具有某类Lδ-(logL)ρ核函数的Marcinkiewicz积分交换子的双权估计
- 格式:pdf
- 大小:520.76 KB
- 文档页数:10
具有变量核Marcinkiewicz积分交换子的CBMO估计摘要本文讨论了当b∈CBMOq(Rn)时,具有变量核的Marcinkiewicz积分交换子μΩ,b在Herz空间和Herz型Hardy 空间中的有界性。
关键词Herz空间;Herz型Hardy空间;Marcinkiewicz 积分;变量核中图分类号O174.2文献标识码A 大众文化的文本当中都有明显的体现,大众文化作为一种可经验的文化现象与后现代主义有一种相互适应、相互验证和相互加强的关系。
大众文化的兴起、表征形式及其负载的意识形态功能,都与后现代主义息息相关。
三、大众文化的特点1、无主体性和无个人风格。
现代主义是一种关于主体的艺术,总是张扬主体的至高无上地位,作品努力表现主体独特的情感体验,语言上带有个人的风格,而后现代大众文化却消解了主体。
詹明信指出:“主体的灭亡――也就是指不假外求、自信自足的资产阶级独立的个体的结束。
这也意味着‘自我,作为单元体的灭亡。
在主体解体以后,再不能称为万事的中心;个人的心灵也不再处于生命中当然的重点。
”詹明信认为,或许那个大写的主体曾经存在过,“但一旦身处近日世界,在官僚架构雄霸社会的情况下,‘主体’已无法支持下去,而必然会在全球性的社会经济网络中瓦解、消失……须知随着主体之去,现代主义论述中有关独特‘风格’的概念也逐渐引退”。
主体死亡了,想像力也就随之死亡了,也就谈不上什么创造力、个人风格。
“在这个世界里,风格上的创新已不再可能,剩下的仅仅是模仿失去生命力的风格,透过面具,以那种在想像中的博物馆里的风格的声音来讲话。
”大众文化没有独特的个人化的风格,在语言上也不再推崇私人癖好和与众不同,其语言在流行中形成了通用的套话式的“媒体语言”。
主体死亡了,与主体有关的一切包括所谓“情感”也就无所寄托了。
“‘自我’既然不存在了,所谓‘情感’也就无所寄托了;那‘情感’自然也就不能存在了”,“除此之外,其他相关事物也随着情感的消逝而一一告终了”。
493Vol.49,No.3 20065ACTA MATHEMATICA SINICA,Chinese Series May,2006 :0583-1431(2006)03-0481-10:AMarcinkiewicz100875E-mail:lusz@;huixmo@MarcinkiewiczμbΩL p(R n)Hardy,Ω∈L1(S n−1)R n L q-Dini,.Marcinkiewicz;Triebel–Lizorkin;HardyMR(2000)42B25O174.2The Boundedness of Commutators for the Marcinkiewicz IntegralsShan Zhen LU Hui Xia MOSchool of Mathematical Sciences,Beijing Normal University,Beijing100875,P.R.ChinaE-mail:lusz@;huixmo@Abstract In this paper,the authors consider the boundedness of commutators for theMarcinkiewicz integralμbΩon L p(R n)and Hardy spaces,hereΩbeing a homogeneousfunction of degree zero on R n and satisfying a class of L q-Dini condition.The resultsin this paper are substantial improvements over some known results.Keywords Marcinkiewicz integral;Triebel–Lizorkin space;Hardy spaceMR(2000)Subject Classification42B25Chinese Library Classification O174.21S n−1R n(n≥2),Lebesgue dσ=dσ(x ),x =x/|x|(x=0).Ω∈L1(S n−1)R nS n−1Ω(x )dσ(x )=0.(1.1)MarcinkiewiczμΩ(f)(x)= ∞|FΩ,t(x)|2dtt12,FΩ,t(x)=1t|x−y|≤tΩ(x−y)|x−y|n−1f(y)dy.:2004-11-30;:2005-04-26:973(19990751);(20040027001)48249H Hilbert H={h: h H=( ∞|h(t)|2dtt)1/2<∞},φ(x)=Ω(x)|x|n−1χ{|x|<1},μΩH,μΩ(f)(x)= ∞|FΩ,t(x)|2dtt12=∞|φt∗f(x)|2dtt12= φt∗f(x) H.Marcinkiewicz Stein[1].[1]:ΩLipα(0<α≤1),μΩ(p,p)(1<p≤2)(1,1).Benedek [2]:Ω∈C1(S n−1),μΩL p(R n),1<p<∞.,[3]:Ω∈H1(S n−1),μΩL p(1<p<∞),H1(S n−1) S n−1Hardy([4–6]).,b∈L loc(R n),MarcinkiewiczμbΩ(f)(x)= ∞|FΩ,b,t(x)|2dtt12,FΩ,b,t(x)=1t|x−y|≤tΩ(x−y)|x−y|n−1(b(x)−b(y))f(y)dy.β>0,Lipschitz˙Λβ(R n)=f: f ˙Λβ=supx,h∈R n,h=0|Δ[β]+1hf(x)||h|<∞,Δk h k([7]).b∈˙Λβ(R n)ΩLipα(0<α≤1),[8][9]μbΩ(L p,˙Fβ,∞p)(L p,L s).A[8]1<p<∞,0<α≤10<β<min{12,α}.b∈˙Λβ(R n),Ω∈Lipα(S n−1),C>0, μbΩ(f) ˙Fβ,∞p ≤C b ˙Λβf L p.B[9]1<p<∞,0<β<1,1/p−1/q=β/n.b∈˙Λβ(R n)Ω∈Lipα(S n−1)(0<α≤1),C>0, μbΩ(f) L q≤C b ˙Λβ f L p.,n/(n+β)≤p≤11/q=1/p−β/n,μbΩ(L p,L q),[10]μbΩHardy,.CΩ∈Lipα(S n−1)(0<α≤1),b∈˙Λβ(R n)(0<β≤α/2).n/(n+β)<p≤11/q=1/p−β/n,C>0, μbΩ(f) L q≤C b ˙Λβ f H p.:A–C,Ω..1.1Ω∈L q(S n−1)(q≥1),Ωqωq(δ)=sup|ρ|≤δS n−1|Ω(ρx )−Ω(x )|q dδ(x )1q,ρR n|ρ|= ρ−I .ωq(δ)1 0ωq(δ)δdδ<∞,(1.2)3:Marcinkiewicz483Ω(x )L q -Dini..11≤q <p <∞,Ω(1.1)1ωq (δ)δ1+εdδ<∞,0<ε≤1,(1.3)b ∈˙Λβ(R n )(0<β<min {1/2,ε}),C >0,μb Ω(f ) ˙F β,∞p ≤C b ˙Λβ· Ω L q (S n −1) f L p ,1 +1=1.20<β<1,1<p <n/β,1/s =1/p −β/n,q ≥n/(n −β).b ∈˙Λβ(R n )Ω∈L q (S n −1)(1.1),C >0,μb Ω(f ) L s ≤C b ˙Λβ f L p .30<β<1,b ∈˙Λβ(R n ).Ω∈L q (S n −1)(q ≥n/(n −β))(1.1),C >0,λ>0,|{x ∈R n :|μb Ω(f )(x )|>λ}|≤C ( b ˙Λβ f L 1/λ)n/(n −β).40<ε≤1,b ∈˙Λβ(R n )(0<β<min {12,ε}),n/(n +β)<p ≤11/r =1/p −β/n.q ≥max {r,n/(n −β)},Ω∈L q (S n −1)(1.1)(1.3),C >0,μb Ω(f ) L r ≤C b ˙Λβ Ω L q (S n −1) f H p .1,Ω.,23Ω.2q >1,L q (S n −1)⊂L log +L (S n −1)⊂H 1(S n −1)⊂L 1(S n −1)([11]).,1f ∈L p (1<p <∞),μΩ(f ) L p ≤C f L p ([3]).3QR n,M r f (x )=sup x ∈Q (1|Q | Q |f (y )|r dy )1/r,r ≥1.22.1[7](a)0<β<1,1≤q <∞,f ˙Λβ≈sup Q 1Q|f −f Q |≈sup Q 1β/n 1|Q | Q |f −f Q |q 1q .q =∞,.