函数的单调性与最值练习题(适合高三)
- 格式:docx
- 大小:53.44 KB
- 文档页数:9
函数的单调性与最值练习题学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分)1.函数2()log f x x =在区间[1,2]上的最小值是( )A .1-B .0C .1D .2 2.已知212()log (2)f x x x =-的单调递增区间是( )A.(1,)+∞B.(2,)+∞C.(,0)-∞D.(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b->-成立,则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加4.若在区间(-∞,1]上递减,则a 的取值范围为( )A. [1,2)B. [1,2]C. [1,+∞)D. [2,+∞)5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .26.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有2121()(()())0x x f x f x -->.则满足(21)f x -<x 取值范围是( )A. B. C.7.已知(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x xx ax a a 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A.(0,1)B.(0,31) C.[71,31) D.[71,1)8.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 9.已知函数()f x 是定义在[0,)+∞的增函数,则满足(21)f x -<的x 取值范围是( )(A )(∞- (B ) (C )∞+) (D ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2xy = B .1y x= C .2y x = D .tan y x = 11.已知函数(a 为常数).若在区间[-1,+∞)上是增函数,则a 的取值范围是( ) A .B .C .D .12.如果函数()f x 对任意的实数x ,都有()()1f x f x =-,且当12x ≥时, ()()2log 31f x x =-,那么函数()f x 在[]2,0-的最大值与最小值之差为( )A. 4B. 3C. 2D. 1 二、填空题(每小题4分)13.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是14.设函数()f x =⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足()2f x ≤的x 的取值范围是 .15.2()24f x x x =-+的单调减区间是 . 16.已知函数)(x f 满足),()(x f x f =-当,(,0]a b ∈-∞时总有,若)2()1(m f m f >+,则实数m 的取值范围是_______________.17.函数2()(1)2f x x =--的递增区间是___________________ . 18.已知函数()[]5,1,4∈+=x xx x f ,则函数()x f 的值域为 . 19.函数2(),,.f x x ax b a b R =-+∈若()f x 在区间(,1)-∞上单调递减,则a 的取值范围 .20.已知函数2()48f x x kx =--在区间[]5,10上具有单调性,则实数k 的取值范围是 . 21.已知函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a 的取值范围为_________.22.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则实数m 的取值范围为 .23.若函R 上的增函数,则实数a 的取值范围是 .24.已知函数f(x)=e x -1,g(x)=-x 2+4x -3,若有f(a)=g(b),则b 的取值范围为________. 25.已知函数f(x)(a≠1).若f(x)在区间(0,1]上是减函数,则实数a 的取值范围是________.参考答案1.B 【解析】试题分析:画出2()log f x x =在定义域}{0>x x 内的图像,如下图所示,由图像可知2()log f x x =在区间[1,2]上为增函数,所以当1=x 时2()log f x x =取得最小值,即最小值为2(1)log 10f ==。
函数的单调性与最值1.下列函数中,在区间(-1,1)为减函数的是( )A .xy -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( )A .)2,(--∞B .)1,(-∞C .),1(+∞D .),4(+∞3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( )A .-3B .-2C .-1D .14函数xx x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞5设函数)1()(,0,10,00,1)(2-=⎪⎩⎪⎨⎧<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( )A .]0,(-∞B .)1,0[C .),1[+∞D .]0,1[-6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[--B .]4,6[--C .]22,3[--D .]3,4[-- 7.函数],(,12n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[-8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数xx f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是10.已知函数f (x)的值域为]94,83[,则函数)(21)()(x f x f x g -+=的值域为1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( )A .]1,0(B .]2,1[C .+∞,1[)D .+∞,2[)2.已知函数⎪⎩⎪⎨⎧>-≤--=1,1log 1,41)(x x x x ax x f a 是R 上的单调函数,则实数a 的取值范围是( ) A .)21,41[ B .]21,41[ C .]21,0( D .)1,21[3.已知函数f (x)是定义在),0(+∞上的增函数,若)3()(2+>-a f a a f ,则实数a 的取值范围为4.已知减函数f (x)的定义域是R ,m,n 都是实数,如果不等式)()()()(n f m f n f m f --->-成立,那么下列不等式成立的是( )A .0<-n mB .0>-n mC .0<+n mD .0>+n m 5.设函数⎩⎨⎧<≥+=1,1,)(2x x x x m x f 的图像过点(1,1),函数g (x)是二次函数,若函数f (g (x))的值域是),0[+∞,则函数g (x)的值域是6.已知函数f (x)是R 上的增函数,A (0,-3)B (3,1)是其图像上的两点,那么不等式1)1(3<+<-x f 的的解集的补集是( )A .)2,1(-B .)4,1(C .),4[)1,(+∞⋃--∞D .),2[]1,(+∞⋃--∞7.已知函数)0,0(11)(>>-=x a xa x f (1)求证:f (x)在),0(+∞上是增函数 (2)若f (x)在]2,21[上的值域是]2,21[,求a 的值8.已知函数)2lg()(-+=xa x x f ,期中a 是大于0的常数 (1)求函数f (x)的定义域(2)当)4,1(∈a 时,求函数f (x)在),∞+2[上的最小值 (3)若对任意),2[+∞∈x 恒有0)(>x f ,试确定a 的取值范围。
高三数学函数的单调性与最值试题答案及解析1.若函数,则下列结论正确的是()A.,在上是增函数B.,在上是减函数C.,是偶函数D.,是奇函数【答案】C【解析】因为,且函数定义域为令,则显然,当时,;当时,所以当时,在上是减函数,在上是增函数,所以选项A,B均不正确;因为当时,是偶函数,所以选项C正确.要使函数为奇函数,必有恒成立,即恒成立,这与函数的定义域相矛盾,所以选项D不正确.【考点】1、导数在研究函数性质中的应用;2、函数的奇偶性.2.对任意实数,记,若,其中奇函数在时有极小值,是正比例函数,与图象如图,则下列关于的说法中正确的是()A.是奇函数B.有极大值和极小值C.的最小值为,最大值为2D.在上是增函数【答案】B【解析】因为,是奇函数,其图象关于原点对称,所以与图象如图1所示;图1根据,可知,的图象如图2所示,显然,的图象不关于原点对称,不是奇函数;无最小值、无最大值;其在区间“先增后减”,故选B.图2【考点】新定义函数,函数的奇偶性,函数的图象,函数的单调性与极(最)值.3. [2014·日照模拟]已知函数f(x)在定义域(0,+∞)上是单调函数,若对于任意x∈(0,+∞),都有=2,则的值是()A.5B.6C.7D.8【答案】B【解析】因为f(x)是定义在(0,+∞)上的单调函数,且=2对任意x∈(0,+∞)都成立,所以f(x)-=c>0(c为常数),即f(x)=c+,且f(c)=2,故2=c+,解得c=1,故f(x)=1+,所以=1+5=6.4.设是定义在R上的偶函数,且当时,。
若对任意的x,不等式恒成立,则实数a的最大值是()。
A.B.C.D.2【答案】C【解析】是定义在上的偶函数,不等式恒成立等价为恒成立,当时,.不等式等价为恒成立,即在上恒成立,平方得即在上恒成立,设,则满足即故实数的最大值是.故选C.【考点】1.函数的奇偶性;2.恒成立问题.5.(2013•重庆)(﹣6≤a≤3)的最大值为()A.9B.C.3D.【答案】B【解析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f(a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.6.已知函数y=f(x)是定义在R上且以3为周期的奇函数,当x∈时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数为()A.3B.5C.7D.9【答案】C【解析】当x∈时,-x∈,f(x)=-f(-x)=-ln(x2+x+1);则f(x)在区间上有3个零点(在区间上有2个零点).根据函数周期性,可得f(x)在上也有3个零点,在上有2个零点.故函数f(x)在区间[0,6]上一共有7个零点.7.下列函数中,既是奇函数又在区间上单调递增的函数为()A.B.C.D.【答案】C【解析】是奇函数但在区间上不是单调函数.在区间上单调递增但不是奇函数,既是奇函数又在区间上单调递增的函数,在区间上单调递增但不是奇函数.【考点】函数奇偶性及单调性8.已知,,规定:当时, ;当时,,则()A.有最小值,最大值1B.有最大值1,无最小值C.有最小值,无最大值D.有最大值,无最小值【答案】C【解析】由题得,利用平移变化的知识画出函数的图像如下,而,故有最小值1,无最大值.【考点】函数图像平移变化9.已知函数若对任意的,且恒成立,则实数a的取值范围为.【答案】【解析】,由知,函数在单调递增,当,满足题意;当时,只需,即,综上所述,实数a的取值范围为.【考点】1、分段函数;2、函数的单调性.10.判断函数f(x)=e x+在区间(0,+∞)上的单调性.