BC=4,∴∠ABF=∠BFD,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠BFD,∴DF=DB=4,∴EF=DE﹣DF=1,故选:B.7.(3分)设方程x2+x﹣2=0的两个根为α,β,那么(α﹣1)(β﹣1)的值等于()A.﹣4 B.﹣2 C.0 D.2【解答】解:依题意得α+β=﹣1,α•β=﹣2,∴(α﹣1)(β﹣1)=α•β﹣(α+β)+1=﹣2+1+1=0.故选C.8.(3分)已知直线y=kx+b(k≠0)过点(2,﹣3),(﹣2,m),且不经过第一象限,则m的取值范围是()A.m<﹣2 B.m≤3 C.﹣2<m<3 D.﹣3<m≤3【解答】解:∵直线y=kx+b(k≠0)不经过第一象限,∴k<0,b≤0,将(2,﹣3)、(﹣2,m)代入y=kx+b,,解得:,∴,解得:﹣3<m≤3.故选D.9.(3分)如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则sin∠CBD的值等于()A.B.C.D.【解答】解:如图所示:作⊙O的直径AE.在Rt△BAE中,BE==6在Rt△BCD中,sin∠CBD=cos∠C=.∵∠C=∠E,∴sin∠CBD=cos∠C=cos∠E===.故选:A.10.(3分)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m【解答】解:∵对称轴是x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选C.二、填空题11.(3分)若a<<b,且a、b是两个连续的整数,则a5=32.【解答】解:∵4<6<9,∴2<<3,由a<<b,且a、b是两个连续的整数,得到a=2,b=3,则a5=25=32,故答案为:3212.(3分)如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为(3,6).【解答】解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数y=(x>0)的图象上,∴y=6,x=3,∴点C的坐标为(3,6).故答案为:(3,6).13.(3分)如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=1::1.【解答】解:连接BD、BF和CE,∵四边形ABCD和BEFG均为正方形,∴==,且∠ABD=∠GBF=45°,∴∠ABG+∠GBD=∠GBD+∠DBF,∴∠ABG=∠GBD,∴△ABG∽△DBF,∴,又∴AB=BC,BG=BE,∠ABC=∠GBE=90°,∴∠AGB+∠GBC=∠GBC+∠CBE,∴∠AGB=∠CBE,在△ABG和△CBE中∴△ABG≌△CBE(SAS),∴AG=CE,∴AG:CE=1:1,∴AG:DF:CE=1::1,故答案为:1::1.三、填空题(共2小题,每小题3分,满分6分)14.(3分)在△ABC中,BC=6,点D、E分别在AB、AC上,DE∥BC,AD=2BD,则DE的长为4.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=2BD,∴,∵BC=6,∴DE=4,故答案为:4.15.(3分)如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈ 6.8米.(精确到0.1米)【解答】解:AB=≈≈6.8米,故答案为6.8.三、解答题16.计算:+|1﹣|﹣+(﹣)﹣2.【解答】解:原式=﹣2+﹣1﹣+4=1.17.解方程:+=1.【解答】解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.18.如图,已知三段公路(线段AB,以及射线AC、BD),请在AB的下方区域用尺规作一点P,使P点到三条公路的距离相等(保留作图痕迹,不写作法).【解答】解:如图,作∠CAB的角平分线AE,∠ABD的角平分线BF交AE于点P,点P即为所求.19.为纪念交通大学建校120周年进行宣传,附中中学某年级开展了主题为“交通大学历史知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了如图不完整的表格和扇形统计图.根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为200人,表中m的值为90.(2)计算等级为“非常了解”的频数在扇形统计图中对应的圆心角的度数.(3)若该校有学生1500人,请根据调查结果估计这些学生中“不太了解”交通大学历史的人数约为多少?【解答】解:(1)本次问卷调查共抽取的学生数为:40÷20%=200(人),m=200×45%=90(人),故答案为:200,90.(2)“非常了解”的频数在扇形统计图中对应的圆心角的度数为×100%×360°=90°;(3)1500×=150(人),答:估计这些学生中“不太了解”交通大学历史的人数约为150人.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.21.一种千斤顶利用了四边形的不稳定性.如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?(,结果保留整数)【解答】解:连接AC,与BD相交于点O.∵四边形ABCD是菱形,∴AC⊥BD,∠ADB=∠CDB,AC=2AO.当∠ADC=60°时,△ADC是等边三角形.∴AC=AD=AB=40;当∠ADC=120°时,∠ADO=60°,∴AO=AD•sin∠ADO=40×=20,∴AC=40,因此增加的高度为40﹣40=40×(﹣1)≈29(cm).22.