(b)0<β<1,1<p <∞,f ˙F β,∞p≈ sup Q ·1|Q |1+β/nQ|f −f Q | L p,f Q =1|Q |Q f (x )dx.2.2[7]Q ∗⊂Q ,|f Q ∗−f Q |≤C f ˙Λβ|Q |β/n.2.3[11]0<λ<n,q >1,Ω(1.2),a 0>0,|x |<a 0R,R<|y |<2RΩ(y −x )−Ω(y ) q dy 1q ≤CR n/q −(n −λ) |x |R + |x |/R|x |/2R ωq (δ)δdδ ,C >0Rx .484492.4[12]0<α<n,1<p <n/α,1/s =1/p −α/n,q ≥n/(n −α).Ω∈L q (S n −1),T Ω,αf (x )=R nΩ(x −y )|x −y |f (y )dyL p (R n )L s (R n ).2.5[13]0<α<n,q ≥n/(n −α).Ω∈L q (S n −1),λ>0f ∈L 1(R n ),|{x ∈R n :|T Ω,αf (x )|>λ}|≤C ( f L 1/λ)n/(n −α).33.11–3x ∈R n ,Q (x Q ,l ) x,x QQ ,l .f ∈L p (1<p <∞),f 1=fχQ ∗,f 2=f −f 1,Q ∗=4√nQ Q 4√n.N ∈N ,2N ≤4√n <2N +1.μb Ω(f )=μb −b QΩ(f )(μb Ω(f ))Q <∞,1|Q |1+β/n Q|μb Ω(f )(y )−(μbΩ(f ))Q |dy =1|Q |1+β/n Q|μb −b Q Ω(f )(y )−(μb −b QΩ(f ))Q |dy ≤2|Q |1+β/n Q|μb −bQ Ω(f )(y )−μΩ((b −b Q )f 2)(x Q )|dy ≤2|Q |1+β/n Q |(b (y )−b Q )μΩ(f )(y )|dy +2|Q |1+β/n Q|μΩ((b −b Q )f 1)(y )|dy +2sup y ∈Q F Ω,t ((b −b Q )f 2)(y )−F Ω,t ((b −b Q )f 2)(x Q ) :=I +II +III.,I,IIIII.b ∈˙Λβ(R n )I =2|Q |1+β/n Q |(b (y )−b Q )μΩ(f )(y )|dy ≤2|Q |β/n sup y ∈Q|b (y )−b Q |1|Q | Q |μΩ(f )(y )|dy≤C b ˙ΛβM (μΩ(f ))(x ),MHardy–Littlewood.II ,.3.1.1[7](b −b Q )f 1 L r ≤C |Q |1/r +β/n b ˙ΛβM r (f )(x ),1≤r <∞,f 1.H¨o lderμΩL r (1<r <∞)II =2|Q |1+β/nQ|μΩ((b −b Q )f 1)(y )|dy ≤2|Q |1+β/nμΩ((b −b Q )f ) L r |Q |1−1/r≤C |Q |−β/n −1/rμΩ((b −b Q )f ) L r ≤C b ˙ΛβM r (f )(x ).3:Marcinkiewicz485III .D = F Ω,t ((b −b Q )f 2)(y )−F Ω,t ((b −b Q )f 2)(x Q ) ,D = ∞01t|y −z |≤t Ω(y −z )|y −z |n −1((b −b Q )f 2)(z )dz −|x Q −z |≤tΩ(x Q −z )|x Q −z |n −1((b −b Q )f 2)(z )dz 2dt t 12≤ ∞0 1t|y −z |≤t |x Q −z |>tΩ(y −z )|y −z |((b −b Q )f 2)(z )dz 2dt t12+ ∞0 1|y −z |>t |x Q −z |≤tΩ(x Q −z )|x Q −z |((b −b Q )f 2)(z )dz 2dt 12+ ∞0 1t|y −z |≤t |x Q −z |≤tΩ(y −z )|y −z |n −1−Ω(x Q −z )|x Q −z |n −1 ((b −b Q )f 2)(z )dz 2dt t 12:=D 1+D 2+D 3.D 2.z ∈(Q ∗)c ,|z −x Q |∼|y −z |.MinkowskiD 2≤CR n |Ω(x Q −z )|Q |(b (z )−b Q )f 2(z )| |y −z ||x Q −z |1t dt 12dz ≤C (Q ∗)c |Ω(x Q −z )||x Q −z ||(b (z )−b Q )f (z )|l 12Q dz ≤C∞k =N2−k/2(2k l )−n 2k l ≤|x Q −z |<2k +1l|Ω(x Q −z )||b (z )−b Q ||f (z )|dz.z ∈Q k +1,2.2|b (z )−b Q |=|b (z )−b Q k +1|+|b Q k +1−b Q |≤C |Q k +1|β/n b ˙Λβ,(3.1.1)Q k +1=2k +1Q.Ω∈L q (S n −1),|x Q−z |<2k +1l|Ω(x Q −z )|q1q≤C (2k +1l )n/q Ω L q (S n −1),(3.1.2)H¨o lderD 2≤C∞k =N2−k/2(2k l )−n |Q k +1|β/n b ˙Λβ|x Q −z |<2k +1l|f (z )|qdz1×|x Q −z |<2k +1l |Ω(x Q −z )|q1q≤C∞k =N2−k/2(2k l )−n|Q k +1|β/n b ˙Λβ(2k +1l )n/q(2k +1l )n/q Ω L q (S n −1)M q (f )(x )≤C |Q |β/nb ˙Λβ Ω L q (S n −1)M q (f )(x ).D 1≤C |Q |β/n b ˙Λβ Ω L q (S n −1)M q (f )(x ).D 3.48649 Minkowski,H¨o lder(3.1.1),D3≤CR nΩ(y−z)|y−z|n−1−Ω(x Q−z)|x Q−z|n−1|b(z)−bQ||f2(z)||y−z|≤t|x Q−z|≤tdtt312≤C∞j=N2k l≤|z−x Q|<2k+1lΩ(y−z)|y−z|−Ω(x Q−z)|x Q−z||b(z)−b Q||f(z)||y−z|dz.≤C∞k=N(2k l)−1|Q k+1|β/n b ˙Λβ|z−x Q|<2k+1l|f(z)|q dz1×2k l≤|z−x Q|<2k+1lΩ(y−z)|y−z|n−1−Ω(x Q−z)|x Q−z|n−1q dz1q≤C∞k=N(2k l)−1(2k+1l)n/q +β|Q|β/n b ˙ΛβM q (f)(x)×2k l≤|z−x Q|<2k+1lΩ(y−z)|y−z|−Ω(x Q−z)|x Q−z|q dz1q., 2.3(1.3)2k l≤|z−x Q|<2k+1lΩ(y−z)|y−z|n−1−Ω(x Q−z)|x Q−z|n−1q dz1q≤C(2k l)n/q−(n−1)|y−x Q|2k l+|y−x Q|2k l|y−x Q|2k+1lωq(δ)δdδ≤C(2k l)n/q−(n−1)2−k+2−kε1ωq(δ)δ1+εdδ≤C(2k l)n/q−(n−1)(2−k+2−kε),D3≤C∞k=N(2k l)−1+n/q +β b ˙Λβ|Q|β/n(2k l)n/q−(n−1)(2−k+2−kε)M q (f)(x)≤C∞k=N(2−k(1−β)+2−k(ε−β)|Q|β/n b ˙ΛβM q (f)(x)≤C|Q|β/n b ˙ΛβM q (f)(x).D1,D2D3,D≤C|Q|β/n b ˙ΛβΩ L q(S n−1)M q f(x).III≤C b ˙ΛβΩ L q(S n−1)M q f(x).I,II III1|Q|1+β/nQ|μbΩ(f)−(μbΩ(f))Q|≤C b ˙Λβ Ω L q(S n−1)M(μΩ(f))(x)+M r(f)(x)+M q (f)(x),1<r<p<∞.3:Marcinkiewicz487,x,M,M rM qL pμb Ω(f ) ˙Fβ,∞p ≈supQ ·1|Q |1+β/nQ|μb Ω(f )(y )−(μbΩ(f ))Q |dyL p≤C b ˙Λβ Ω L q (S n −1) f L p .23.b ∈˙Λβ(R n )(0<β<1),Minkowskiμb Ω(f )(x )=∞01t|x −y |≤t Ω(x −y )(b (x )−b (y ))f (y )dy 2dt t 12≤ R n |Ω(x −y )||b (x )−b (y )||f (y )| ∞|x −y |≤t 1t dt 12dy ≤C b ˙ΛβRn |Ω(x −y )||x −y ||f (y )|dy.