【答案】f(x)在(0,+∞)上为增函数【解析】(解法1)设0<x1<x2,则f(x1)-f(x2)===.∵0<x1<x2,∴x1-x2<0,x1+x2>0,∴ex1-x2<1,ex1+x2>1,ex1>0,∴f(x1)<f(x2).∴f(x)在(0,+∞)上是增函数.(解法2)对f(x)=e x+求导,得f′(x)=e x-=(e2x-1),当x>0时,e x>0,e2x>1,∴f′(x)>0,∴f(x)在(0,+∞)上为增函数.11.函数y=1-的最大值与最小值的和为.【答案】2【解析】令f(x)=,则f(x)为奇函数,故f(x)max +f(x)min=0,∴ymax +ymin=2.12.已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+2)=-f(x);②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图像关于y轴对称.下列结论中,正确的是()A.f(4.5)<f(6.5)<f(7) B.f(4.5)<f(7)<f(6.5) C.f(7)<f(4.5)<f(6.5) D.f(7)<f(6.5)<f(4.5)【答案】B【解析】由f(x+2)=-f(x),得f(x+4)=-f(x+2)=f(x),则函数y=f(x)的最小正周期为4;根据②知函数y=f(x)在[0,2]上单调递增;根据③知函数y=f(x)的图像关于直线x=2对称,所以f(4.5)=f(0.5),f(6.5)=f(2.5)=f(1.5),f(7)=f(3)=f(1).故f(4.5)<f(7)<f(6.5).13.已知函数f(x)=若f(2-a2)>f(a),则实数a的取值范围是()A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)【答案】C【解析】f(x)=由f(x)的图象可知f(x)在(-∞,+∞)上是单调增函数,由f(2-a2)>f(a)得2-a2>a,即a2+a-2<0,解得-2<a<1.14.已知函数y=f(x)满足:对任意的x1<x2≤-1,[f(x2)-f(x1)](x2-x1)>0恒成立,则f(-2),f(-),f(-1)的大小关系为()A.f(-2)<f(-)<f(-1)B.f(-2)>f(-)>f(-1)C.f(-2)>f(-1)>f(-)D.f(-)>f(-2)>f(-1)【答案】A【解析】由题意及函数单调性的定义得,f(x)在(-∞,-1]上单调递增,又-2<-<-1, ∴f(-2)<f(-)<f(-1).15.函数y=-(x-3)|x|的递增区间是__________.【答案】[0,]【解析】y=-(x-3)|x|=作出该函数的图象,观察图象知递增区间为[0,].16.设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f;(2)若x0满足f[f(x)]=x,但f(x)≠x,则称x为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.【答案】(1)(2)见解析,x1=,x2=(3)最小值为,最大值为【解析】(1)当a=时,f=,f=f=2=.(2)证明:f[f(x)]=当0≤x≤a2时,由x=x解得x=0,由于f(0)=0,故x=0不是f(x)的二阶周期点;当a2<x≤a时,由 (a-x)=x解得x=∈(a2,a),因为f=·=≠,故x=是f(x)的二阶周期点;当a<x<a2-a+1时,由 (x-a)=x解得x=∈(a,a2-a+1),因为f=·=,故x=不是f(x)的二阶周期点;当a2-a+1≤x≤1时,由 (1-x)=x解得x=∈(a2-a+1,1),因为f =·=≠,故x=是f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点,x1=,x2=.(3)由(2)得A(,),B(,),则S(a)=,S′(a)=·.因为a∈[,],有a2+a<1,所以S′(a)=·=·>0.(或令g(a)=a3-2a2-2a+2,g′(a)=3a2-4a-2=3(a-)(a-),因为a∈(0,1),所以g′(a)<0,则g(a)在区间[,]上最小值为g()=>0,故对于任意a∈[,],g(a)=a3-2a2-2a+2>0,S′(a)=·>0)则S(a)在区间[,]上单调递增,故S(a)在区间[,]上的最小值为S()=,最大值为S()=.17. {an }为首项为正数的递增等差数列,其前n项和为Sn,则点(n,Sn)所在的抛物线可能为()【答案】D【解析】当n≥1时{an }单调递增且各项之和大于零,当n=0时Sn等于零,结合选项只能是D.18.设g(x)是定义在R上以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]时的值域为[-2,5],则f(x)在区间[2,5]上的值域为________.【答案】[-3,6]【解析】当x∈[2,3]时,x+1∈[3,4],所以f(x+1)=x+1+g(x+1)=x+1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-3,4];当x∈[4,5]时,x-1∈[3,4],所以f(x-1)=x-1+g(x-1)=x-1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-1,6],所以f(x)在区间[2,5]上的值域为[-3,6].19.下列函数中,在区间(0,+∞)上为增函数的是 ().A.y=lg(x+2)B.y=-C.y=x D.y=x+【答案】A【解析】A中,y=lg(x+2)在(0,+∞)上是增函数,B、C中函数为减函数,D中在(0,+∞)上不单调.20.设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t的取值范围是().A.-2≤t≤2B.-≤t≤C.t≤-2或t=0或t≥2D.t≤-或t=0或t≥【答案】C【解析】依题意f(x)的最大值为f(1)=1,要使f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则1≤t2-2at+1,即t2-2at≥0,亦即t(t-2a)≥0,当t=0时,不等式成立,当0≤a≤1时,不等式的解为t≥2a≥2;当-1≤a≤0时,不等式的解为t≤2a≤-2.21.已知函数(其中且),是的反函数.(1)已知关于的方程在区间上有实数解,求实数的取值范围;(2)当时,讨论函数的奇偶性和增减性;(3)设,其中.记,数列的前项的和为(),求证:.【答案】(1);(2)奇函数,减函数;(3)证明见解析.【解析】(1)这是一个对数方程,首先要转化为代数方程,根据对数的性质有,从而有,方程在上有解,就变为求函数在上的值域,转化时注意对数的真数为正;(2)奇偶性和单调性我们都根据定义加以解决;(3),,要证明不等式成立,最好是能把和求出来,但看其通项公式,这个和是不可能求出的,由于我们只要证明不等式,那么我们能不能把放缩后可求和呢?,显然,即,左边易证,又由二项式定理,在时,,所以,注意到,至此不等式的右边可以求和了,,得证.试题解析:(1)转化为求函数在上的值域,该函数在上递增、在上递减,所以的最小值5,最大值9。
高三数学函数的单调性与最值试题答案及解析1.下列函数中,满足“”的单调递增函数是()A.B.C.D.【答案】D【解析】A选项:由,,得,所以A错误;B 选项:由,,得,所以B错误;C选项:函数是定义在上减函数,所以C错误;D选项:由,,得;又函数是定义在上增函数,所以D正确;故选D.【考点】函数求值;函数的单调性.2.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=,可知a=,设|2x-4|=t,当x≥2时,t为增函数,∴f(x)在此区间为减函数,选B项.3.已知函数f(x)=a-.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.【答案】(1)见解析(2)(-∞,3]【解析】解:(1)证明:当x∈(0,+∞)时,f(x)=a-,设0<x1<x2,则x1x2>0,x2-x1>0,f(x2)-f(x1)=(a-)-(a-)=-=>0,∴f(x)在(0,+∞)上是增函数.(2)由题意:a-<2x在(1,+∞)上恒成立,设h(x)=2x+,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)-h(x2)=(x1-x2)(2-).∵1<x1<x2,∴x1-x2<0,x1x2>1,∴2->0,∴h(x 1)<h(x 2),∴h(x)在(1,+∞)上单调递增. 故a≤h(1)即a≤3,∴a 的取值范围是(-∞,3].4. 已知定义在区间(0,+∞)上的函数f(x)满足f=f(x 1)-f(x 2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.【答案】(1)0 (2)函数f(x)在区间(0,+∞)上是单调递减函数. (3)-2 【解析】解:(1)令x 1=x 2>0, 代入得f(1)=f(x 1)-f(x 1)=0, 故f(1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2, 则>1,由于当x>1时,f(x)<0,所以f<0,即f(x 1)-f(x 2)<0,因此f(x 1)<f(x 2),所以函数f(x)在区间(0,+∞)上是单调递减函数. (3)∵f(x)在(0,+∞)上是单调递减函数. ∴f(x)在[2,9]上的最小值为f(9). 由f =f(x 1)-f(x 2)得, f=f(9)-f(3),而f(3)=-1,∴f(9)=-2. ∴f(x)在[2,9]上的最小值为-2.5. [2014·沈阳模拟]已知函数f(x +1)是定义在R 上的奇函数,若对于任意给定的不相等的实数x 1、x 2,不等式(x 1-x 2)·[f(x 1)-f(x 2)]<0恒成立,则不等式f(1-x)<0的解集为________. 【答案】(-∞,0)【解析】∵f(x +1)是定义在R 上的奇函数,关于(0,0)对称,向右平移1个单位得到f(x)的图象,关于(1,0)对称,即f(1)=0,又∵任取x 1,x 2∈R ,x 1≠x 2,都有(x 1-x 2)·[f(x 1)-f(x 2)]<0,∴f(x)在R 上单调递减.∵f(1-x)<0=f(1),∴1-x >1,∴x <0,∴不等式f(1-x)<0的解集为(-∞,0).6. (2012•广东)下列函数,在区间(0,+∞)上为增函数的是( ) A .y=ln (x+2)B .C .D .【答案】A【解析】A ,y=ln (x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A 正确; B ,在[﹣1,+∞)上为减函数;排除B C ,在R 上为减函数;排除CD ,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选 A7. 下列函数中,既是奇函数又在区间上单调递增的函数为( )A.B.C.D.【答案】C【解析】是奇函数但在区间上不是单调函数.在区间上单调递增但不是奇函数,既是奇函数又在区间上单调递增的函数,在区间上单调递增但不是奇函数.【考点】函数奇偶性及单调性8.函数f(x)=﹣1的图象大致是()A. B. C. D.【答案】A【解析】因为0,所以f(x)在[0,+∞)上递增,排除B;当x=0时,f(0)=﹣1,即f(x)的图象过点(0,﹣1),排除C、D;故选A.9.已知函数,在时取得极值,则函数是()A.偶函数且图象关于点(,0)对称B.偶函数且图象关于点(,0)对称C.奇函数且图象关于点(,0)对称D.奇函数且图象关于点(,0)对称【答案】D【解析】的图像关于对称,,,,显然是奇函数且关于点对称,故选D.【考点】三角函数的性质.10.已知其导函数的图象如图,则函数的极小值是()A.B.C.D.c【答案】D【解析】由导函数的图象知当时,,当时,,所以函数的极小值为,选D.11.若在上是减函数,则b的取值范围是()A.B.C.D.【答案】C【解析】函数的导数,若函数在上是减函数,则,在恒成立,即,因为,所以,即成立。