为庆祝某家电商场正式营业,该商场推出了两种购物方案,方案一:购买家电不超过3000元按商品售价支付,超出3000元则超出部分可获8折优惠,方案二:如交纳200元会费成为该商场会员,则购买家电可获9折优惠.若用x(元)表示家电售价,y(元)表示顾客支出金额.(1)分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划购买售价为3800元的洗衣机一台,请分析选择哪种方案更省钱?【解答】解:(1)根据题意得:方案一:当0≤x≤3000时,y=x;当x>3000时,y=3000+0.8(x﹣3000)=0.8x+600.∴y关于x的函数解析式为y=.方案二:y关于x的函数解析式为y=0.9x+200.(2)方案一:当x=3800时,y=0.8×3800+600=3640;方案二:当x=3800时,y=0.9×3800+200=3620.∵3640>3620,∴若某人计划购买售价为3800元的洗衣机一台,选择方案二更省钱.23.两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯.(1)求出甲、乙二人在同一层楼出电梯的概率;(2)若甲、乙在相邻楼层出电梯,试比较这种情况与“在同一层楼出电梯”概率的大小.【解答】解:(1)列表如下:一共出现16种等可能结果,其中出现在同一层楼梯的有4种结果,则P(甲、乙在同一层楼梯)==;(2)一共出现16种等可能结果,其中甲、乙在相邻楼层出电梯的有6种结果P(甲、乙在相邻楼层出电梯)==,∵>,∴甲、乙在相邻楼层出电梯的概率比同一层楼出电梯的概率大.24.如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O 上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.【解答】解:(1)CD与⊙O相切.理由:连接OD,∵∠AED=45°,∴∠AOD=2∠AED=90°,即OD⊥AB,∵四边形ABCD是平行四边形,∴AB∥CD,∴OD⊥CD,∵AB为直径的圆O经过点D,∴CD与⊙O相切;(2)过点O作OF⊥AE,连接OE,则AF=AE=×10=5(cm),∵OA=OE,∴∠AOF=∠AOE,∵∠ADE=∠AOE,∴∠ADE=∠AOF,在Rt△AOF中,sin∠AOF==,∴sin∠ADE=.25.如图,已知抛物线与x轴交于点A、B(点A在B的左侧),与y轴交于点C,抛物线c2与抛物线c1关于y轴对称,点A、B的对称点分别是E、D,连接CD、CB,设AD=m.(1)抛物线c2可以看成抛物线c1向右平移m个单位得到.(2)若m=2,求b的值.(3)将△CDB沿直线BC折叠,点D的对应点为G,且四边形CDBG是平行四边形,①△CDB为等边三角形(按边分);②若点G恰好落在抛物线c2上,求m的值.【解答】解:(1)抛物线c1图象上的A点向右平移m个单位后,得到抛物线c2图象上的D点,故抛物线c2可由抛物线c1向右平移m个单位得到;故填:m.(2)抛物线c1、c2关于y轴对称,已知,抛物线c1:y=﹣x2+bx+c,对称轴:x=2b;则,抛物线c2:y=﹣x2﹣bx+c,对称轴:x=﹣2b;由(1)知:抛物线c2可由抛物线c1向右平移m个单位得到,则:﹣2b﹣2b=m,即:b=﹣=﹣.(3)①如右图,若四边形CDBG是平行四边形,则∠GCB=∠CBD;已知,△GCB由△DCB翻折所得,故∠GCB=∠DCB;∴∠DCB=∠CBD;由题意,知:B、D关于y轴对称,所以CB=CD,即:∠CDB=∠CBD;∴∠DCB=∠DCB=∠CBD,即△CDB是等边三角形;②在等边△CBD中,OB=OD,∠CDO=60°,OC=c,则:OD=OB=c,即:D(﹣c,0);∵CG∥x轴,且CG=BD=c,∴G(c,c);由(2)的结论,可设抛物线c2:y=﹣x2+x+c,代入D、G两点的坐标,得:解得:m=.26.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“等中三角形”.探索体验(1)如图①,点D是线段AB的中点,请画出一个△ABC,使其为“等中三角形”;(2)如图②,在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“等中三角形”;拓展应用(3)如图③,在正方形ABCD中,AB=6,点P、Q分别在BC、CD边上,且PQ ∥BD,是否存在点Q,使△APQ为“等中三角形”?若存在,请求出DQ的长度;若不存在,请说明理由.【解答】解:(1)如图1中,作射线DN,在射线DN上截取DC=AB,连接AC、BC,则△ABC即为所求.(2)如图2中,取AC的中点D,连接BD.∵∠ACB=90°,tanA=,∴可以假设BC=k,AC=2k,∴CD=AD=k,在Rt△BDC中,BD===2k,∴BD=AC,∴△ABC是“等中三角形”;(3)①如图3中,连接AC,交PQ于M.当AM=PQ时,设DQ=x.∵四边形ABCD是正方形,∴∠CDB=∠CB=45°,CD=BC=AB=6,∵PQ∥BD,∴∠CQP=∠CPQ=45°,∴CQ=CP,DQ=PB=x,∴CQ=CP=6﹣x,PQ=(6﹣x),CM=(6﹣x),由题意AM=PQ,∴6﹣(6﹣x)=(6﹣x),∴x=2,∴DQ=2.②如图,PM是△APQ的中线,当AQ=PM时,设AQ=AP=PM=4a,作PH⊥AQ于H,则AM=MQ=2a,AH=HM=a,PH=a,PQ=2a,CQ=CP=2a,∵DQ=,DQ+CQ=6,∴+2a=6,解得a=3﹣3或﹣3﹣3(舍弃),∴DQ=CD﹣CQ=6﹣(6﹣18)=24﹣6,综上所述,满足条件的DQ的长为2或24﹣6.。