(3.1.3)(3.1.3),2.42.5,μb Ω(f ) L s ≤C b ˙Λβ T |Ω|,β|f | L s ≤C b ˙Λβ f L p |{x ∈R n :|μb Ω(f )(x )|>λ}|≤|{x ∈R n:|T |Ω|,β|f |(x )|>λ/C b ˙Λβ}|≤C ( b ˙Λβ f L 1/λ)nn −β.3.24Hardy.3.2.1[14]0<p ≤1≤q ≤∞,p <q,s ≥s 0,s 0=[n (1/p −1)].a(p,q,s ),a ∈L q (R n ):(1)supp a ⊂Q ;(2) a L q ≤|Q |1/q −1/p ;(3)R n a (x )x αdx =0,α=(α1,...,αn )∈N n ,0≤|α|=ni =1αi ≤s.3.2.2[14]0<p ≤1≤q ,p <q ,HardyH p,q,s a (R n)H p,q,s a (R n )= f ∈S(R n ):f =∞ j =1λj a j ,a j(p,q,s ),∞j =1|λj |p <∞,f H p,q,s a (R n )=inf∞j =1|λj |p1p,f =∞ j =1λj a j .3.2.1[14]0<p ≤1≤q ,p <q ,H p,q,s a (R n )=H p (R n ), f H p,q,s a (R n )= f H p (R n ).4s 0=[n (1/p −1)]≥[n ((n +β)/n )−1]=0,3.2.1,C >0,(p,t,0)a ,μb Ω(a ) L r ≤C b ˙Λβ,t ≥n/β.48849supp a ⊂Q =Q (x 0,l ),Q ∗=4√nQ.N ∈N ,2N ≤4√n <2N +1.μb Ω(a ) L r ≤ Q ∗|μb Ω(a )(x )|rdx1r + (Q ∗)c|μb Ω(a )(x )|rdx1r≤Q ∗|μb Ω(a )(x )|rdx1r+(Q ∗)c|x −x 0|+2l 0|x −y |≤tΩ(x −y )|x −y |(b (x )−b (y ))a (y )dy 2dt t 3 r 2dx 1r+ (Q ∗)c∞|x −x 0|+2l |x −y |≤t Ω(x −y )|x −y |(b (x )−b (y ))a (y )dy 2dt t 3 r 2dx 1r:=I +II +III.p 1,s 1,1<p 1<n/β,1/s 1=1/p 1−β/n,r <s 1.H¨o lder μb Ω(L p 1,L s 1)(2),I ≤C μb Ω(a ) L s 1|Q ∗|1/r −1/s 1≤C b ˙Λβ a L p 1|Q ∗|(1/r −1/s 1)≤C b ˙Λβ a L t |Q |(1/p 1−1/t )|Q ∗|(1/r −1/s 1)≤C b ˙Λβ|Q |(1/t −1/p )|Q |(1/p 1−1/t )|Q ∗|(1/r −1/s 1)≤C b ˙Λβ.y ∈Q,x ∈(Q ∗)c ,|x −y |∼|x −x 0|∼|x −x 0|+2l,MinkowskiII ≤C(Q ∗)cR n|x −x 0|+2l|x −y |dt3 12|Ω(x −y )||a (y )||x −y ||b (x )−b (y )|dy rdx 1r≤C (Q ∗)c Q |l |12||Ω(x −y )||a (y )||x −y |n +12|b (x )−b (y )|dy r dx 1r ≤C ∞ k =N2k l ≤|x −x 0|<2k +1l Q |l |12||Ω(x −y )||a (y )||x −y |n +12|b (x )−b (y )|dy r dx 1r ≤C ∞k =N2−k/2(2k l )−n (2k +1l )β b ˙ΛβQ|x −x 0|<2k +1l|Ω(x −y )|r dx 1r |a (y )|dy.|x −x 0|∼|x −y |Ω∈L q (S n −1),q ≥r ≥1,|x −x 0|<2k +1l|Ω(x −y )|r dx 1r≤C (2k +1l )n/r Ω L q (S n −1),(3.2.1)a L 1≤C a L t |Q |1−1/t ≤C |Q |1−1/p =Cl n (1−1/p ),(3.2.2)II ≤C ∞ k =N2−k/2(2k l )−n (2k +1l )β(2k +1l )n/r b ˙Λβ Ω L q (S n −1) a L 1≤C ∞ k =N 2−k/2(2k l )−n (2k +1l )β(2k +1l )n/r |Q |−1/p +1 b ˙Λβ Ω L q (S n −1)≤C∞ k =N2−k [(1/2−β)+n (1−1/r )] b ˙Λβ Ω L q (S n −1)≤C b ˙Λβ Ω L q (S n −1).3:Marcinkiewicz489III .y ∈Q ,t ≥|x −x 0|+2l ≥|x −x 0|+|y −x 0|≥|x −y |.∞|x −x 0|+2l|x −y |≤tΩ(x −y )|x −y |(b (x )−b (y ))a (y )dy 2dt t 3 12= ∞|x −x 0|+2l Q Ω(x −y )|x −y |n −1(b (x )−b (y ))a (y )dy 2dt t 3 12= Q Ω(x −y )|x −y |(b (x )−b (y ))a (y )dy ∞|x −x 0|+2l dt t312≤ Q(b (x )−b (x 0))Ω(x −y )|x −y |n −1−Ω(x −x 0)|x −x 0|n −1 a (y )dy 1|x −x 0|+2l + Q Ω(x −y )|x −y |(b (y )−b (x 0))a (y )dy 1|x −x 0|+2l ≤ QΩ(x −y )|x −y |n −1−Ω(x −x 0)|x −x 0|n −1 |b (x )−b (x 0)||a (y )||x −x 0|+2l dy +Q |Ω(x −y )||x −y |n −1|b (y )−b (x 0)||a (y )||x −x 0|+2l dy.,a .III 1=(Q ∗)c QΩ(x −y )|x −y |−Ω(x −x 0)|x −x 0| |b (x )−b (x 0)||a (y )||x −x 0|+2l dy r dx 1r ,III 2=(Q ∗)c Q |Ω(x −y )||x −y |n −1|b (y )−b (x 0)||a (y )||x −x 0|+2l dy r dx 1r ,III ≤C (III 1+III 2).III 1,Minkowski ,H¨o lder ,(3.1.2)(3.2.2),III 1≤C Q(Q ∗)c Ω(x −y )|x −y |−Ω(x −x 0)|x −x 0| r |b (x )−b (x 0)||x −x 0|+2l r dx 1r |a (y )|dy ≤C ∞ k =N(2k l )β−1 b ˙Λβ Q 2k l ≤|x −x 0|<2k +1lΩ(x −y )|x −y |−Ω(x −x 0)|x −x 0| r dx 1r |a (y )|dy ≤C ∞ k =N(2k l )β−1(2k +1l )n (1/r −1/q ) b ˙Λβ× Q2k l ≤|x −x 0|<2k +1l Ω(x −y )|x −y |n −1−Ω(x −x 0)|x −x 0|n −1 q dx 1q |a (y )|dy ≤C ∞ k =N (2k l )β−1(2k l )n/r −n +1(2−k +2−kε) b ˙Λβ a L 1≤C ∞ k =N (2k l )β−1(2k l )n/r −n +1(2−k +2−kε) b ˙Λβln (1−1/p )≤C∞ k =N2−kn (1−1/r )(2−k (1−β)+2−k (ε−β)) b ˙Λβ≤C b ˙Λβ.49049 ,y∈Q,x∈(Q∗)c,|x−y|∼|x−x0|,III2≤CQ(Q∗)c|Ω(x−y)||x−y|n−1r|b(y)−b(x0)||x−x0|+2lrdx1r|a(y)|dy≤C∞k=Nlβ(2k l)−n b ˙ΛβQ2k l≤|x−x0|<2k+1l|Ω(x−y)|r dx1r|a(y)|dy≤C∞k=Nlβ(2k l)−n(2k+1l)n/r b ˙ΛβΩ L q(S n−1) a L1≤C∞k=Nlβ(2k l)−n(2k+1l)n/r l n(1−1/p) b ˙ΛβΩ L q(S n−1)≤C∞k=N2−k(1−1/r) b ˙ΛβΩ L q(S n−1)≤C b ˙ΛβΩ L q(S n−1).III≤C(III1+III2)≤C b ˙ΛβΩ L q(S n−1).I,II III,μbΩ(a) L r≤C b ˙ΛβΩ L q(S n−1).4.![1]Stein E.M.,On the function of Littlewood-Paley,Lusin and Marcinkiewicz,Tran.Amer.Math.Soc.,1958,88:430–466.