高中数学高考总复习函数的单调性与最值习题及详解一、选择题1 •已知f(x)=—X—X3, x€ [a, b],且f(a)f(b)<0,则f(x) = 0 在[a, b]内()A•至少有一实数根B.至多有一实数根C •没有实数根D.有唯一实数根[答案]D[解析]•••函数f(x)在[a, b]上是单调减函数,又f(a), f(b)异号•••• f(x)在[a, b]内有且仅有一个零点,故选 D.2 • (2010北京文)给定函数①y= x1,②y= log2(x+ 1),③y=x —11,④y= 2x+1,其中在区间(0,1)上单调递减的函数的序号是()A .①②B.②③C .③④D.①④[答案]B1 1 1[解析]易知y = X2在(0,1)递增,故排除A、D选项;又y= logq(x+ 1)的图象是由y= logqx的图象向左平移一个1单位得到的,其单调性与y= log^x相同为递减的,所以②符合题意,故选 B.1 1 13 • (2010 济南市模拟)设y1 = 0.43, y2= 0.53,y3= 0.54,则( )A • y3<y2<y1 B. y1<y2<y3C. y2<y3<y1D. y1<y3<y2[答案]B1 1[解析]•/ y= 0.5x为减函数,• 0.53<0.54,1•/ y= x3在第一象限内是增函数,1 1二0.43<0.53,二y1<y2<y3,故选 B.a _ 2 x ___ 1 x W14. (2010 •州市)已知函数,若f(x)在(—a, + a上单调递增,贝U实数a的取值范围为()log a x x>1A • (1,2) B. (2,3)C. (2,3]D. (2,+a)[答案]C[解析]••• f(x)在R上单调增,a>1a —2>0 , a —2 X1 —1 w log1••• 2<a W3,故选 C. 5.(文)(2010山东济宁)若函数f (x )= x 2+ 2x + alnx 在(0,1)上单调递减,则实数 a 的取值范围是()A . a > 0B . a <0 D . a <— 4[答案]Da 2x 2 + 2x + a[解析]•••函数 f(x)= x 2 + 2x + alnx 在(0,1)上单调递减,•••当 x € (0,1)时,f'x) = 2x + 2+- = ------- g(x)x — =2x 2 + 2x + a <0在 x € (0,1)时恒成立,• g(0) <p g(1) <p 即 a <— 4.n n(理)已知函数y = tan^x 在—2, 2内是减函数,贝卩3的取值范围是()A . 0< 1B . — 1 <o <0C . 3 》1D . 3<— 1[答案]Bn n[解析]•/ tansx 在—2,2上是减函数, • 3<0.当—n <x<2时,有n _冗3< c < 3X —7t3<0 6. (2010 天津文)设 a = log 54, b = (log 53)2, c = log 45,则( )A . a v c v bD . b v a v c[答案]D[解析] T 1>log 54>log 53>0,「. Iog 53>(log 53)2>0,而 Iog 45>1,「. c>a>b. 7 .若f(x)= x 3— 6ax 的单调递减区间是(一2,2),则a 的取值范围是( )A . (—s, 0]B . [ — 2,2]C . {2}D . [2,+ s)[答案]C[解析]f 'x) = 3x 2— 6a ,,…一1 <3<0.B . b v c v a 2 兀 n若a<0则f'x) >0 • f(x)单调增,排除A ;若a>0,则由f'x)= 0 得x= ± 2a,当x< —.2a 和x> ,2a 时,f'x)>0, f(x)单调增,当一.2a<x<,2a 时,f(x)单调减,••• f(x)的单调减区间为(—.2a, 2a),从而J2a = 2,a= 2.[点评]f(x)的单调递减区间是(一2,2)和f(x)在(—2, 2)上单调递减是不同的,应加以区分.1 18. (文)定义在R上的偶函数f(x)在[0,+ ^上是增函数,若f(?)= 0,则适合不等式f(log^7x)>0的x的取值范围是()1A . (3, + s) B. (0,刁1C . (0, + ) D. (0, 3) U (3 ,+s)[答案]D1 1[解析]•••定义在R上的偶函数f(x)在[0,+s上是增函数,且f( ) = 0,则由f(log丄x)>0,得|log丄x|>,即log!3 27 27 3 271 1 x>孑或log—x< —百.选D.327 3(理)(2010南充市)已知函数f(x)图象的两条对称轴x= 0和x= 1,且在x€ [—1,0]上f(x)单调递增,设a= f(3), b =f( 2), c= f(2),贝U a、b、c的大小关系是()A. a>b>cB. a>c>bC. b>c>aD. c>b>a[答案]D[解析]••• f(x)在[—1,0]上单调增,f(x)的图象关于直线x= 0对称,• f(x)在[0,1]上单调减;又f(x)的图象关于直线x= 1对称,• f(x)在[1,2]上单调增,在[2,3]上单调减.由对称性f(3) = f( —1)= f(1)<f( _2)<f(2),即a<b<c.x2+ 4x, x>09. (2009天津高考)已知函数f(x) = 2n若f(2 —a2)> f(a),则实数a的取值范围是()4x—x , x v 0.A . (— s,—1) U (2,+ s)B . ( —1,2)C . ( —2,1)D . (— s,—2) U (1 ,+ s)[答案]C[解析]■/ 时,f(x) = x2+ 4x= (x+ 2)2—4 单调递增,且f(x)当x<0 时,f(x)= 4x—x2=—(x —2)2+ 4 单调递增,且f(x)<0 ,• f(x)在R 上单调递增,由f(2 —a2)>f(a)得2—a2>a,•—2<a<1.10 . (2010泉州模拟)定义在R上的函数f(x)满足f(x + y) = f(x) + f(y),当x<0时,f(x)>0,则函数f(x)在[a, b]上有( )A .最小值f(a)B .最大值f(b)C .最小值f(b)D .最大值a +b f 2[答案]C[解析]令x = y= 0 得,f(0)= 0,令y=—x得,f(0) = f(x)+ f(—x),二f(—x)=—f(x)-对任意x i , X2 € R 且x i <X2,,f(x i) —f(X2)= f(x i) + f( —x2)=f(x i —X2)>0 ,.•• f(X l)>f(X2),••• f(x)在R上是减函数,••• f(x)在[a,b]上最小值为f(b).二、填空题b i11. (2010 重庆中学)已知函数f(x)= ax+ x—4(a, b 为常数),f(lg2) = 0,则f(lg^)= _____________[答案]—8[解析]令(Kx)= ax+ b,贝V H x)为奇函数,f(x) = $(x) —4,入•- f(lg2) = H lg2) —4 = 0 ,• H lg2)= 4,“ 1•-饥刁=f(—lg2) = H( —lg2) —4=—y ig2) —4=—8.12 .偶函数f(x)在(—s,0]上单调递减,且f(x)在[—2,k]上的最大值点与最小值点横坐标之差为3,则k= __________[答案]3[解析]•••偶函数f(x)在(—R, 0]上单调递减,• f(x)在[0,+ ^上单调递增.因此,若k WQ贝U k—(—2) = k + 2<3,若k>0,v f(x)在[—2,0]上单调减在[0,—k]上单调增,.••最小值为f(0), 又在[—2, k]上最大值点与最小值点横坐标之差为3,• k—0= 3,即k= 3.13 .函数f(x)= aX 1在(—m, —3)上是减函数,则a的取值范围是________________x+ 3[答案]1 ——OO ——_,314 . (2010 •苏无锡市调研)设a(0<a<1)是给定的常数,f(x)是R上的奇函数,且在(0,+^上是增函数,若f:=0 , f(log a t)>0,贝y t的取值范围是 _______ .[答(1,扫u (0,诵)案]1[解析]f(log a t)>0,即 f(log a t)>f 2, 1••• f(x)在(0,+ ^上 为增函数,二 log a t>2, 0<a<1 ,.°. 0<t<“Ja.1 i又 f(x)为奇函数,••• f — - =- f- = 0,r 1…f(log a t)>0 又可化为 f(log a t)>f — 2 , •••奇函数f(x)在(0 ,+8上是增函数,1• f(x)在(—8, 0)上为增函数,• 0>log a t> — 2,综上知,0<t< a 或1<t< a , 三、解答题15. (2010 北京市东城区)已知函数 f(x) = log a (x + 1) — log a (1 — x), a>0 且 a * 1. (1) 求f(x)的定义域;⑵判断f(x)的奇偶性并予以证明;⑶当a>1时,求使f(x)>0的x 的取值集合.[解析](1)要使 f(x) = log a (x + 1) — log a (1 — x)有意义,则 x + 1>0,解得—1<x<1.1 — x>0故所求定义域为{x — 1<x<1}.⑵由(1)知f(x)的定义域为{X — 1<x<1},且 f( — x) = log a ( — x +1)— log a (1 + x) = — [log a (x + 1) — log a (1 — x)] = — f(x),故 f(x)为奇函数. ⑶因为当a>1时,f(x)在定义域{x|— 1<x<1}内是增函数, x + 1所以 f(x)>0?产->1.1 — x 解得0<x<1.所以使f(x)>0的x 的取值集合是{x|0<x<1}.1 — mx 口 亠 p16. (2010北京东城区)已知函数f(x)= log a 是奇函数(a>0,a * 1) x — 1(1) 求m 的值;(2) 求函数f(x)的单调区间;(3) 若当x € (1,a — 2)时,f(x)的值域为(1,+8),求实数a 的值. “八卄亠1 — mx . 1+ mx 小•/ 0<a<1 ,1<t<1a ,[解析](1)依题意,f(—x)=—f(x),l卩f(x) + f(—x)= 0,即log a x—1 + log a—x—1 = 0,1 —mx 1 + mx•••—1,二(1 —m2)x2= 0 恒成立,x—1 —X—1 '•1 — m2= 0,「. m=—1或m= 1(不合题意,舍去)1 + x当m=—1时,由一>0得,x € (—汽一1) U (1,+s),此即函数f(x)的定义域,x —1又有f( —x) = —f(x),• m=—1是符合题意的解.1 + x⑵•/ f(x) = log a x z7,x—1 1 +X ,•- f x) = logx+ 1 x—1 &_ x—1 x—1 —x+1 2log a ex+1 x —1 2log a e—1—x2①若a>1,则log a e>0当x€ (1 ,+s 时,1 —x2<0 f'x)<0, f(x)在(1, +s上单调递减,即(1,+ s是f(x)的单调递减区间;由奇函数的性质知,(一s,—1)是f(x)的单调递减区间.