高阶线性微分方程的解法
- 格式:pdf
- 大小:259.32 KB
- 文档页数:17
高阶常系数齐次线性微分方程的解法
高阶常系数齐次线性微分方程(HCCLDE)是一类常见的微分方程,由一个高次项和多个常系数组成。
它可以用来描述许多物理系统的运动规律,如波动方程,动力学系统,电磁学系统等。
因此,解决高阶常系数齐次线性微分方程是一件重要而又复杂的工作。
首先,为了解决HCCLDE,需要根据给定的方程确定一
个基本的解,可以使用求解基本解的常用方法,如解析法、拉普拉斯变换、Fourier级数展开等。
其次,要求出方程的通解,需要对基本解进行叠加,也就是找到该方程的特解,可以采用求解特解的常用方法,如换元法、拉普拉斯变换、Laplace变
换等。
最后,将基本解和特解叠加,就可以得到高阶常系数齐次线性微分方程的通解。
为了求解HCCLDE,必须了解其特性,并利用相应的数
学方法。
根据HCCLDE的特性,可以把HCCLDE的解分为基本解和特解,并通过叠加这两类解得到它的通解。
此外,可以利用常用的方法求解基本解和特解,例如解析法、拉普拉斯变换、Fourier级数展开、换元法、Laplace变换等。
总之,解决高阶常系数齐次线性微分方程是一项复杂的任务,需要结合相关知识和技术,并利用一些常用的数学方法来解决。
通过了解HCCLDE的特性,可以将它的解分为基本解
和特解,并将它们叠加,最终得到HCCLDE的通解。
高阶线性微分方程的解法实变量复值函数——预备知识常系数线性方程的解法求变系数齐线性方程特解的幂级数法要存在注意极限 ,) sin (cos )(t i t e e t t i b b a b a ±=± , )(21 t i t i e e t b b b -+=. )(21 sin t i t i e e t b b b --=; )()(lim 00t z t z t t =®)()()(t i t t z y j +=; )(lim )(lim )(lim 000t i t t z t t t t t t y j ®®®+=连续,若在0)(t t z 实变量复值函数——预备知识导数定义:; )()(lim )()(0000000dtt d i dt t d t t t z t z dt t dz t z t t )(+)(=--=º¢®y j,)()()]()([2121dt t dz dt t dz t z t z +=+,)()](dt t dz c t cz =.)()()()()]()(212121dt t dz t z t z dt t dz t z t ××=×+,t k t k e =,)(2121t k t k t k k e e e ×=+,)3( t k tk ke .)( )4( tk n t k n n e k e dt d =的性质)( b i a k t k +=.(4.2)中所有系数都是),,2,1( )(n i t a i L =)()()( t i t t z x y j +==是它的复值解,则.)2.4( )( )(的解都是方程和共轭复值函数t z t y 非齐线性微分方程有复值解)( )(][ t V i t U x L +=、及解中的和这里)( )()(),,2,1( )(t u t 、V t U n i t a i L =分别是方程和虚部的实部都是实值函数,则该解)()( t v t u 的实)(t z , ))(][t U x L =)(][t V x L =和的解.变换法. 求常系数齐线性方程通解的特征根法(4.19)0][1111 =++++º---x a dtdx a dt x d a dt x d x n n n n n n L .,,2为实常数n a L 由希望它有指数函数形式的解,t e x l =, 0)( )(][111=º++++º--t t n n n n t e F ea a a e L l l l l l l l L 数方程(4.20) 0)(111 =++++º--n n n n a a a F l l l l L . 这个方程称为(4.19)对应的特征根.特征方程,它的根称为特征根是单根的情形.个解有 (4.19)n 个彼此不相等的的是特征方程 (4.20) ,,,21 n n l l L ,,,, 21t t t n e e e l l l L 无关的,从而组成方程的基本解组. 