[2]Benedek A.,Calder´o n A.P.,Panzone R.,Convolution operators on Banach space valued functions,Proc.Nat.Acad.Sci,1962,48:356–365.[3]Ding Y.,Fan D.,Pan Y.,L p-boundedness of Marcinkiewacz integrals with Hardy space function kernel,Acta.Math.Scinica,English Series,2000,16:593–600.[4]Colzani L.,Hardy spaces on sphere,Phd.thesis,Washington University,St.Louis,Mo,1982.[5]Colzani L.,Taibleson M.,Weiss G.,Maximal estimate for Ces´a ro and Riesz means on sphere,Indiana.Univ.Math.J.,1984,33:837–889.[6]Fan D,Pan Y.,Singular integral operator with rough kernel supported by subvarieties,Amer.J.Math.,1997,119:21–34.[7]Paluszynski M.,Characterization of the Besov spaces via the commutator operator of Coifman,Rochberg andWeiss,Indiana Univ Math.J.,1995,44(1):1–18.[8]Liu L.,The continuity of commutator on Triebel–Lizorkin spaces,Integr.Equ.Oper.Theory,2004,49:65–75.[9]Wang Y.,A note on commutator of Marcinkiewicz integral,J.Zhejing Univ.Sci.Ed.,2003,30(6):606–608(in Chinese).[10]Xu L.,Some boundedness of singular integrals and Marcinkiewicz integrals,Master Degree Dissertation,Beijing Normal University,2003.[11]Ding Y.,Lu S.,Xue Q.,On Marcinkiewicz integral with homogeneous kernels,J.Math.Anal.Appl.,2000,245:471–488.[12]Ding Y.,Lu S.,Weighted norm inequalities for fractional integral operators with rough kernel,Can.J.Math.,1998,50(1):29–39.[13]Chanillo S.,Waton D.,Wheeden R.L.,Some intergal and maximal operator related to starlike sets,StudiaMath.,1993,107:223–255.[14]Lu S.,Four lectures on Real H p spaces,Singapore:World scientific,1995.。
第61卷 第5期吉林大学学报(理学版)V o l .61 N o .52023年9月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )S e p2023d o i :10.13413/j .c n k i .jd x b l x b .2022452粗糙核M a r c i n k ie w i c z 积分在M o r r e y-A d a m s 空间上的有界性朱小杰,陶双平(西北师范大学数学与统计学院,兰州730070)摘要:借助L e b e s gu e 空间上的有界性,利用函数分解方法和实变技巧,证明粗糙核M a r c i n k i e w i c z 积分在M o r r e y -A d a m s 空间上的有界性,并给出L i p s c h i t z 函数和B MO 函数交换子的相应结果.关键词:M a r c i n k i e w i c z 积分;M o r r e y -A d a m s 空间;交换子;粗糙核中图分类号:O 174.2 文献标志码:A 文章编号:1671-5489(2023)05-0999-08B o u n d e d n e s s o fM a r c i n k i e w i c z I n t e gr a l w i t h R o u g hK e r n e l o n M o r r e y -A d a m s S pa c e s Z HU X i a o j i e ,T A OS h u a n g p i n g(C o l l e g e o f M a t h e m a t i c s a n dS t a t i s t i c s ,N o r t h w e s tN o r m a lU n i v e r s i t y ,L a n z h o u 730070,C h i n a )A b s t r a c t :W i t h t h eh e l p o f t h eb o u n d e d n e s so f t h eL e b e s g u es p a c e s ,b y a p p l y i n g t h ed e c o m po s i t i o n m e t h o do ff u n c t i o na n dr e a lv a r i a b l et e c h n i q u e s ,t h eb o u n d e d n e s so f M a r c i n k i e w i c zi n t e gr a lw i t h r o u g hk e r n e l w a s p r o v e d o n M o r r e y -A d a m ss p a c e s .M e a n w h i l e ,t h ec o r r e s p o n d i n g r e s u l to fi t s c o mm u t a t o rw i t hL i ps c h i t z a n dB MOf u n c t i o n sw a s g i v e n .K e y w o r d s :M a r c i n k i e w i c z i n t e g r a l ;M o r r e y -A d a m s s p a c e ;c o mm u t a t o r ;r o u g hk e r n e l 收稿日期:2022-11-18. 网络首发日期:2023-07-10.第一作者简介:朱小杰(1998 ),女,汉族,硕士研究生,从事调和分析的研究,E -m a i l :z h u x j _242@163.c o m.通信作者简介:陶双平(1964 ),男,汉族,博士,教授,博士生导师,从事调和分析及其应用的研究,E -m a i l :t a o s p@n w n u .e d u .c n .