②若0<a<1,则log a e<0当x€ (1 ,+s 时,1 —x2<0, • f'x(0,• (1 ,+s是f(X)的单调递增区间;由奇函数的性质知,(一s,—1)是f(x)的单调递增区间.1 + x 2(3)令t —------ —1 + -- ,贝U t为x的减函数x—1 x—1•- x€ (1, a —2),2 2• t€ 1+ ■,+ s且a>3,要使f(x)的值域为(1,+ s)需log a 1+ —1,解得a—2+ 3.a—3 a —31 —a _17 . (2010 山东文)已知函数f(x)—lnx—ax+ ——1(a€ R).入(1)当a ——1时,求曲线y—f(x)在点(2, f(2))处的切线方程;⑵当a g时,讨论f(x)的单调性.2[解析](1)a ——1 时,f(x) —lnx+ x+- —1, x€ (0,+s).xx2+ x—2f—2—, x € (0,+ s)y x因此f' (—1,即曲线y—f(x)在点(2 , f(2))处的切线斜率为1.又f(2) —ln2 + 2,所以y—f(x)在(2, f(2))处的切线方程为y—(In2 + 2) —x—2,即x—y+ ln2 —0.WORD 格式.可编辑__ 1 — a ⑵因为 f(x)= lnx — ax + — - 1, 入1 a — 1 ax2 — x +1 — a所以 f ,x) = — a + -- =— — 2x € (0,+g). x x x令 g(x) = ax 2— x + 1 — a ,① 当 a = 0 时,g(x) = 1— x , x € (0, + g), 当 x € (0,1)时,g(x)>0 , f'x (O , f(x)单调递减; 当 x € (1 ,+g 时,g(x)<0,此时 f 'x)>0, f(x)单调递增; 1② 当 a 工0时 f'x)= a(x — 1)[x — ( — 1)],a(i )当a = 2■时,g(x)亘成立,f'x) WQ f(x)在(0,+ g 上单调递减;1 1(ii )当 0<a<2时,彳—1>1>0, x € (0,1)时,g(x)>0,此时 f'x)<0, f(x)单调递减;1x € (1 , -— 1)时,g(x)<0,此时 f 'x)>0, f(x)单调递增; a g(x)>0,此时 f 'x)<0, f(x)单调递减;③当 a<0 时,1— 1<0,ax € (0,1)时,g(x)>0,有 f'x (O , f(x)单调递减 x € (1,+g)时,g(x)<0,有 f 'x)>0, f(x)单调递增. 综上所述:当a W0时函数f(x)在(0,1)上单调递减,(1,+g 上单调递增; 1当a = $时,f(x)在(0 ,+g 上单调递减;11 1当Ovav :时,f(x)在(0,1)上单调递减,在(1, — 1)上单调递增,在(-—1 ,+g 上单调递减.2 a a 注:分类讨论时要做到不重不漏,层次清楚.1x € Q — 1 ,+ g)寸,。
高三数学函数的单调性与最值试题1.函数的最大值为()A.B.2C.D.【答案】D【解析】函数的定义域为,设,,则,所以,当时,.【考点】函数最值.2.已知,若函数只有一个零点,则的取值范围是()A.B.C.D.【答案】D【解析】可将问题转化为函数和的图像只有一个交点。
将变形为,可知直线过定点。
时,函数在上是增函数,且;当时,函数在上单调递减,且。
当时,显然成立;当时,直线与函数相切时,因定点即在直线上又在函数图像上,则此点即为切点,因为,由导数的几何意义可得,有数形结合分析可知时两函数图像只有一个交点;当时,直线与函数相切时点即为切点。
因为此时,所以即此时切线的斜率,由数形结合分析可知时两函数图像只有一个交点。
综上可得或。
故D正确。
【考点】1函数的单调性;2数形结合思想。
3.下列函数中,函数图象关于y轴对称,且在(0,+∞)上单调递增的是()A.y=2x B.y=x2﹣1C.y=D.y=【答案】B【解析】∵函数图象关于y轴对称,∴函数为偶函数,定义域关于原点对称∴A,C不符合,B,D符合∵函数在(0,+∞)上单调递增∴B符合,D不符合故选B.4.已知定义在R上的奇函数f(x),满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数,则()A.f(﹣25)<f(11)<f(80)B.f(80)<f(11)<f(﹣25)C.f(11)<f(80)<f(﹣25)D.f(﹣25)<f(80)<f(11)【答案】D【解析】∵f(x)满足f(x﹣4)=﹣f(x),∴f(x﹣8)=f(x),∴函数是以8为周期的周期函数,则f(﹣25)=f(﹣1),f(80)=f(0),f(11)=f(3),又∵f(x)在R上是奇函数,f(0)=0,得f(80)=f(0)=0,f(﹣25)=f(﹣1),而由f(x﹣4)=﹣f(x)得f(11)=f(3)=﹣f(﹣1)=f(1),又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数∴f(x)在区间[﹣2,2]上是增函数∴f(1)>f(0)>f(﹣1),即f(﹣25)<f(80)<f(11),故选D5.若对任意x∈R,不等式|x|≥ax恒成立,则实数a的取值范围是()A.a<﹣1B.|a|≤1C.|a|<1D.a≥1【答案】B【解析】当x>0时,x≥ax恒成立,即a≤1当x=0时,0≥a×0恒成立,即a∈R当x<0时,﹣x≥ax恒成立,即a≥﹣1,若对任意x∈R,不等式|x|≥ax恒成立,所以﹣1≤a≤1,故选B.6.下列函数中,在上单调递减,并且是偶函数的是( )A.B.C.D.【答案】C【解析】四个函数中,是偶函数的有,又在内单调递增,故选C.【考点】函数的单调性与奇偶性.7.函数的单调递减区间为()A.(-∞,-3)B.(-∞,-1)C.(1,+∞)D.(-3,-1)【答案】A【解析】由,得或,∴的定义域为.可看作由和复合而成的,=在上递减,在上递增,又在定义域内单调递增,∴在上递减,在上递增,所以的单调递减区间是,故选A.【考点】复合函数的单调性.8. 函数为偶函数,且在单调递增,则的解集为( )A .B .C .D .【答案】C【解析】由题意可知 即,恒成立,故,即, 则. 又函数在单调递增,所以. 即解得或. 故选.【考点】函数的奇偶性、单调性,一元二次不等式的解法9. 已知函数y=f(x)满足:对任意的x 1<x 2≤-1,[f(x 2)-f(x 1)](x 2-x 1)>0恒成立,则f(-2),f(-),f(-1)的大小关系为( )A .f(-2)<f(-)<f(-1)B .f(-2)>f(-)>f(-1)C .f(-2)>f(-1)>f(-)D .f(-)>f(-2)>f(-1)【答案】A【解析】由题意及函数单调性的定义得,f(x)在(-∞,-1]上单调递增,又-2<-<-1, ∴f(-2)<f(-)<f(-1).10. 已知函数f(x)对于任意x,y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-. (1)求证:f(x)在R 上是减函数.(2)求f(x)在[-3,3]上的最大值和最小值.【答案】(1)见解析 (2) 最大值为2,最小值为-2【解析】(1)方法一:∵函数f(x)对于任意x,y ∈R 总有f(x)+f(y)=f(x+y), ∴令x=y=0,得f(0)=0. 再令y=-x,得f(-x)=-f(x).在R 上任取x 1>x 2,则x 1-x 2>0, f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(x 1-x 2). 又∵x>0时,f(x)<0,而x 1-x 2>0, ∴f(x 1-x 2)<0, 即f(x 1)<f(x 2).因此f(x)在R 上是减函数. 方法二:设x 1>x 2, 则f(x 1)-f(x 2) =f(x 1-x 2+x 2)-f(x 2) =f(x 1-x 2)+f(x 2)-f(x 2) =f(x 1-x 2).又∵x>0时,f(x)<0,而x 1-x 2>0, ∴f(x 1-x 2)<0, 即f(x 1)<f(x 2),∴f(x)在R 上为减函数. (2)∵f(x)在R 上是减函数, ∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3). 而f(3)="3f(1)=-2,f" (-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.11.设a>0,b>0,e为自然对数的底数,e a+2a=e b+3b,则a与b的大小关系是________.【答案】a>b【解析】∵b>0,则3b>2b.由e a+2a=e b+3b,得e a+2a>e b+2b.又f(x)=e x+2x(x>0)是增函数.∴a>b.12.定义在上的函数的单调增区间为,若方程恰有4个不同的实根,则实数的值为()A.B.C.1D.-1【答案】B【解析】∵函数的单调增区间为,∴-1和1是的根,∴,∴,∴,,∴,∴,∴,∴,∴,∴,∴.【考点】1.函数的单调性;2.韦达定理;3.函数的最值.13.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。
高三数学函数的单调性与最值试题答案及解析1.若f(x)=是R上的单调函数,则实数a的取值范围为.【答案】[,+∞)【解析】因为当时,为单调递减函数,所以当时,也为单调递减函数,因此且【考点】分段函数单调性2.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法3.如果在区间上为减函数,则的取值范围()A. B. C. D (0,)【答案】C【解析】首先当时满足在区间上为减函数,所以;其次当时,由二次函数的图象和性质可知:要使在区间上为减函数,必须且只需:,综上知的取值范围为;故选C.【考点】一次函数与二次函数的单调性.4.如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程lg(x+y)=lgx+lgy,那么y=f(x)在[2,4]上的最小值是________.【答案】【解析】由lg(x+y)=lgx+lgy,得,由x+y=xy得y=f(x)===1+(x≠1).则函数f(x)在(1,+∞)上单调递减,所以y=f(x)在[2,4]上的最小值是f(4)=1+=.5.定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|.下列不等关系:①<;②f(sin l)>f(cos l);③<;④f(cos 2)>f(sin 2).其中正确的是________(填序号).【答案】④【解析】当x∈[-1,1]时,x+4∈[3,5],从而f(x)=f(x+4)=2-|x|,因为sin<cos,所以>;因为sin l>cos l,所以f(sin l)<f(cos l);因为<,所以>;因为|cos 2|<|sin 2|,所以f(cos 2)>f(sin 2).综上所述,正确的是④.6.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【答案】D【解析】函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=1·e x+(x-3)·e x=(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)·e x>0,解得x>2.7.已知函数在[0,+∞]上是增函数,,若则的取值范围是()A.B.C.D.【答案】D【解析】∵,∴,∵函数在[0,+∞]上是增函数,∴,∴或,∴或,又∵,∴或.【考点】函数的单调性、不等式的解法.8.下列函数中,既是偶函数又在区间(1,2)上单调递增的是()A.【答案】A【解析】与满足,与满足,为奇函数,所以舍去,画出与的图象显然递增的是,故选A.【考点】1.函数的奇偶性;2.函数的单调性;3.函数的图象.9.下列函数是偶函数,且在上单调递增的是A.B.C.D.【答案】D【解析】因为是奇函数,所以选项A不正确;因为是偶函数,其单调递增区间是,所以选项B不正确;是偶函数,在上单调递减,所以选项C不正大确;因为是偶函数,且在区间上为增函数,所以选项D正确.【考点】1、三角函数的图象和性质;2、三角函数的诱导公式.10.设函数若函数在区间上单调递增,则实数的取值范围是()A.B.C.D.【答案】D【解析】由函数的图像可知,在和上是递增的,在上是递减的,故函数在区间上单调递增,则或,即或,故选D.【考点】函数的单调性.11.下列函数中,对于任意的,满足条件的函数是()A.B.C.D.【答案】C【解析】由可得函数在上单调递增。