这时,若的通解为均为实根,方程(4.19)),,2,1(n i L =; 2121tn t t n e c e c e c x l l l +++=L 复也一定是特征根,则( b a l b a l i i -=+=),它们对应方程(4.19)的两个实值解.sin ,cos t e t e t t b b a a 特征根有重根的情形.111(4.19)(4.20) k k 的重根,则它对应的是特征方程设 l 线性无关的解;,,,,1111112t k t t t e t e t te e l l l l -L;,,, ,,,3232m m k k k L L 的重数依次为l l l 则当 , )( , ),,,2,1 21j i n k k k n j i m ¹¹=+++l l L L 还有解;,,,,2222212t k t t t e te t te e l l l l -L .,,,,12tk t t t m m m m m e t e t te e l l l l -L L L L L n 个解, 是线性无关的, 构成了(4.19)的基本解组.b a l b a l l i i k -=+=则重复根是某个特征根,我们将用以下的2k 个实值解来替代:,cos ,,cos ,cos ,cos 12t e tt e t t te t e t k t t t b b b b a a a a -L . sin ,,sin ,sin ,sin 12 t e t t e t t te t e tk t t t b b b b a a a a -L. 0 44的通解=-x dtx d ,014=-l ., , 1, 14321i i -==-==l l l l .sin, cos , , t t e e t t -了4 个线性无关的解,故通解为.sin cos 4321t c t c e c e c x t t +++=-. 012167223的通解=-+x dtdx dt x d 出特征方程, 01216723=+--l l l,0)1(2222246=+=++l l l l l , 0)2)(3(2=--l l ,2, 3321===l l l .)(23231t t e t c c e c x ++=. 02 224466的通解=++dt x d dt x d dt x d ., ,0654321i i -======l l l l l l 通解为.sin )(cos )(654321t t c c t t c c t c c x ++++=+(4.32) )(]1111t f x a dtdx a dt x d a dt x d n n n n n n =++++º---L 最广泛而常见的右端函数是,]sin )(cos )([)( t t B t t A e t f t b b a +=次的实系数多项式,最高是t t B t A )(),(代数方程(4.20)仍然称为(4.32)对应的特征,)( )()(1110 m m m m t t b t b t b t b e t A e t f ++++==--L a a 时,即0=b 1.是单根的根时它的重数是特征方程a l a (0)(=F 是待定常数,将上是特征根m B B B k ,,, );0 10L =t 的同次项系数来确定.,]sin )(cos )([~ t k e t t Q t t P t x a b b +=),( ;0)(t P F i 的根时它的重数 是特征方程=+l b a .次实系数待定多项式. 13322的通解+=--t x dtdx dt 应的特征方程是, 0)1)(3( 0322=+-=--l l l l 或有形如下式的特解时,方程(4.32)0有如下形式的特解,)(~ 110t m m m k e B t B t B t x a +++=-L,0 13)( =+=b ,对应一般形式中的t t f ,故特解形式为不是特征根,因此00==k a .~Bt A x +=,13332+º---t Bt A B 系数,得îíì=--=-,132, 33A B B 特解为 ; 1 , 31-==B , 31~t x -=原方程通解为.31231+-+=-t e c e c x t t 的通解是因此对应的齐线性方程.1,321-==l l .231t t e c e c x -+=. 32 2的通解t e x dtdt -=--对应一,这里特征方程,特征根同上 ,)( t e t f -=确定正是单根,所以而, 11 , 1 , 0=-=-==k a a b .~ t Ate x -=一步,其余略.. )5(332233的通解-=+++-t e x dtdx dt x d dt x d t 特征方程为,0)1(133323=+=+++l l l l 形正是这三重根,故特解三重根 1; 1321-=-===a l l l ,)(~3 t e Bt A t x -+=其余步骤略.. 2cos 44 2的通解+t x dtdt =+一特征方程为,0)2(4422=+=++l l l ,对应一般形右端函数 t t f 2cos )( , 2 21=-==l l 而; 0)(, 1)( , 2 ,ºº=t B t A b ii 2=+b a .故特解形式为2sin 2cos ~t B t A x +=化简得2sin 82cos 8t A t B º-从而特解是 同类项系数,得. 81,0==B A , 2sin 81~t x =.2sin 81)(221t e t c c x t ++=-二因为右端函数)Re(2cos )(2it e t t f ==的结论,先求方程itex dt dx dt x d 22244 =++再取其实部,就是原方程的解.不是特征根,故对应的右端函数i e it 22=a ,~2it Ae x =,得方程并消去因子 it e 2 , 8 18iA iA -==或为. 2sin 812cos 88~2t t i e i x it +-=-=原方程的实特解为{}, 2sin 81~Re t x =. 2sin 81)(221t e t c c x t ++=-。