基金项目:国家自然科学基金(批准号:12201500).网络首发地址:h t t ps ://k n s .c n k i .n e t /k c m s 2/d e t a i l /22.1340.o .20230707.1455.001.h t m l .1 引言与主要结果设Ω为ℝn 上的零次齐次函数,满足以下消失矩条件:ʏSn -1Ω(x ᶄ)d σ(x ᶄ)=0,(1)其中:x ᶄ=x x,x ʂ0;S n -1表示ℝn (n ȡ2)中的单位球面,d σ(x ᶄ)为其上的L e b e s gu e 测度.高维M a r c i n k i e w i c z 积分μΩ定义为μΩ(f )(x )=ʏɕ0ʏx -y ɤs Ω(x -y )x -y n -1f (y )d y 2d s sæèçöø÷31/2.(2)设b 是一个局部可积函数,则由μΩ和b 生成的交换子定义为Copyright ©博看网. All Rights Reserved.μΩ,b (f )(x )=b (x )μΩ(x )-μΩ(b f )(x )=ʏɕ0F Ω,b ,s (f )(x )2d s s æèçöø÷31/2,(3)其中F Ω,b ,s (f )(x )=ʏx -y ɤs Ω(x -y )x -y n -1(b (x )-b (y ))f (y )d y . M a r c i n k i e w i c z [1]首次提出了一维M a r c i n k i e w i c z 算子:μ(f )(x )=ʏ2πF (x +t )+F (x -t )-2F (x )2t3d æèçöø÷t 1/2, x ɪ[0,2π],其中F (x )=ʏxf (t )d t ;之后,Z y g m u n d [2]证明了μ在L e b e s g u e 空间L p (ℝ)(1<p <ɕ)上是有界的;S t e i n [3]给出了高维空间上M a r c i n k i e w i c z 积分的定义如式(2)所示,并证明了当Ω连续且满足L i p s c h i t z 条件时,μΩ在L p (ℝn )(1<p <2)上是有界的;B e n e d e k 等[4]证明了当ΩɪC 1(S n -1)(1<p <ɕ)时,μΩ在L e b e s g u e 空间上是有界的;陶双平等[5]研究了M o r r e y 空间上M a r c i n k i e w i c z 积分算子与具有离散系数的正则有界平均振荡空间生成的交换子的有界性;王静等[6]给出了时空混合M o r r e y 空间的定义,同时证明了R i e s z 位势㊁M a r c i n k i e w i c z 积分算子及交换子在时空混合M o r r e y 空间上的加权有界性.定义1[7] 设0ɤλɤn ,1ɤp <ɕ,M o r r e y 空间定义为L p ,λ(ℝn )=f (x )ɪL p l o c: f L p ,λ=s u p x ɪℝn,r >0r -λ/p f L p (B (x ,r ))<{}ɕ,其中B (x ,r )={y ɪℝn:x -y <r }.定义1中的M o r r e y 范数 ㊃ L p ,λ可写成如下形式: f L p ,λ=s u p x ɪℝn㊃-λ/pf L p (B (x ,㊃)) L ɕ(0,ɕ).M o r r e y [7]在研究二阶椭圆偏微分方程解的局部特征性质时引入了M o r r e y 空间,该类函数空间可视为L e b e s g u e 空间的推广,且在偏微分方程等领域有重要应用.A d a m s [8]用L θ范数 ㊃ L θ(0,ɕ)代替M o r r e y 范数中的L ɕ范数 ㊃ L ɕ(0,ɕ),得到了一种范围更广的M o r r e y 空间L p ,λθ(ℝn ).目前,关于M o r r e y 型空间上算子有界性的研究已得到广泛关注[9-12].S a l i m 等[13]证明了粗糙核分数次积分算子在M o r r e y -A d a m s 空间上的有界性.受文献[5-6,13]研究结果的启发,本文主要讨论粗糙核M a r c i n k i e w i c z 算子及其与L i p s c h i t z 函数和B MO 函数生成的交换子在M o r r e y -A d a m s 空间上的有界性.定义2[13] 设1ɤp <ɕ,λɪℝ,1ɤθ<ɕ,M o r r e y -A d a m s 空间定义为L p ,λθ(ℝn )=f (x )ɪL pl o c : f L p ,λθ=s u p x ɪℝnʏɕ0r -λθ/pfθL p (B (x ,r ))d ()r1/θ<{}ɕ.如果p θ<λ<n +p θ,则L p ,λθ空间是非平凡的.例如,取f (x )=χB (0,r 0),则有 χB (0,r 0) L p ,λθ=c n r (n -λ)/p +1/θ0,其中c n 是正常数,从而f ɪL p ,λθ,且在L p ,λθ空间中λ可以大于函数值域的维数.与L e b e s g u e 空间L θ(0,ɕ)和L ɕ(0,ɕ)之间的关系相似,空间L p ,λθ和L p ,λ之间不存在包含关系.例如,取f (x )=x-(n -λ)/p,则易证函数f 在空间L p ,λ上,但不在空间L p ,λθ上.另一方面,取f (x )=x-(n -λ)/pχB (0,1)(x ),其中λ-p θ<k <n ,则函数f 在空间L p ,λθ上,而不在空间L p ,λ上.为讨论M a r c i n k i e w i c z 积分算子的交换子μΩ,b 在M o r r e y -A d a m s 空间上的有界性,需介绍粗糙核极大算子M Ω:M Ωf (x )=s u p r >0r -n ʏB (x ,r)Ω(x -y )f (y )d y ,当ΩɪL 1(Sn -1)时,算子M Ω在L p 空间上是有界的,其中p >1.定义3[14] B MO 空间定义为001 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.B MO (ℝn )=f ɪL 1l o c (ℝn ): f *=s u p x ɪℝn,r >01B (x ,r )ʏB (x ,r)f (y )-f B (x ,r )d y <{}ɕ,其中f B =1BʏBf (y )d y .定义4[14] 设0<β<1,L i p s c h i t z 空间定义为L i p β(ℝn )=f : f L i p β=s u px ,y ɪℝn ,x ʂy f (x )-f (y )x -y β<{}ɕ. 本文的主要结果如下.定理1 设ΩɪL s (S n -1)(1<s <ɕ)满足式(1),μΩ由式(2)定义.如果λ<n +p θ,p >s ᶄ=s s -1,则存在不依赖于f 的常数C >0,使得μΩ(f ) L p ,λθɤC f L p ,λθ. 定理2 设b ɪL i p β(0<β<1),1<p <ɕ,0<β<m i n1,n ,n -λp +1{}θ,n -γq +1ψ=n -λp +1θ-β, θ(n -λ)ψ(n -γ)=p q ,(4)当ΩɪL s (S n -1)时满足式(1),μΩ,b 由式(3)定义.如果s ȡp ᶄ=p p -1,且λɤγ<n 或n <γɤλ,则存在不依赖于f 的常数C >0,使得μΩ,b (f ) L q ,γψɤC f L p ,λθ. 定理3 设b ɪB MO (ℝn ),ΩɪL s (S n -1)(1<s <ɕ)满足式(1),μΩ,b 由式(3)定义.如果λ<n +p θ,p >s ᶄ=s s -1,则存在不依赖于f的常数C >0,使得 μΩ,b (f ) L p ,λθɤC f L p ,λθ.2 主要结果的证明引理1[13] 若ΩɪL s (S n -1),且s ȡp ᶄ=p p -1,则存在不依赖于f的常数C >0,使得 M Ω(f )L p ,λθɤC f L p ,λθ. 引理2[15]设f ɪB MO (ℝn ),则对ℝn 中的任意球B 和1<p <ɕ,有 f *ʈs u p x ɪℝn ,r >01B (x ,r)ʏB (x ,r)f (y )-f B (x ,r )pd æèçöø÷y 1/p. 引理3 设f ɪL p ,λθ,ΩɪL s (S n -1),s ȡp ᶄ=p p -1,且β<n -λp+1θ,则对几乎处处的x ɪℝn ,存在仅与Ω有关的常数C Ω>0,使得μΩ,b f (x )ɤC Ω b L i p β(M Ωf (x ))ν f 1-ν,其中ν=1-βp θ(n -λ)θ+p .