2024届新高考数学复习:专项(函数的单调性与最值)好题练习[基础巩固]一、选择题1.下列函数中是增函数的为( )A .f (x )=-xB .f (x )=⎝⎛⎭⎫23 xC .f (x )=x 2D .f (x )=3x2.下列函数中,在区间(-1,1)上为减函数的是( )A .y =11-xB .y =cos xC .y =ln (x +1)D .y =2-x3.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)4.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a5.[2023ꞏ四川内江测试]若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]6.[2023ꞏ山东青岛一中测试]已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则a 的取值范围是( )A .⎝⎛⎭⎫-∞,23B .(0,+∞)C .⎝⎛⎭⎫0,23 D .(-∞,0)∪⎝⎛⎭⎫23,+∞7.(多选)函数f (x )=log a |x -1|在(0,1)上单调递减,那么( ) A .f (x )在(1,+∞)上单调递增且无最大值 B .f (x )在(1,+∞)上单调递减且无最小值 C .f (x )的图象关于直线x =1对称D .若a =2 022,则f (x )在(0,1)上单调递减8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2) C .(-2,1)D .(-∞,-2)∪(1,+∞)9.[2023ꞏ新课标Ⅰ卷]设函数f (x )=2x (x -a )在区间(0,1)单调递减,则a 的取值范围是( ) A .(-∞,-2] B .[-2,0) C .(0,2] D .[2,+∞)二、填空题10.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.11.已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数f (x )的单调递增区间是________.12.已知函数f (x )=x +1x -1,x ∈[2,5],则f (x )的最大值是________.[强化练习]13.[2022ꞏ新高考Ⅰ卷,7]设a =0.1e 0.1,b =19 ,c =-ln 0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b14.设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )( )A .是偶函数,且在⎝⎛⎭⎫12,+∞ 单调递增B .是奇函数,且在⎝⎛⎭⎫-12,12 单调递减 C .是偶函数,且在⎝⎛⎭⎫-∞,-12 单调递增 D .是奇函数,且在⎝⎛⎭⎫-∞,-12 单调递减15.函数f (x )=⎝⎛⎭⎫13 x -log 2(x +2)在[-1,1]上的最大值为________.16.f (x )=⎩⎪⎨⎪⎧a x ,x <1,(a -3)x +4a ,x ≥1, 满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2 <0成立,则a 的取值范围是________.参考答案1.D 方法一(排除法) 取x 1=-1,x 2=0,对于A 项有f (x 1)=1,f (x 2)=0,所以A 项不符合题意;对于B 项有f (x 1)=32 ,f (x 2)=1,所以B 项不符合题意;对于C 项有f (x 1)=1,f (x 2)=0,所以C 项不符合题意.故选D .方法二(图象法) 如图,在坐标系中分别画出A ,B ,C ,D 四个选项中函数的大致图象,即可快速直观判断D 项符合题意.故选D.2.D A 项,x 1=0时,y 1=1,x 2=12 时,y 2=2>y 1,所以y =11-x在区间(-1,1)上不是减函数,故A 项不符合题意.B 项,由余弦函数的图象与性质可得,y =cos x 在(-1,0)上递增,在(0,1)上递减,故B 项不符合题意.C 项,y =ln x 为增函数,且y =x +1为增函数,所以y =ln (x +1)在(-1,1)上为增函数,故C 项不符合题意.D 项,由指数函数可得y =2x 为增函数,且y =-x 为减函数,所以y =2-x 为减函数,故D 项符合题意.3.D 由x 2-4>0得x >2或x <-2,∴f (x )的定义域为(-∞,-2)∪(2,+∞),由复合函数的单调性可知,函数的单调增区间为(-∞,-2).4.B ∵a =log 20.2<0,b =20.2>1,c =0.20.3∈(0,1), ∴a <c <b .故选B.5.D 由于g (x )=ax +1在区间[1,2]上是减函数,所以a >0;由于f (x )=-x 2+2ax 在区间[1,2]上是减函数,且f (x )的对称轴为x =a ,则a ≤1.综上有0<a ≤1.故选D.6.C ∵f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),∴⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23 .故选C.7.ACD ∵函数f (x )=log a |x -1|在(0,1)单调递减,∴f (x )=log a (1-x )在(0,1)上单调递减,∵y =1-x 在其定义域内是减函数,∴a >1.当x ∈(1,+∞)时,f (x )=log a |x -1|=log a (x -1),∵y =x -1在其定义域内是增函数,且a >1,∴f (x )在(1,+∞)上单调递增,且无最大值,故A 正确,B 错误.∵f (2-x )=log a |2-x -1|=log a |x -1|=f (x ),∴f (x )的图象关于直线x =1对称,故C 正确;由a >1可知,当a =2 022时,f (x )在(0,1)上单调递减,故D 正确.故选ACD.8.C f (x )=⎩⎪⎨⎪⎧x 2+4x =(x +2)2-4,x ≥0,4x -x 2=-(x -2)2+4,x <0. 由f (x )的图象可知f (x )在(-∞,+∞)上是增函数, 由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1,故选C.9.D 方法一 由题意得y =x (x -a )在区间(0,1)单调递减,所以x =a2 ≥1,解得a ≥2.故选D.方法二 取a =3,则y =x (x -3)=(x -32 )2-94 在(0,1)单调递减,所以f (x )=2x (x -3)在(0,1)单调递减,所以a =3符合题意,排除A ,B ,C ,故选D. 10.(-3,-1)∪(3,+∞)答案解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).11.[-1,1)答案解析:∵f (0)=log a 3<0,∴0<a <1,由复合函数的单调性可知,函数的单调增区间为[-1,1).12.3答案解析:f (x )=x +1x -1 =x -1+2x -1=1+2x -1 ,显然f (x )在[2,5]上单调递减,∴f (x )max=f (2)=1+22-1=3.13.C 设f (x )=(1-x )e x -1,x >0,则当x >0时,f ′(x )=-e x +(1-x )e x =-x e x <0,所以f (x )在(0,+∞)上单调递减,所以f (0.1)<f (0)=0,即0.9 e 0.1-1<0,所以0.1e 0.1<19 ,即a <b .令g (x )=x -ln (1+x ),x >0,则当x >0时,g ′(x )=1-11+x =x 1+x>0,所以g (x )在(0,+∞)上单调递增,所以g (19 )>g (0)=0,即19 -ln (1+19 )>0,所以19 >-ln 910 ,即b >c .令h (x )=x e x +ln (1-x ),0<x ≤0.1,则h ′(x )=(1+x )ꞏe x+1x -1 =(x 2-1)e x +1x -1.设t (x )=(x 2-1)e x +1,则当0<x ≤0.1时,t ′(x )=(x 2+2x -1)e x <0,所以t (x )在(0,0.1]上单调递减,所以t (x )<t (0)=0,所以当0<x ≤0.1时,h ′(x )>0,所以h (x )在(0,0.1]上单调递增,所以h (0.1)>h (0)=0,即0.1e 0.1+ln 0.9>0,所以0.1e 0.1>-ln 0.9,即a >c ,所以b >a >c .故选C.14.D ⎩⎪⎨⎪⎧|2x +1|>0,|2x -1|>0⇒x ∈⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠±12,x ∈R ,∴函数f (x )的定义域关于原点对称,又∵f (-x )=ln |-2x +1|-ln |-2x -1|=ln |2x -1|-ln |2x +1|=-f (x ),∴f (x )是奇函数,排除A 、C ;当x ∈⎝⎛⎭⎫-12,12 时,f (x )=ln (2x +1)-ln (1-2x ),则f ′(x )=22x +1 - -21-2x =41-4x 2 >0,∴f (x )在⎝⎛⎭⎫-12,12 单调递增,排除B ;当x ∈⎝⎛⎭⎫-∞,-12 时,f (x )=ln (-2x -1)-ln (1-2x ),则f ′(x )=-2-2x -1 - -21-2x =41-4x 2 <0,∴f (x )在⎝⎛⎭⎫-∞,-12 单调递减,∴D 正确. 15.3答案解析:∵y =⎝⎛⎭⎫13 x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,∴f (x )在[-1,1]上单调递减,∴f (x )max =f (-1)=3.16.⎝⎛⎦⎤0,34 答案解析:∵对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,∴f (x )在定义域R 上为单调递减函数,∴⎩⎪⎨⎪⎧0<a <1,a -3<0,a ≥(a -3)×1+4a ,解得0<a ≤34 ,∴a 的取值范围是⎝⎛⎦⎤0,34 .。
高考数学复习函数的单调性与最值专题训练(含答案)函数的单调性也可以叫做函数的增减性,下面是函数的单调性与最值专题训练,请考生及时练习。