推导微分方程的高阶线性微分方程与常系数齐次线性微分方程的解法微分方程(Differential Equation)是描述自然界中变化规律的重要数学工具。
在微分方程的研究中,高阶线性微分方程与常系数齐次线性微分方程是常见且具有重要意义的两个类型。
本文将介绍这两种微分方程的解法,并进行推导。
一、高阶线性微分方程高阶线性微分方程(High-order Linear Differential Equation)是指方程中包含高于一阶的导数的线性微分方程。
一般形式可以表示为:\[ a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0 \]其中,$y^{(n)}(x)$表示导数的$n$次导数,$a_n(x), a_{n-1}(x),\cdots, a_1(x), a_0(x)$为已知的函数。
解法如下:1. 设方程的$n$个线性无关的特解为$y_1(x), y_2(x), \cdots, y_n(x)$2. 利用特解组合构造齐次线性微分方程的解\[ y(x) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x) \]其中,$C_1, C_2, \cdots,C_n$为常数。
3. 求解常数$C_1, C_2, \cdots, C_n$的值,得到齐次线性微分方程的通解。
二、常系数齐次线性微分方程常系数齐次线性微分方程(Homogeneous Linear Differential Equation with Constant Coefficients)是指系数为常数的齐次线性微分方程。
一般形式可以表示为:\[ a_ny^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \cdots + a_1y'(x) + a_0y(x) =0 \]其中,$a_n, a_{n-1}, \cdots, a_1, a_0$为已知的常数。
高阶微分方程的数值解法
高阶微分方程是用于描述非线性系统动力学行为的常用方法,其解决方案由微分方程决定。
求解高阶微分方程的数值解法有以下几种:
一、传统数值方法
1. 欧拉法:欧拉法是将高阶微分方程转化为一组低阶初值问题来求解,是一种常用的数值解法,能够很好地模拟复杂不可逆多次微分方程。
2. 高斯消元法:高斯消元法是指将高阶微分方程转换为可以使用高斯消元法求解的逐步线性方程组,从而获得解。
3. 差分格式:差分格式是将高阶微分方程转化为具有划定范围和步长的一组离散差分方程。
然后再使用数值技术,比如迭代法和插值法来求解离散差分方程,从而找到解。
二、基于精确解的方法
1. 拉格朗日 - 马夸特方法:拉格朗日 - 马夸特方法在一定允许误差范围内给出较准确的结果,对于常微分方程第二阶,能构造出唯一的精确解。
2. 高斯 - 勒兹方法:高斯 - 勒兹方法是一种求解高阶微分方程的标准方法,可以在定义域上构造出若干的步数节点,从而建立一个高斯 - 勒兹矩阵,由此给出一组精确解。
3. 拉普拉斯变换:拉普拉斯是一种快速数值方法,可以将高阶微分方程转换为简单的拉普拉斯方程,利用精确的伽玛函数解法获取精确解。
三、其他方法
1. 有限元法:有限元法是一种分析 `复杂结构` 动力学等多物理场耦合问题的有效方法,可以以有限元素作为基础进行数值模拟,从而解决高阶微分方程问题。
2. 加速多项式算法:加速多项式算法,也称利舒尔算法,可以连续上溯,从而求解高阶微分方程问题,也可用于处理阶梯函数和回旋函数的解。
高阶线性微分方程的解法和常系数法在微积分学中,微分方程是一种重要的数学工具,而高阶线性微分方程则是其中的一个重要类别。
在解决许多实际问题中,很多时候需要高阶线性微分方程的解法。
本文将详细介绍高阶线性微分方程的解法和常系数法。
一、高阶线性微分方程的定义首先,我们需要明确什么是高阶线性微分方程。
高阶线性微分方程的一般形式可以表示为:$$A_n(x)\frac{d^ny}{dx^n}+A_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+...+A_2(x)\frac{d^2y}{dx^2}+A_1(x)\frac{dy}{dx}+A_0(x)y=f( x)$$其中,$n$为该微分方程的阶数,$A_n(x),A_{n-1}(x),...,A_1(x),A_0(x)$是已知的函数。
$f(x)$是已知的函数或常数。
二、常系数法针对高阶线性微分方程的解法,最常用的方法是常系数法。