证明:固定x ɪℝn ,R >0,记f =f 1+f 2,其中f 1=f χB (x ,R ),f 2=f χB (x ,R )c .利用μΩ,b 的线性性质,有μΩ,b f (x )ɤμΩ,b f 1(x )+μΩ,b f 2(x )ʒ=A +B . 对于A ,由M i n k o w s k i 不等式,得A ɤC ʏɕ0ʏ{y :x -y ɤs }Ω(x -y )x -y n -1b (x )-b (y )f 1(y )d æèçöø÷y 2d s s æèçöø÷31/2ɤC b L i p βʏB (x ,R )ʏx -y ɤs Ω(x -y )x -y n -1-βf (y æèçöø÷)2d s s æèçöø÷31/2d y ɤ1001 第5期朱小杰,等:粗糙核M a r c i n k i e w i c z 积分在M o r r e y -A d a m s 空间上的有界性 Copyright ©博看网. All Rights Reserved.C b L i pβʏB (x ,R )Ω(x -y )x -y n -βf (y )d y ɤC b L i p βðɕj =1ʏB (x ,2-j+1R )\B (x ,2-j R )Ω(x -y )x -y n -βf (y )d y ɤC R β b L i p βM Ωf (x ). 对于B ,因为β<n -λp+1θ,所以由F u b i n i 定理和H öl d e r 不等式,得B ɤC ʏɕ0ʏB (x ,R )c ɘ{y :x -y ɤs }Ω(x -y )x -y n -1b (x )-b (y )f (y )d æèçöø÷y 2d s s æèçöø÷31/2ɤC b L i pβʏB (x ,R )cΩ(x -y )x -y n -βf (y )dy ɤC b L i pβʏB (x ,R )c Ω(x -y )f (y )ʏɕx -yh β-n -1dh d y ɤC b L i pβʏɕRʏB (x ,h )Ω(x -y )f (y )h β-n -1d yd h ɤC b L i pβʏɕRh β-n -1ʏB (x ,h )Ω(x -y )pᶄd ()y 1/pᶄʏB (x ,h )f (y )pd ()y 1/pd h ɤC b L i pβʏɕRh β-n -1h n /p ᶄ Ω L s (S n -1) fL p (B (x ,h ))d h ɤC b L i pβΩ L s (Sn -1)ʏɕRh β-n /p -1 fL p (B (x ,h ))d h ɤC b L i pβΩ L s (Sn -1)ʏɕRh -λθ/pf θL p (B (x ,h ))d ()h 1/θʏɕR(hβ-(n -λ)/p -1)θᶄd ()h 1/θᶄɤC b L i p βΩ L s (S n -1)R β-(n -λ)/p-1/θ f L p ,λθ.从而有μΩ,b f (x )ɤC b L i p β(R βM Ωf (x )+R β-(n -λ)/p -1/θ Ω L s (S n -1) f L p ,λθ).由文献[16]中引理4.1的方法可得μΩ,b f (x )ɤC b L i p βs u p R >0m i n {R βM Ωf (x ),R β-(n -λ)/p -1/θ Ω L s (S n -1) f L p ,λθ}=C b L i p β(M Ωf (x ))1-βp θ/((n -λ)θ+p ) f βp θ/((n -λ)θ+p )L p ,λθ Ω βp θ/((n -λ)θ+p )L s (Sn -1).取ν=1-βp θ(n -λ)θ+p,进而有μΩ,b f (x )ɤC Ω b L i p β(M Ωf (x ))νf 1-νL p ,λθ,这里C Ω是指仅依赖于Ω的正常数.证毕.2.1 定理1的证明设z ɪℝn ,任意给定球B (z ,2r )(r >0),把f 分解为f =f 1+f 2,其中f 1=f χB (x ,2r),f 2=f χB (x ,2r)c ,f 的分解依赖于r .于是ʏɕ0r -λθ/pμΩf θL p (B (z ,r))d ()r 1/θɤʏɕ0r -λθ/pμΩf 1 θL p (B (z ,r))d ()r 1/θ+ʏɕ0r -λθ/pμΩf 2 θL p (B (z ,r))d ()r 1/θʒ=G +H .对于G ,由μΩ在L p(ℝn )空间上的有界性,易得G ɤC Ωʏɕ0r -λθ/pfθL p (B (z ,r ))d ()r1/θɤC Ω f L p ,λθ.对于H ,注意到当x ɪB (z ,r ),y ɪB (z ,2r )c ⊂B (x ,r )c 时,有12z -y ɤx -y ɤ32z -y .因此2001 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.μΩf 2(x )ɤʏz -y0ʏx -y ɤs Ω(x -y )x -y n -1f 2(y )d y 2d s sæèçöø÷31/2+ʏɕz -y ʏx -y ɤs Ω(x -y )x -y n -1f 2(y )d y 2d s sæèçöø÷31/2ʒ=I 1+I 2.对于I 1,注意到x -y ʈz -y ,结合中值定理,有1x -y2-1z -y2ɤCx -zx -y 3.再由M i n k o w s k i 不等式,得I 1ɤC ʏB (z ,2r )c Ω(x -y )x -y n -1f (y )ʏz -yx -y d s s æèçöø÷31/2d y ɤC ʏB (z ,2r )c Ω(x -y )x -y n -1f (y )x -z 1/2x -y 3/2d y ɤC 1z -y 1/2ʏB (z ,2r )c Ω(x -y )z -y nf (y )d y .对于I 2,同理有I 2ɤC ʏB (z ,2r )c Ω(x -y )x -y n -1f (y )ʏɕz -y d s s æèçöø÷31/2d y ɤC ʏB (z ,2r )c Ω(x -y )z -y nf (y )d y .注意到如果y ɪB (z ,2r )c ,则y ɪB (x ,2j r )\B (x ,2j -1r )(j ȡ1),因此可得μΩf 2(x )ɤC ʏB (z ,2r )c Ω(x -y )x -y nf (y )d y ɤC ðɕj =1ʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )x -y nf (y )d y ɤC ðɕj =1ʏB (x ,2j r )\B (x ,2j-1r)f (y )s ᶄz -y sᶄn d æèçöø÷y 1/s ᶄʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )sd ()y1/s.再利用球坐标变换,有ʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )sd ()y1/sɤʏB (x ,2jr )Ω(x -y )sd ()y 1/sɤʏB (x ,2jr +x -y )Ω(u )sd ()u 1/sɤʏB (x ,2j+1r)Ω(u )sd ()u 1/sɤʏSn -1ʏ2j+1rΩ(u ᶄ)sd δ(u ᶄ)ρn -1d ()ρ1/sɤC Ω L s (Sn -1)(2j+1r )n /s.由H öl d e r 不等式,得ʏB (x ,2j r )\B (x ,2j-1r)f (y )s ᶄz -y s ᶄn d æèçöø÷y 1/s ᶄɤC ðɕj =1B (z ,2j +1r )-1ʏB (z ,2jr )f (y )s ᶄd ()y1/s ᶄɤC ðɕj =1B (z ,2j r)-1ʏB (z ,2j+1r)f (y )pd ()y 1/pʏB (x ,2j+1r)d ()y1(p/s ᶄ)ᶄs ᶄɤC ðɕj =1(2j r )n(p /s ᶄ)ᶄs ᶄ-n f L p (B (z ,2j +1r)).所以μΩf 2(x )ɤC Ω L s (S n -1)ðɕj =1(2j r )n(p /s ᶄ)ᶄs ᶄ+ns -n f L p (B (z ,2j +1r ))ɤC Ωðɕj =1(2j r )-n /p f L p (B (z ,2j +1r)). 令t =2j +1r ,由M i n k o w s k i 不等式,可得3001 第5期朱小杰,等:粗糙核M a r c i n k i e w i c z 积分在M o r r e y -A d a m s 空间上的有界性 Copyright ©博看网. All Rights Reserved.