(完整版)中考复习:二次函数题型分类总结
- 格式:doc
- 大小:121.94 KB
- 文档页数:10
二次函数题型分类总结题型 1、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是.① y=x2- 4x+1;② y=2x 2;③ y=2x2+4x;④ y=- 3x;⑤ y=- 2x- 1;⑥ y=mx2+nx+p;⑦ y =(4,x) ;⑧ y=- 5x。
2+2t ,则 t = 4 秒时,该物体所经过的路2、在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=5t程为。
3、若函数 y=(m2+2m- 7)x 2+4x+5 是关于 x 的二次函数,则m的取值范围为。
4、若函数 y=(m- 2)x m-2 +5x+1 是关于x的二次函数,则m的值为。
5、已知函数 y=(m- 1) x m2 1 +5x- 3 是二次函数,求m的值。
题型 2、二次函数的对称轴、顶点、最值4ac-b 2(技法:如果解析式为顶点式y=a(x - h) 2+k,则最值为 k;如果解析式为一般式y=ax2+bx+c 则最值为4a1.抛物线 y=2x 2 +4x+m 2- m 经过坐标原点,则m的值为。
2.抛物 y=x 2+bx+c 线的顶点坐标为( 1,3),则 b=, c= .3.抛物线 y= x2+3x 的顶点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若抛物线 y= ax2- 6x 经过点 (2 ,0) ,则抛物线顶点到坐标原点的距离为( )A. 13B. 10C. 15D. 142+ bx +c( )5.若直线 y= ax+ b 不经过二、四象限,则抛物线y= axA. 开口向上,对称轴是y 轴B. 开口向下,对称轴是y 轴C. 开口向下,对称轴平行于y 轴D. 开口向上,对称轴平行于y 轴2 16.已知抛物线 y= x + (m-1)x -4 的顶点的横坐标是2,则 m的值是 _.7.抛物线 y=x 2+2x- 3 的对称轴是。
二次函数常考知识点总结整理一、函数定义与表达式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化二、函数图像的性质——抛物线(1)开口方向——二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;(2)抛物线是轴对称图形,对称轴为直线一般式:2bx a=-对称轴顶点式:x=h一般式:2424b ac b aa ⎛⎫-- ⎪⎝⎭,顶点式:(h、k)顶点坐标y=-2x 2两根式:x=221x x +(3)对称轴位置一次项系数b 和二次项系数a 共同决定对称轴的位置。
(“左同右异”)a 与b 同号(即ab >0)对称轴在y 轴左侧a 与b 异号(即ab <0)对称轴在y 轴右侧(4)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大;当a<0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a<-时),y 随着x 的增大而减少;当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a -=;当a<0时,函数有最大值,并且当x=ab2-,2max 44ac b y a -=;(5)常数项c常数项c 决定抛物线与y 轴交点。
九年级数学二次函数常考题型常考知识点总结:1、二次函数的看法:一般地,形如y ax2bx c 〔 a ,b,c 是常数,a 0〕的函数,叫做二次函数。
注:和一元二次方程近似,二次项系数 a 0 ,而b,c能够为零.二次函数的定义域是全体实数.2、二次函数 y ax2bx c的结构特点:⑴ 等号左侧是函数,右侧是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数,c是常数项3、 y a x h2k 的性质:a 的符号张口方向极点坐标对称轴性质a0向上h,k X=h x h 时, y 随x的增大而增大;x h 时, y 随x 的增大而减小;x h 时, y 有最小值 k .a0向下h,k X=h x h 时, y 随x的增大而减小;x h 时, y 随x 的增大而增大;x h 时, y 有最大值 k .4、二次函数 y ax2bx c的性质:〔 1〕当a0时,抛物线张口向上,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而减小;当xb时, y 随x的增大而增大;当x b时, y 有最小值4ac b2.2a2a4a〔 2〕当a0时,抛物线张口向下,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而增大;当xb时, y 随x的增大而减小;当x b时, y 有最大值4ac b2。
2a2a4a5、二次函数剖析式确实定:依照条件确定二次函数剖析式,平时利用待定系数法.用待定系数法求二次函数的剖析式必定依照题目的特点,选择合适的形式,才能使解题简略.一般来说,有以下几种情况:(1〕抛物线上三点的坐标,一般采纳一般式;(2〕抛物线极点或对称轴或最大〔小〕值,一般采纳极点式;(3〕抛物线与 x 轴的两个交点的横坐标,一般采纳两根式;6、二次函数、二次三项式和一元二次方程之间的内在联系〔 a 0 时〕:0抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点题型 :依照图像,判断 a 、 b 、c 的关系问题。
二次函数题型分类总结二次函数是高中数学中一个重要的内容,也是学生们经常接触到的数学题型之一。
在学习二次函数的过程中,我们会遇到各种不同类型的题目,这些题目涵盖了二次函数的基本概念、性质、图像、方程、不等式等多个方面。
为了帮助大家更好地理解和掌握二次函数的相关知识,本文将对二次函数题型进行分类总结,以便学生们能够更系统地学习和应用这一知识点。
一、基本概念题型。
1. 求二次函数的顶点、对称轴、开口方向等基本性质;2. 确定二次函数的增减性、最值等相关问题;3. 根据二次函数的图像特点进行分析和判断。
二、方程与不等式题型。
1. 解二次函数的方程,包括一元二次方程和二元二次方程;2. 求二次函数不等式的解集,包括一元二次不等式和二元二次不等式。