常系数法是指假设方程中系数$A_n(x),A_{n-1}(x),...,A_1(x),A_0(x)$都是常数,从而采用特定的方法求解其通解。
对于高阶线性微分方程:$$a_n\frac{d^ny}{dx^n}+a_{n-1}\frac{d^{n-1}y}{dx^{n-1}}+...+a_2\frac{d^2y}{dx^2}+a_1\frac{dy}{dx}+a_0y=f(x)$$其中,$a_0,a_1,...,a_n$为常数,我们可以进行如下的步骤:1. 假设通解为:$$y=Ae^{rx}$$其中,$A$和$r$是待定常数。
2. 带入上式得到:$$a_ne^{rx}r^n+A_{n-1}e^{rx}r^{n-1}+...+a_2e^{rx}r^2+a_1e^{rx}r+a_0e^{rx}=f(x)$$3. 对于每个$r$,将上式变形得到关于$r$的方程:$$a_nr^n+A_{n-1}r^{n-1}+...+a_2r^2+a_1r+a_0=0$$4. 解出该方程的所有根$r_1,r_2,...,r_n$。
高阶线性微分方程的解法实变量复值函数——预备知识常系数线性方程的解法求变系数齐线性方程特解的幂级数法要存在注意极限 ,) sin (cos )(t i t e e t t i b b a b a ±=± , )(21 t i t i e e t b b b -+=. )(21 sin t i t i e e t b b b --=; )()(lim 00t z t z t t =®)()()(t i t t z y j +=; )(lim )(lim )(lim 000t i t t z t t t t t t y j ®®®+=连续,若在0)(t t z 实变量复值函数——预备知识导数定义:; )()(lim )()(0000000dtt d i dt t d t t t z t z dt t dz t z t t )(+)(=--=º¢®y j,)()()]()([2121dt t dz dt t dz t z t z +=+,)()](dt t dz c t cz =.)()()()()]()(212121dt t dz t z t z dt t dz t z t ××=×+,t k t k e =,)(2121t k t k t k k e e e ×=+,)3( t k tk ke .)( )4( tk n t k n n e k e dt d =的性质)( b i a k t k +=.(4.2)中所有系数都是),,2,1( )(n i t a i L =)()()( t i t t z x y j +==是它的复值解,则.)2.4( )( )(的解都是方程和共轭复值函数t z t y 非齐线性微分方程有复值解)( )(][ t V i t U x L +=、及解中的和这里)( )()(),,2,1( )(t u t 、V t U n i t a i L =分别是方程和虚部的实部都是实值函数,则该解)()( t v t u 的实)(t z , ))(][t U x L =)(][t V x L =和的解.变换法. 求常系数齐线性方程通解的特征根法(4.19)0][1111 =++++º---x a dtdx a dt x d a dt x d x n n n n n n L .,,2为实常数n a L 由希望它有指数函数形式的解,t e x l =, 0)( )(][111=º++++º--t t n n n n t e F ea a a e L l l l l l l l L 数方程(4.20) 0)(111 =++++º--n n n n a a a F l l l l L . 这个方程称为(4.19)对应的特征根.特征方程,它的根称为特征根是单根的情形.个解有 (4.19)n 个彼此不相等的的是特征方程 (4.20) ,,,21 n n l l L ,,,, 21t t t n e e e l l l L 无关的,从而组成方程的基本解组. 这时,若的通解为均为实根,方程(4.19)),,2,1(n i L =; 2121tn t t n e c e c e c x l l l +++=L 复也一定是特征根,则( b a l b a l i i -=+=),它们对应方程(4.19)的两个实值解.sin ,cos t e t e t t b b a a 特征根有重根的情形.111(4.19)(4.20) k k 的重根,则它对应的是特征方程设 l 线性无关的解;,,,,1111112t k t t t e t e t te e l l l l -L;,,, ,,,3232m m k k k L L 的重数依次为l l l 则当 , )( , ),,,2,1 21j i n k k k n j i m ¹¹=+++l l L L 还有解;,,,,2222212t k t t t e te t te e l l l l -L .,,,,12tk t t t m m m m m e t e t te e l l l l -L L L L L n 个解, 是线性无关的, 