ʏɕ0r -λθ/pμΩf 2 θL p (B (z ,r))d ()r 1/θɤC Ωðɕj =12-j n /p (r -λθ/pf θL p (B (z ,2j +1r))d r )1/θɤC Ωðɕj =12j (λ-n )/p ʏɕ0t -λθ/p f θL p (B (z ,t ))d t 2æèçöø÷j 1/θɤC Ω f L p ,λθðɕj =12j (λ-n )/p -j /θ.注意到当λ<n +p θ时,级数ðɕj =12j (λ-n )/p -j/θ收敛.定理1证毕.2.2 定理2的证明固定z ɪℝn ,由引理3得ʏɕ0r -γψ/q μΩ,b f ψL q (B (z ,r ))d ()r1/ψɤC Ω b L i p βf 1-νL p ,λθʏɕ0r -γψ/q (M Ωf )νψL q (B (z ,r ))d ()r1/ψ.由已知条件(4)得ν=1-βp θ(n -λ)θ+p =(n -λ)/p +1/θ-β(n -λ)/p +1/θ=(n -γ)/q +1/ψ(n -λ)/p +1/θ=θψ.再由已知条件λɤγ<n 或n <γɤλ以及θ(n -λ)ψ(n -γ)=p q ,可得νɤp q .令l =p νq,结合引理1和H öl d e r 不等式,有ʏɕ0r -γψ/q μΩ,b f ψL q (B (z ,r ))d ()r1/ψɤC Ω b L i p βf 1-νL p ,λθʏɕ0r -γψ/q (M Ωf )νψL q (B (z ,r))d ()r 1/ψɤC Ω b L i p β f 1-νL p ,λθʏɕ0r -γψ/q ʏB (z ,r)(M Ωf )νqd ()x ψ/q d ()r 1/ψɤ C Ω b L i p β f 1-νL p ,λθʏɕ0r -γψ/q ʏB (z ,r)M Ωf νql d ()x ψ/(l q )ʏB (z ,r)d ()x ψ/(l ᶄq )d ()rν/θɤC Ω b L i p β f 1-νL p ,λθʏɕ0r ψ(n -γ)/q -n θ/p ʏB (z ,r)M Ωf pd ()x θ/pd ()r ν/θɤ C Ω b L i p βf 1-νL p ,λθʏɕ0r -λθ/pM Ωf θL p (B (z ,r ))d ()r ν/θɤC Ω b L i p β f 1-νL p ,λθ M Ωf νL p ,λθɤC Ω b L i p βf L p ,λθ.定理2证毕.2.3 定理3的证明设z ɪℝn ,对任意给定球B (z ,2r )(r >0),把f 分解为f =f 1+f 2,其中f 1=f χB (x ,2r),f 2=f χB (x ,2r)c ,f 的分解依赖于r .于是ʏɕ0r -λθ/pμΩ,b f θL p (B (z ,r))d ()r 1/θɤʏɕ0r -λθ/pμΩ,b f 1 θL p (B (z ,r))d ()r 1/θ+ʏɕ0r -λθ/pμΩ,b f 2 θL p (B (z ,r))d ()r 1/θʒ=Q +P .对于Q ,由μΩ,b 在L p(ℝn )空间上的有界性,易得Q ɤC Ω b *ʏɕ0r -λθ/pf θL p (B (z ,r))d ()r 1/θɤC Ωb * f L p ,λθ.对于P ,由定理1的证明,可得μΩ,b f 2(x )ɤC ʏB (z ,2r)c Ω(x -y )x -y n f (y )b (x )-b (y )d y ɤC ʏB (z ,2r)c Ω(x -y )x -y n f (y )b (x )-b B (z ,r )d y +C ʏB (z ,2r)c Ω(x -y )x -y nf (y )b B (z ,r )-b (y )d y ʒ=J 1+J 2.对于J 1,有J 1ɤC b (x )-b B (z ,r)ʏB (z ,2r)c Ω(x -y )x -y nf (y )d y ɤ4001吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.C Ωb (x )-b B (z ,r)ðɕj =1(2jr )-n /pf L p (B (z ,2j +1r)).令t =2j +1r ,由引理2,得ʏɕ0r -λθ/pJ 1 θL p (B (z ,r ))d ()r 1/θɤC Ωʏɕ0r -λθ/pðɕj =1(2j r )-n f pL p (B (z ,2j +1r))ʏB (z ,r)b (x )-b B (z ,r)pd ()x θ/pd ()r1/θɤC Ωðɕj =12-j n /p r -λθ/pf θL p (B (z ,2j +1r ))1B (z ,r )ʏB (z ,r )b (x )-b B (z ,r )p d æèçöø÷x θ/p d æèçöø÷r 1/θɤ C Ω b *ðɕj =12j (λ-n )/p ʏɕ0t -λθ/p f θL p (B (z ,t))d t 2æèçöø÷j 1/θɤ C Ω b * fL p ,λθðɕj =12j (λ-n )/p -j/θ.对于J 2,有J 2ɤC ðɕj =1ʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )x -y nf (y )b B (z ,r )-b B (z ,2j +1r )d y +C ðɕj =1ʏB (x ,2j r )\B (x ,2j -1r )Ω(x -y )x -y n f (y )b B (z ,2j+1r )-b (y )d y ʒ=J 21+J 22.注意到当b ɪB MO (ℝn )时,有b B (z ,2j +1r )-b B (z ,r )ɤC (j +1) b *,则J 21ɤC ðɕj =1b B (z ,r )-b B (z ,2j +1r )ʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )x -y nf (y )d y ɤC b *ðɕj =1(j +1)ʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )x -y nf (y )d y .对于J 22,由Höl d e r 不等式,得J 22ɤC ðɕj =1ʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )x -ynf (y )b B (z ,2j+1r )-b (y )d y ɤC ðɕj =1ʏB (x ,2j r )\B (x ,2j-1r )(f (y )b B (x ,2j +1r)-b (y ))s ᶄz -y s ᶄn d æèçöø÷y 1/s ᶄʏB (x ,2j r )\B (x ,2j-1r)Ω(x -y )s d ()y1/sɤC Ωðɕj =1(2jr )n /s -n ʏB (z ,2j+1r)f (y )s ᶄb B (z ,2j +1r )-b (y )s ᶄd ()y1/s ᶄɤC ðɕj =1(2jr )n /s -n ʏB (z ,2j+1r)f (y )pd ()y1/pʏB (z ,2j+1r)b B (z ,2j +1r )-b (y )s ᶄ(p/s ᶄ)ᶄd ()y1s ᶄ(p/s ᶄ)ᶄɤC b * Ω L s (S n -1)ðɕj =1B (x ,2j r )1s ᶄ(p /s ᶄ)ᶄ+1s -1 f L p (B (z ,2j +1r ))ɤC Ω b *ðɕj =1(2j r )-n /p f L p (B (z ,2j +1r)).令t =2j +1r ,由M i n k o w s k i 不等式,得ʏɕ0r -λθ/pJ 2 θL p (B (z ,r ))d ()r 1/θɤC Ω b *ðɕj =1(j +1)2-j n /p r -λθ/p f θL p (B (z ,2j +1r))d ()r 1/θɤC Ω b *ðɕj =1(j +1)2j (λ-n )/p ʏɕ0t -λθ/p f θL p (B (z ,t))d t 2æèçöø÷j 1/θɤC Ω b * fL p ,λθðɕj =1(j +1)2j (λ-n )/p -j/θ.5001 第5期朱小杰,等:粗糙核M a r c i n k i e w i c z 积分在M o r r e y -A d a m s 空间上的有界性 Copyright ©博看网. All Rights Reserved.