一、选择题1.以下函数中,既是偶函数又在(0,+)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x|D.y=2|x|解析关于C中函数,当x0时,y=-lg x,故为(0,+)上的减函数,且y=-lg |x|为偶函数.答案 C.函数f(x)为R上的减函数,那么满足f(|x|)A.(-1,1)B.(0,1)C.(-1,0)(0,1)D.(-,-1)(1,+)解析 f(x)在R上为减函数且f(|x|)|x|1,解得x1或x-1.答案 D.假定函数y=ax与y=-在(0,+)上都是减函数,那么y=ax2+bx 在(0,+)上是()A.增函数B.减函数C.先增后减D.先减后增解析y=ax与y=-在(0,+)上都是减函数,a0,b0,y=ax2+bx的对称轴方程x=-0,y=ax2+bx在(0,+)上为减函数.答案B4.设函数f(x)=g(x)=x2f(x-1),那么函数g(x)的递减区间是().A.(-,0]B.[0,1)C.[1,+)D.[-1,0]解析 g(x)=如下图,其递减区间是[0,1).应选B.答案 B.函数y=-x2+2x-3(x0)的单调增区间是()A.(0,+)B.(-,1]C.(-,0)D.(-,-1]解析二次函数的对称轴为x=1,又由于二次项系数为正数,,对称轴在定义域的右侧,所以其单调增区间为(-,0).答案 C.设函数y=f(x)在(-,+)内有定义,关于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为().A.(-,0)B.(0,+)C.(-,-1)D.(1,+)解析 f(x)=f(x)=f(x)的图象如右图所示,因此f(x)的单调递增区间为(-,-1).答案 C二、填空题.设函数y=x2-2x,x[-2,a],假定函数的最小值为g(a),那么g(a)=________.解析函数y=x2-2x=(x-1)2-1,对称轴为直线x=1.当-21时,函数在[-2,a]上单调递减,那么当x=a时,ymin=a2-2a;当a1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,那么当x=1时,ymin=-1.综上,g(a)=答案.函数y=-(x-3)|x|的递增区间是_______.解析y=-(x-3)|x|作出该函数的图像,观察图像知递增区间为.答案.函数f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,那么a的取值范围是________.解析当a=0时,f(x)=-12x+5在(-,3)上为减函数;当a0时,要使f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,那么对称轴x=必在x=3的左边,即3,故0答案10.函数f(x)=(a是常数且a0).关于以下命题:函数f(x)的最小值是-1;函数f(x)在R上是单调函数;假定f(x)0在上恒成立,那么a的取值范围是a对恣意的x10,x20且x1x2,恒有f.其中正确命题的序号是____________.解析依据题意可画出草图,由图象可知,显然正确;函数f(x)在R上不是单调函数,故错误;假定f(x)0在上恒成立,那么2a-10,a1,故正确;由图象可知在(-,0)上对恣意的x10,x20且x1x2,恒有f成立,故正确.答案三、解答题.求函数y=a1-x2(a0且a1)的单调区间.当a1时,函数y=a1-x2在区间[0,+)上是减函数,在区间(-,0]上是增函数;当0x12,那么f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x22,得x1x2(x1+x2)16,x1-x20,x1x20.要使f(x)在区间[2,+)上是增函数,只需f(x1)-f(x2)0,即x1x2(x1+x2)-a0恒成立,那么a16..函数f(x)=a2x+b3x,其中常数a,b满足ab0.(1)假定ab0,判别函数f(x)的单调性;(2)假定ab0,求f(x+1)f(x)时的x的取值范围.解 (1)当a0,b0时,由于a2x,b3x都单调递增,所以函数f(x)单调递增;当a0,b0时,由于a2x,b3x都单调递减,所以函数f(x)单调递减.(2)f(x+1)-f(x)=a2x+2b3x0.(i)当a0,b0时,x-,解得x(ii)当a0,b0时,x-,解得x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)假定f(4)=5,解不等式f(3m2-m-2)3.(1)证明设x1,x2R,且x10,f(x2-x1)1.f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-10.f(x2)f(x1).即f(x)是R上的增函数.(2) f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3,原不等式可化为f(3m2-m-2)函数的单调性与最值专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优秀的效果。
高三数学函数的单调性与最值试题答案及解析1.已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.【答案】(1)f(x)在上是增函数;(2)【解析】(1)将m、n赋值,并注意x>0时f(x)>2条件的使用;(2)根据(1)的结论,首先找出f(1)=3,然后利用单调性去掉抽象函数,解二次不等式即可.试题解析:(1)设、且,则∵当时,∴即而函数对一切、都有:∴即∴函数在上是增函数(2)由题:∵∴∵∴即∴不等式的解集是【考点】抽象函数,函数的单调性,一元二次不等式的解法2.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.【答案】(-2,)【解析】∵函数f(x)=x3+3x是奇函数,且在定义域f(x)=x3+3x上单调递增,∴由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),即mx-2<-x,令g(m)=xm+(x-2),由题意知g(2)<0,g(-2)<0,令g(m)=xm+(x-2),g(2)<0,g(-2)<0,∴,解得-2<x<.3. [2014·大庆质检]下列函数中,满足“对任意的x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是()A.f(x)=B.f(x)=(x-1)2C.f(x)=e x D.f(x)=ln(x+1)【答案】A【解析】由题意知,f(x)在(0,+∞)上是减函数,故选A.4. [2013·吉林调研]已知定义在R上的函数f(x)满足f(x)+f(-x)=0,且在(-∞,0)上单调递增,如果x1+x2<0且x1x2<0,则f(x1)+f(x2)的值()A.可能为0B.恒大于0 C.恒小于0D.可正可负【答案】C【解析】由x1x2<0不妨设x1<0,x2>0.∵x1+x2<0,∴x1<-x2<0.由f(x)+f(-x)=0知f(x)为奇函数.又由f(x)在(-∞,0)上单调递增得,f(x1)<f(-x2)=-f(x2),所以f(x 1)+f(x 2)<0.故选C.5. (3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【答案】D【解析】根据零点分段法,我们易将函数f (x )=|lg (2﹣x )|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论. 解:∵f (x )=|lg (2﹣x )|, ∴f (x )=根据复合函数的单调性我们易得 在区间(﹣∞,1]上单调递减 在区间(1,2)上单调递增 故选D点评:本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6. 定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A .y =x 2+1 B .y =|x|+1C .y =D .y =【答案】C【解析】利用偶函数的对称性知f(x)在(-2,0)上为减函数,又y =,在(-2,0)上为增函数,故选C. 7. 设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1【答案】A【解析】因为y=3x 在R 上单调递增,又,故﹣2<x <﹣1故选A8. 若对任意x ∈R ,不等式|x|≥ax 恒成立,则实数a 的取值范围是( ) A .a <﹣1 B .|a|≤1 C .|a|<1 D .a≥1【答案】B【解析】当x>0时,x≥ax恒成立,即a≤1当x=0时,0≥a×0恒成立,即a∈R当x<0时,﹣x≥ax恒成立,即a≥﹣1,若对任意x∈R,不等式|x|≥ax恒成立,所以﹣1≤a≤1,故选B.9.函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是()A.b≥0B.b≤0C.b>0D.b<0【答案】A【解析】∵函数y=x2+bx+c在[0,+∞)上为单调函数∴x=﹣≤0,即b≥0.故选A10.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A.B.C.D.【答案】A【解析】由即.所以函数在上递增.所以即成立.故选A.【考点】1.函数的导数.2.函数的单调性.3.函数的构造的思想.11.已知函数在点处的切线方程为.(1)求、的值;(2)当时,恒成立,求实数的取值范围;(3)证明:当,且时,.【答案】(1),;(2);(3)详见解析.【解析】(1)利用已知条件得到两个条件:一是切线的斜率等于函数在处的导数值,二是切点在切线上也在函数的图象上,通过切点在切线上求出的值,然后再通过和的值列有关、的二元一次方程组,求出、的值;(2)解法1是利用参数分离法将不等式在区间上恒成立问题转化为不等式在区间上恒成立,并构造函数,从而转化为,并利用导数求出函数的最小值,从而求出的取值范围;解法2是构造新函数,将不等式在区间上恒成立问题转化为不等式在区间上恒成立问题,等价于利用导数研究函数的单调性,对的取值进行分类讨论,通过在不同取值条件下确定函数的单调性求出,围绕列不等式求解,从而求出的取值范围;(3)在(2)的条件下得到,在不等式两边为正数的条件下两边取倒数得到,然后分别令、、、、,利用累加法以及同向不等式的相加性来证明问题中涉及的不等式.试题解析:(1),.直线的斜率为,且过点,,即解得,;(2)解法1:由(1)得.当时,恒成立,即,等价于.令,则.令,则.当时,,函数在上单调递增,故.从而,当时,,即函数在上单调递增,故.因此,当时,恒成立,则.所求的取值范围是;解法2:由(1)得.当时,恒成立,即恒成立.令,则.方程(*)的判别式.(ⅰ)当,即时,则时,,得,故函数在上单调递减.由于,则当时,,即,与题设矛盾;(ⅱ)当,即时,则时,.故函数在上单调递减,则,符合题意;(ⅲ)当,即时,方程(*)的两根为,,则时,,时,.故函数在上单调递增,在上单调递减,从而,函数在上的最大值为.而,由(ⅱ)知,当时,,得,从而.故当时,,符合题意.综上所述,的取值范围是.(3)由(2)得,当时,,可化为,又,从而,.把、、、、分别代入上面不等式,并相加得,.【考点】1.导数的几何意义;2.不等式恒成立;3.参数分离法;4.分类讨论;5.数列不等式的证明12.函数的单调递增区间是.【答案】【解析】当时,,增区间为,当时,,增区间为.填.【考点】分段函数的单调区间.13.已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.【答案】(1)(2)g(a)=(3)【解析】(1)当a=1时,f(x)=x2-|x|+1=作图如下.(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.若a≠0,则f(x)=a+2a--1,f(x)图象的对称轴是直线x=.当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.当0<<1,即a>时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2. 当1≤≤2,即≤a≤时,g(a)=f=2a--1.当>2,即0<a<时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3. 综上可得g(a)=(3)当x∈[1,2]时,h(x)=ax+-1,在区间[1,2]上任取x1、x2,且x1<x2,则h(x2)-h(x1)==(x2-x1)=(x2-x1).