构成了(4.19)的基本解组.b a l b a l l i i k -=+=则重复根是某个特征根,我们将用以下的2k 个实值解来替代:,cos ,,cos ,cos ,cos 12t e tt e t t te t e t k t t t b b b b a a a a -L . sin ,,sin ,sin ,sin 12 t e t t e t t te t e tk t t t b b b b a a a a -L. 0 44的通解=-x dtx d ,014=-l ., , 1, 14321i i -==-==l l l l .sin, cos , , t t e e t t -了4 个线性无关的解,故通解为.sin cos 4321t c t c e c e c x t t +++=-. 012167223的通解=-+x dtdx dt x d 出特征方程, 01216723=+--l l l,0)1(2222246=+=++l l l l l , 0)2)(3(2=--l l ,2, 3321===l l l .)(23231t t e t c c e c x ++=. 02 224466的通解=++dt x d dt x d dt x d ., ,0654321i i -======l l l l l l 通解为.sin )(cos )(654321t t c c t t c c t c c x ++++=+(4.32) )(]1111t f x a dtdx a dt x d a dt x d n n n n n n =++++º---L 最广泛而常见的右端函数是,]sin )(cos )([)( t t B t t A e t f t b b a +=次的实系数多项式,最高是t t B t A )(),(代数方程(4.20)仍然称为(4.32)对应的特征,)( )()(1110 m m m m t t b t b t b t b e t A e t f ++++==--L a a 时,即0=b 1.是单根的根时它的重数是特征方程a l a (0)(=F 是待定常数,将上是特征根m B B B k ,,, );0 10L =t 的同次项系数来确定.,]sin )(cos )([~ t k e t t Q t t P t x a b b +=),( ;0)(t P F i 的根时它的重数 是特征方程=+l b a .次实系数待定多项式. 13322的通解+=--t x dtdx dt 应的特征方程是, 0)1)(3( 0322=+-=--l l l l 或有形如下式的特解时,方程(4.32)0有如下形式的特解,)(~ 110t m m m k e B t B t B t x a +++=-L,0 13)( =+=b ,对应一般形式中的t t f ,故特解形式为不是特征根,因此00==k a .~Bt A x +=,13332+º---t Bt A B 系数,得îíì=--=-,132, 33A B B 特解为 ; 1 , 31-==B , 31~t x -=原方程通解为.31231+-+=-t e c e c x t t 的通解是因此对应的齐线性方程.1,321-==l l .231t t e c e c x -+=. 32 2的通解t e x dtdt -=--对应一,这里特征方程,特征根同上 ,)( t e t f -=确定正是单根,所以而, 11 , 1 , 0=-=-==k a a b .~ t Ate x -=一步,其余略.. )5(332233的通解-=+++-t e x dtdx dt x d dt x d t 特征方程为,0)1(133323=+=+++l l l l 形正是这三重根,故特解三重根 1; 1321-=-===a l l l ,)(~3 t e Bt A t x -+=其余步骤略.. 2cos 44 2的通解+t x dtdt =+一特征方程为,0)2(4422=+=++l l l ,对应一般形右端函数 t t f 2cos )( , 2 21=-==l l 而; 0)(, 1)( , 2 ,ºº=t B t A b ii 2=+b a .故特解形式为2sin 2cos ~t B t A x +=化简得2sin 82cos 8t A t B º-从而特解是 同类项系数,得. 81,0==B A , 2sin 81~t x =.2sin 81)(221t e t c c x t ++=-二因为右端函数)Re(2cos )(2it e t t f ==的结论,先求方程itex dt dx dt x d 22244 =++再取其实部,就是原方程的解.不是特征根,故对应的右端函数i e it 22=a ,~2it Ae x =,得方程并消去因子 it e 2 , 8 18iA iA -==或为. 2sin 812cos 88~2t t i e i x it +-=-=原方程的实特解为{}, 2sin 81~Re t x =. 2sin 81)(221t e t c c x t ++=-。