注意到当λ<n+pθ时,级数ðɕj=12j(λ-n)/p-j/θ收敛.定理3证毕.参考文献[1] MA R C I N K I E W I C ZJ.S u r Q u e l q u e sI n tég r a l e s D u T y p e d e D i n i[J].A n n a l e s d el a S o c iétéP o l o n a i s e d eM a t hém a t i q u e,1938,17:42-50.[2] Z Y GMU N D A.O nC e r t a i n I n t e g r a l s[J].T r a n sA m e rM a t hS o c,1944,55:170-204.[3] S T E I N E M.O n t h eF u n c t i o n s o f L i t t l e w o o d-P a l e y,L u s i n a n dM a r c i n k i e w i c z[J].T r a n sA m e rM a t hS o c,1958,88(2):430-466.[4] B E N E D E K A,C A L D E RÓN AP,P A N Z O N ER.C o n v o l u t i o nO p e r a t o r s o nB a n a c hS p a c eV a l u e dF u n c t i o n s[J].P r o cN a tA c a dS c iU S A,1962,48(3):356-365.[5]陶双平,逯光辉.M o r r e y空间上M a r c i n k i e w i c z积分与R B MO(μ)交换子[J].数学学报(中文版),2019,62(2): 269-278.(T A OSP,L U G H.C o mm u t a t o r s o fM a r c i n k i e w i c z I n t e gr a l sw i t hR B MO(μ)o n M o r r e y S p a c e s[J].A c t aM a t h e m a t i c aS i n i c a(C h i n e s eS e r i e s),2019,62(2):269-278.)[6]王静,陶双平.混合M o r r e y空间上M a r c i n k i e w i c z积分的加权估计[J].吉林大学学报(理学版),2022,60(5):1015-1022.(WA N GJ,T A OSP.W e i g h t e dE s t i m a t i o no fM a r c i n k i e w i c z I n t e g r a l o n M i x e d M o r r e y S p a c e s[J].J o u r n a l o f J i l i nU n i v e r s i t y(S c i e n c eE d i t i o n),2022,60(5):1015-1022.)[7] MO R R E YCB.O n t h eS o l u t i o n s o fQ u a s i-l i n e a rE l l i p t i cP a r t i a lD i f f f f e r e n t i a lE q u a t i o n s[J].T r a n sA m e r M a t hS o c,1938,43(1):126-166.[8] A D AM SDR.L e c t u r e s o n L p-P o t e n t i a lT h e o r y[R].Um e㊃a,S w e d e n:Um e㊃aU n i v e r s i t e t,1981.[9] B U R E N K O V VI,G O L D MA N M L.N e c e s s a r y a n dS u f f i c i e n tC o n d i t i o n s f o r t h eB o u n d e d n e s so f t h e M a x i m a lO p e r a t o r f r o m L e b e s g u eS p a c e s t o M o r r e y-T y p eS p a c e s[J].M a t h I n e q u a lA p p l,2014,17(2):401-418. [10] GÜR BÜZF.G e n e r a l i z e d W e i g h t e d M o r r e y E s t i m a t e s f o rM a r c i n k i e w i c z I n t e g r a l sw i t hR o u g hK e r n e lA s s o c i a t e dw i t hS c h röd i n g e rO p e r a t o r a n dT h e i rC o mm u t a t o r s[J].C h i n e s eA n n M a t h(S e rB),2020,41(1):77-98.[11] HA K I M DI.C o m p l e x I n t e r p o l a t i o no f P r e d u a l S p a c e s o fG e n e r a l L o c a lM o r r e y-T y p eS p a c e s[J].B a n a c h JM a t hA n a l,2018,12(3):541-571.[12] S C A P E L L A T O A.R i e s z P o t e n t i a l,M a r c i n k i e w i c z I n t e g r a l a n dT h e i r C o mm u t a t o r s o nM i x e dM o r r e y S p a c e s[J].F i l o m a t,2020,34(3):931-944.[13] S A L I M D,B U D H I W S.R o u g hF r a c t i o n a l I n t e g r a lO p e r a t o r so n M o r r e y-A d a m sS p a c e s[J].J M a t hI n e q u a l,2022,16(2):413-423.[14] WA N GD H,Z HO UJ,T E N GZD.C h a r a c t e r i z a t i o n so fB MOa n dL i p s c h i t zS p a c e s i nT e r m so f A P,Q W e i g h t sa n dT h e i rA p p l i c a t i o n s[J].JA u s tM a t hS o c,2019,107(3):381-391.[15] A L I E VSS,G U L I E V VS.B o u n d e d n e s s o f t h eP a r a m e t r i cM a r c i n k i e w i c z I n t e g r a lO p e r a t o r a n d I t sC o mm u t a t o r so nG e n e r a l i z e d M o r r e y S p a c e s[J].G e o r g i a n M a t hJ,2012,19(2):195-208.[16] S AWA N O Y,S U G A N O S,T A N A K A H.G e n e r a l i z e d F r a c t i o n a l I n t e g r a lO p e r a t o r sa n d F r a c t i o n a l M a x i m a lO p e r a t o r s i n t h eF r a m e w o r ko fM o r r e y S p a c e s[J].T r a n sA m e rM a t hS o c,2011,363(12):6481-6503.(责任编辑:李琦) 6001吉林大学学报(理学版)第61卷Copyright©博看网. All Rights Reserved.。