因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,即ax1x2>2a-1.当a=0时,上面的不等式变为0>-1,即a=0时结论成立.当a>0时,x1x2>,由1<x1x2<4,得≤1,解得0<a≤1.当a<0时,x1x2<,由1<x1x2<4,得≥4,解得-≤a<0.所以实数a的取值范围为14.已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.【答案】,【解析】由f(x)==a+.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴fmax (x)=f(1)=,fmin(x)=f(4)=;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴fmax (x)=f(4)=,fmin(x)=f(1)=.15.已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f(f(x)-lnx)=1+e,则f(1)=________.【答案】e【解析】f(x)-lnx必为常数函数,否则存在两个不同数,其对应值均为1+e,与单调函数矛盾.所以可设f(x)-lnx=c,则f(x)=lnx+c.将c代入,得f(c)=1+e,即lnc+c=1+e.∵y=lnx+x是单调增函数,当c=e时,lnc+c=1+e成立,∴f(x)=lnx+e.则f(1)=e16.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.【答案】【解析】f′(x)=3x2+1>0,∴f(x)在R上为增函数.又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)<f(-x).∴mx-2<-x,即mx+x-2<0,令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得,∴-2<x< .17.已知定义在R上的函数y=f(x)满足条件f=-f(x),且函数y=f为奇函数,给出以下四个命题:(1)函数f(x)是周期函数;(2)函数f(x)的图象关于点对称;(3)函数f(x)为R上的偶函数;(4)函数f(x)为R上的单调函数.其中真命题的序号为________.(写出所有真命题的序号)【答案】(1)(2)(3)【解析】由f(x)=f(x+3)⇒f(x)为周期函数,且T=3,(1)为真命题;又y=f关于(0,0)对称,y=f向左平移个单位得y=f(x)的图象,则y=f(x)的图象关于点对称,(2)为真命题;又y=f为奇函数,所以f=-f,f=-f=-f(-x),∴f=-f(-x),f(x)=f(x-3)=-f=f(-x),∴f(x)为偶函数,不可能为R上的单调函数,(3)为真命题;(4)为假命题,故真命题为(1)(2)(3).18.能够把圆的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是( )A.B.C.D.【答案】A【解析】由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,,所以的图象不过原点,故不为“和谐函数”; B中,,且,所以为奇函数,所以为“和谐函数”; C中,,且,为奇函数,故为“和谐函数”;D中,,且为奇函数,故为“和谐函数”;故选A.【考点】奇偶性与单调性的综合.19.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.20.已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.【答案】(1)2;(2)递增;(3).【解析】(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在时求得即可;(2)时,可化简为,下面我们只要按照单调性的定义就可证明在上函数是单调递增的,当然在上是递减的;(3)处理此问题,首先通过换元法把问题简化,设,则函数变为,问题变为求实数的范围,使得在区间上,恒有.对于函数,我们知道,它在上递减,在上递增,故我们要讨论它在区间上的最大(小)值,就必须分类讨论,分类标准显然是,,,在时还要讨论最大值在区间的哪个端点取得,也即共分成四类.试题解析:易知的定义域为,且为偶函数.(1)时, 2分时最小值为2. 4分(2)时,时,递增;时,递减; 6分为偶函数.所以只对时,说明递增.设,所以,得所以时,递增; 10分(3),,从而原问题等价于求实数的范围,使得在区间上,恒有. 11分①当时,在上单调递增,由得,从而; 12分②当时,在上单调递减,在上单调递增,,由得,从而; 13分③当时,在上单调递减,在上单调递增,,由得,从而; 14分④当时,在上单调递减,由得,从而; 15分综上,. 16分【考点】(1)函数的最值;(2)函数的单调性的证明;(3)分类讨论与函数的最值.21.已知函数,设,若,则的取值范围是 ___ .【答案】[,2)【解析】函数的图像如图所示.因为,若要使成立,有图像可得.且.由于b的变化是递增的,的变化也是递增的所以.即填[,2).本小题主要考查分段函数的问题.【考点】1.分段函数的知识.2.函数的单调性.22.已知是上的奇函数,对都有成立,若,则等于A.B.C.D.【答案】C.【解析】令x=-2,则f(-2+4)=f(-2)+f(2),又因为f(x)在R上是奇函数.,所以f(-2)+f(2)=0,即f(2)=0.所以得到f(x+4)=f(x).所以函数是以4为周期的周期函数.所以f(2014)=f(2)=0.本题的关键是把奇函数与所给的式子结合起来得到周期为四的结果.注这个条件多余.【考点】1.奇函数.2.周期函数.3.递推的思想.23.已知函数⑴判断函数的单调性,并证明;⑵求函数的最大值和最小值.【答案】(1)增函数,证明见解析;(2),【解析】(1)利用函数单调的定义证明,可得函数在[3,5]上为单调增函数;(2)根据函数的单调递增,可得函数的最值为,.试题解析:⑴设且,所以 4分即,在[3,5]上为增函数. 6分⑵在[3,5]上为增函数,则, 10分【考点】1.函数单调的判断;2.利用函数单调性求最值24.函数有最小值,则实数的取值范围是()A.B.C.D.【答案】B.【解析】若在定义域内有最小值,则满足,且恒成立,所以,故选B.【考点】1.复合函数的单调性与最值.25.关于函数,给出下列四个命题:①,时,只有一个实数根;②时,是奇函数;③的图象关于点,对称;④函数至多有两个零点.其中正确的命题序号为______________.【答案】①②③【解析】①,时,,显然只有一个实数根;②时,显然,,所以是奇函数;③设是函数的图象上的一点,点关于点,对称点,因为,所以点也在函数的图象上,故的图象关于点,对称;④,取,可得有三个零点.【考点】函数的基本性质.26.如果函数上单调递减,则实数满足的条件是()A.B.C.D.【答案】A【解析】函数在区间上单调递减,所以上,,即,故选A.【考点】导数、函数的单调性与最值27.给出下列四个命题:①函数有最小值是;②函数的图象关于点对称;③若“且”为假命题,则、为假命题;④已知定义在上的可导函数满足:对,都有成立,若当时,,则当时,.其中正确命题的序号是 .【答案】①②④.【解析】对于命题①,,,当且仅当,即当时,上式取等号,即函数有最小值,故命题①正确;对于命题②,由于,故函数的图象关于点对称,故命题②正确;对于命题③,若“且”为假命题,则、中至少有一个是假命题,故命题③错误;对于命题④,由于函数是奇函数,当时,,即函数在区间上单调递增,由奇函数的性质知,函数在上也是单调递增的,即当时,仍有,故命题④正确,综上所述,正确命题的序号是①②④.【考点】1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性28.已知函数是上的单调递增函数,若是其图像上的两点,则不等式的解集是.【答案】.【解析】由已知得.【考点】函数的单调性质.29.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有两个不同的根,则这两根之和为()A.±8B.±4C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有两个不同的根,所以这两个根必为-6、2或-2、6,所以这两个根之和为-4或4.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.30.已知函数,下列结论中错误的是()A.R,B.函数的图像是中心对称图形C.若是的极小值点,则在区间上单调递减D.若是的极值点,则【答案】C【解析】由于,,由于是函数的极小值点,且函数的图象开口向上,故函数存在极大值点,即存在使得,从而函数在上单调递增,在上单调递减,即函数在不是单调递减的.【考点】函数的单调性与极值、函数的对称性31.已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.【答案】(1)在上单调递减,在上单调递增;(2);(3).【解析】(1)先对求导,由于的正负与参数有关,故要对分类讨论来研究单调性; (2)先由在其定义域内为增函数转化为在不等式中求参数范围的问题,利用分离参数法和基本不等式的知识求出参数的取值范围;(3)先通过导数研究在的最值,然后根据命题“若,,总有成立”分析得到在上的最大值不小于在上的最大值,从而列出不等式组求出参数的取值范围.试题解析:解:(1)的定义域为,且, 1分①当时,,在上单调递增; 2分②当时,由,得;由,得;故在上单调递减,在上单调递增. 4分(2),的定义域为5分因为在其定义域内为增函数,所以,而,当且仅当时取等号,所以 8分(3)当时,,由得或当时,;当时,.所以在上, 10分而“,,总有成立”等价于“在上的最大值不小于在上的最大值”而在上的最大值为所以有 12分所以实数的取值范围是 14分【考点】1、利用导数研究单调性和最值,2、参数的取值范围问题,3、基本不等式.32.对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(1)的大小;求证:对于任意大于1的实数x1,x2,x3,,xn,均有g(ln(x1+x2++xn))>g(lnx1)+g(lnx2)++g(lnxn).【答案】(Ⅰ);(Ⅱ)①,②先征得,取不同的值得到的式子累加即可得证.【解析】(Ⅰ)先求得,再由>得,解得;(Ⅱ)①构造函数,证明为上的增函数,再讨论就可得到,②先证得,即得,整理得,同理可得类似的的等式,累加即可得证.试题解析:(Ⅰ)由,可得,因为函数是函数,所以,即,因为,所以,即的取值范围为. (3分)(Ⅱ)①构造函数,则,可得为上的增函数,当时,,即,得;当时,,即,得;当时,,即,得. (6分)②因为,所以,由①可知,所以,整理得,同理可得,,.把上面个不等式同向累加可得[. (12分)【考点】1.恒成立问题;2.导数在求函数单调性、最值的应用;3.不等式.33.已知函数的定义域是,是的导函数,且在内恒成立.求函数的单调区间;若,求的取值范围;(3) 设是的零点,,求证:.【答案】(1);(2) ;(3)详见解析.【解析】(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对求导,然后借助已知的不等式恒成立进行转化为在内恒成立,进而采用构造函数的技巧,,通过求导研究其最大值,从而得到的取值范围;(3)借助第一问结论,得到,然后通过变形和构造的思路去证明不等式成立.试题解析:(1),∵在内恒成立∴在内恒成立,∴的单调区间为 4分(2),∵在内恒成立∴在内恒成立,即在内恒成立,设,,,,,故函数在内单调递增,在内单调递减,∴,∴ 8分(3)∵是的零点,∴由(1),在内单调递增,∴当时,,即,∴时,∵,∴,且即∴,∴ 14分【考点】1.函数的单调性;(2)导数的应用;(3)不等式的证明.34.已知函数的定义域是,若对于任意的正数,函数都是其定义域上的减函数,则函数的图象可能是A. B. C. D.【答案】B【解析】直接利用g(x)是减函数⇒导数小于0⇒f(x)的导数是减函数⇒f(x)是凸函数即可得到答案。
函数的单调性与最值练习题学校: __________ 姓名: ____________班级: ___________ 考号: ___________ 一、选择题(每小题4 分)1.函数 f (x ) = log 2 x 在区间[1, 2] 上的最小值是( )A . -1B .0C .1D .22.已知 f (x )=log 1(x 2 -2x )的单调递增区间是( )2A. (1, +) B. (2, +) C. ( -, 0) D. ( -,1)3.定义在R 上的函数 f (x )对任意两个不相等实数a ,b ,总有 f (a )- f (b ) 0成立, a -b则必有( )A. f (x )在R 上是增函数B. f (x )在R 上是减函数4.若 在区间(-∞,1]上递减,则 a 的取值范围为( A. [1,2)B. [1,2]C. [1,+∞)D. [2,+∞)5.函数 y=x 2﹣2x ﹣1 在闭区间[0,3]上的最大值与最小值的和是( )A .﹣1B .0C .1D .2 6.定义在 (0,+) 上的函数f (x )满足对任意的 x 1, x 2(0,+)(x 1x 2) ,有(x 2-x 1)(f (x 2)- f (x 1)) 0.则满足 f (2x -1)<函数y =log 2(x 2+ 2x - 3)的单调递减区间为(已知函数(a 为常数).若 在区间[-1,+∞)上是增函数,则 a 的取C.函数 f (x )是先增加后减少D.函数 f (x )是先减少后增加A.(1 ,2 )B.[1,2 ) 2 3 3 3C. (1 ,2 )D.[1 ,2 )3 3 2 37.已知(x)值范围是( (3a - 1)x + 4a log a x (x 1)是(-∞,+∞)上的减函数,那么 a 的取 (x 1)A. 0,1)B.(0, 13 )C.[7,3)D.17,1)8.A . -∞,-3)B .(-∞,-1)C .(1, +∞)D . (-3,-1) 9. 已知函数 f (x )是定义在0,+)的增函数,则满足 f (2x -1)<A)(-,2 )3下列函数中, 10.A . y =2x1 2 1( B )[ , ) ( C)( ,3 3 2 在定义域内是单调递增函数的是( 1B . y =x +) C . y = x 2D)[12 ,23 )D . y = tan x11. 的 x 取值范围是 (的x 取值范围值范围是( ) A .B .C .D .12.如果函数 f (x ) 对任意的实数 x ,都有f (x )=f (1-x ),且当x1 时,f ( x ) = log 2 (3x - 1) ,那么函数 f (x )在-2,0的最大值与最小值之差为( )二、填空题(每小题4 分)13.已知 y=f(x)是定义在(-2,2)上的增函数,若 f(m-1)<f(1-2m),则 m 的取值范 围是21-x ,x 1,15. f (x )= x 2-2x +4的单调减区间是.16 . 已 知 函 数 f (x ) 满足f (-x ) = f (x ), 当 a ,b(-,0] 时总有 f (a )- f (b )0(a b ) ,若f (m +1)f (2m ), 则 实 数 m 的 取 值 范 围 是 a -b17.函数 f (x )=(x -1)2 - 2的递增区间是 ________________________ . 18.已知函数 f (x )= x + 4 , x1,5,则函数 f (x )的值域为 .x19.函数 f (x ) = x 2 - ax + b ,a ,b R .若 f (x )在区间(-,1)上单调递减,则a 的取值范围.20.已知函数 f (x )=4x 2 -kx -8在区间5,10上具有单调性,则实数k 的取值范围 是 .21.已知函数f (x )=log 3(x 2+ax +a +5),f (x )在区间(-,1)上是递减函数,则实 数a 的取值范围为 .22.已知 y=f(x)是定义在(-2,2)上的增函数,若 f(m-1)<f(1-2m),则实数 m 的取 值范围为 .a x ,x 1,23.若函数 f (x )=a 为 R 上的增函数,则实数 a 的取值范围(4 - )x + 2, x 1.是 .24.已知函数 f(x)=e x -1,g(x)=-x 2+4x -3,若有 f(a)=g(b),则 b 的取值范围为_2_5_._已__知__函.数 f(x)= 3-ax (a≠1).若f(x)在区间(0,1]上是减函数,则实数a 的 a - 1取值范围是 ________ .A. 4B. 3C. 2D. 114. 设函数 f (x )=1-log 2x , x >1,则满足 f (x )2的x 的取值范围是函数的单调性与最值参考答案1.B【解析】试题分析:画出f(x) = log2x在定义域xx0内的图像,如下图所示,由图像可知f(x)=log2x在区间[1,2]上为增函数,所以当x =1时f(x)=log2x取得最小值,即最小值为f (1) =log21=0。
考点:对数函数的图像及性质2.C【解析】试题分析:函数f (x)是复合函数,其定义域令x2-2x0,即(-,0)(2.+),根据复合函数的单调性:同增异减.该函数是增函数,其外函数是u =log1 v为减函数,其内函数为2v= x2- 2x也必是减函数,所以取区间(- ,0).考点:复合函数单调性的判断.3.A.【解析】试题分析:若a b,则由题意f(a)- f(b)0知,一定有f(a)f (b)成立,由增函数a-b的定义知,该函数f (x)在R上是增函数;同理若a b,则一定有f(a)f (b)成立,即该函数f (x)在R上是增函数.所以函数f (x)在R上是增函数.故应选A. 考点:函数的单调性. 4.A【解析】函数的对称轴为,要使函数在(-∞,1]上递减,则有,即,解得,即,选 A.5.B函数的单调性与最值【解析】∵y=x 2﹣2x ﹣1=(x ﹣1)2﹣2 ∴当 x=1 时,函数取最小值﹣2, 当 x=3 时,函数取最大值 2∴最大值与最小值的和为0 故选 B 6.A 【解析】试题分析:因为(x 2-x 1)(f (x 2)- f (x 1)) 0,所以函数f (x )在(0,+)上单调增. 由<f (3)得:0 2x -11,1x2.3 2 3考点:利用函数单调性解不等式 7.C 【解析】考点:1 函数的单调性;2数形结合思想. 8.A【解析】 试题分析:由x 2+2x -30,得x-3或x 1,∴ f ( x )的定义域为(-, -3) U(1,+) .y =log (x 2+2x -3)可看作由y =log u 和u =x 2 +2x -3复合而成的,u = x 2+2x -3=(x +1)2-4在(-,-3)上递减,在(1,+)上递增,又y =log 2u 在定义域内单调递增,∴y =log (x 2+2x -3)在(-,-3)上递减,在(1,+)上递增,所以y =log (x 2 +2x -3)的单调递减区间是(-,-3),故选 A .考点:复合函数的单调性. 9.D 【解析】2x -101 2 试题分析:根据已知的定义域和单调性,得到不等式:1 ,所以: 1x 2 2x -1 1 233考点:1.函数的单调性;2.抽象函数解不等式. 10.A 【解析】f (2 x - 1)试题分析: 3a -1 0 由题意可得0 a 1log 1(3a -1)1+4a 1 a30a 1 1a 1.故C 正确.73 1 a7试题分析:A 选项是指数函数,定义域为x x R,底数大于1,所以在定义域内是单调增函数。
故选 A 。
B 选项是反比例函数,定义域为x x 0,由反比例函数图像可知当x0或x 0时,函数都为单调递减,所以排除 B 。
C 选项是二次函数,定义域为x x R,由图像可知在 x0 时,函数为单调递减所以排除 C 。
D 选项是正切函数,定义域为,正切函数是在每一个区间-+k ,+k(k z )都是单调递增的,但在整个定义域内并不是单调递增的,例如:令 f (x )=tan x ,取x 1 =,x 2 =3, 则x 1x 2 ,但是f (x 1)=1 , f (x 2)=-1 ,显然f (x 1) f (x 2) 。
这说明在每一个- + k ,2(k z )都是单调递增的与在整个定义域内并不是单调递增的含义是不同的,所以排除 D 。
考点:函数的定义域、基本初等函数的图像及性质 11.B∴ 在区间 上是增函数, 则 .∴ a -1 .12. C【解析】Q f (1-x )=f (x ) 函数 f (x )的图象关于直线x = 1 对称, Q 当x 1 时 f(x )=log 2(3x -1),函数 f ( x )在1 , +上单调递增,函数 f (x )在-,1上单调递减, 函数 f (x ) 在-2,0上单调递减,函数 f (x ) 在-2,0上的最大值与最小值之和为 f (-2)+ f (0)= f (1+2)+ f (1-0)= f (3)+ f (1)=log 28+log 22=4故选 A.解析】x + k , k z 13.-1m 31 3 12 - m - m2 2 2 32m3考点:函数的单调性. 14.[0, +)【解析】 试题分析:当x1时,f (x ) 221-x2,即1-x 1,解得x 0;x 1时,f (x )21-log 2x 2,解得x 1 ,所以满足 f (x )2的x 的取值范围是[0,+). 考点:1、分段函数;2、函数的单词性. 15. (-,1)【解析】试题分析:将函数进行配方得 f (x )= x 2-2x +4=(x -1)2+3,又称轴为x =1,函数图象 开口向上,所以函数的单调减区间为(-,1).考点:二次函数的单调性. 16.(-,- 1 )(1,+) 3【解析】试题分析:由 f (-x )=f (x ) 可得 f ( x ) 为偶函数,因为 a ,b(-,0]时总有0(a b )所以 f ( x )在(-,0上单调递增,又 f (x )为偶函数,所以 f (x )在(0, +)上单调递减.Q f (m +1) f (2m )f (m +1) f (2m ),即m +12m ,则(m +1)(2m ) (3m +1)(m -1) 0 ,解得m(-,- 1)(1,+). 考点:函数的单调性和奇偶性 17.[1,+∞)【解析】 试题分析: f (x )= x 2 - 2 x - 3 ,由一元二次函数的单调性可知,开口向上,递增区间在对称 轴右侧,递增区间为[1,+∞). 考点:一元二次函数的单调性.2918.[4, 29]试题分析: -2 m -1 2-21-2m 2f (a )- f (b ) a -b解析】试题分析:函数 f (x )在1,2上是减函数,在2,5上是增函数,且 f (1)=5,f(2)=4, f (5) = 29,所以函数 f (x )的值域为[4, 29].考点:函数的单调性和值域.19.a2【解析】a试题分析:根据题意可知:二次函数开口向上,对称轴为x = a ,根据题意可知:区间(-,1) aa在对称轴 x = 的左侧,所以1 .22考点:二次函数的性质. 20.(-,40U 80, +)【解析】试题分析:要 f (x )使在区间[5,10]上具有单调性,只需对称轴不在该区间即可,所以k 58或k10即得k 的范围(-,40U 80,+).8考点:二次函数的单调性. 21.-3 a≤-2【解析】试题分析:设 t=x 2+ax+a+5,则 f(x)=log 3t ,且函数 t 在区间(-∞,1)上是递减函数,a-1且 t >0 .∴ 2 ,求得 -3a ≤ -21+a +a +5 0考点:对数函数的单调性。