三、图像与性质题型。
1. 根据给定的二次函数,绘制其图像;2. 根据图像,确定二次函数的各种性质,如开口方向、顶点坐标、对称轴等;3. 利用二次函数的图像进行相关问题的分析和解决。
四、应用题型。
1. 利用二次函数解决实际问题,如抛物线运动、优化问题等;2. 利用二次函数的性质解决相关的数学问题,如几何问题、物理问题等。
五、综合题型。
1. 将多个知识点进行综合运用,解决复杂的二次函数问题;2. 考察学生对二次函数整体理解和运用能力的题目。
通过以上分类总结,我们可以清晰地了解到二次函数题型的多样性和复杂性。
在学习和解答二次函数题目时,我们需要全面掌握二次函数的基本概念和性质,灵活运用相关的解题方法,善于将不同的知识点进行整合和应用。
同时,我们也要注重实际问题的应用,将抽象的数学知识与实际生活相结合,更好地理解和掌握二次函数的相关内容。
希望通过本文的总结,能够帮助大家更好地理解和掌握二次函数的相关知识,提高解答二次函数题目的能力和水平。
同时,也希望大家能够在学习数学的过程中保持耐心和积极性,不断提升自己的数学素养,为将来的学习和发展打下坚实的数学基础。
热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
ABA B 3(m - 1)±2 中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式: AB=(y - y ) +2(x - x ) 22、中点坐标:线段 AB 的中点C 的坐标为:⎛ x A + x BA + yB ⎫ , ⎪⎝22 ⎭直线 y = k 1 x + b 1 ( k 1 ≠ 0 )与 y = k 2 x + b 2 ( k 2 ≠ 0 )的位置关系:(1)两直线平行⇔ k 1 = k 2 且 b 1 ≠ b 2 (2)两直线相交⇔ k 1 ≠ k 2(3)两直线重合⇔ k 1 = k 2 且 b 1 = b 23、一元二次方程有整数根问题,解题步骤如下:① 用∆ 和参数的其他要求确定参数的取值范围;(4) 两直线垂直⇔ k 1k 2 = -1② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于 x 的一元二次方程 x 2-2(m + 1)x + m 2=0 有两个整数根, m <5 且 m 为整数,求 m 的值。
4、二次函数与 x 轴的交点为整数点问题。
(方法同上)例:若抛物线 y = mx 2 + (3m +1)x + 3 与 x 轴交于两个不同的整数点,且 m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于 x 的方程 mx 2 - 3(m -1)x + 2m - 3 = 0 ( m 为实数),求证:无论 m 为何值,方程总有一个固定的根。
解:当 m = 0 时, x = 1;当 m ≠ 0 时, ∆ = (m - 3) ≥ 0 , x =2m综上所述:无论 m 为何值,方程总有一个固定的根是 1。
, x 1= 2 - 3、 x m2= 1 ;6、函数过固定点问题,举例如下:已知抛物线 y = x 2 - mx + m - 2 ( m 是常数),求证:不论 m 为何值,该抛物线总经过一个y),⎩固定的点,并求出固定点的坐标。
中考数学二次函数题型总结一网打尽
二次函数在历年中考中均为压轴题,区分度较大,通常为三小问,每小问4分,共计11-12分。
第一问较为基础,通常为求,点坐标或函数解析式(二次函数、一次函数),以及判断三角形形状(通常为判断直角三角形)和求线段长度,求解比较容易。
第二问为动,点双最值问题,难度中上。
通常为“面积最值+线段和差最值”或“线段和差积最值+线段和差最值”组合形式,即先求出使得某三角或四边形面积最大时的动点位置,在此基础上再求相关线段和差最值,如两线段差值最大或线段和最小(如某三角形或四边形周长最小等),计算量偏大,易出错。
常要利用第一问中的条件或结论进行求解。
第三问多为动态背景下的存在性问题,常为两类。
一类是动点,一类是动线(线段运动或是抛物线运动),在此背景下讨论特殊几何图形(等腰三角形、等边三角形、直角三角形、平行四边形、矩形、菱形等)的存在性问题,综合性强,难度大。
历来以等腰三角形考察居多。
666。
初三数学二次函数分类题型及解析一.解答题(共10小题)1.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.3.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.4.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.5.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.6.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?7.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?8.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?9.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.10.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.2016年12月09日天津优胜教育二次函数组卷参考答案与试题解析一.解答题(共10小题)1.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), 解得:, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).2.(2016•菏泽)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y=﹣x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【解答】解:(1)由题意解得,∴抛物线解析式为y=x 2﹣x+2.(2)∵y=x 2﹣x+2=(x ﹣1)2+.∴顶点坐标(1,),∵直线BC 为y=﹣x+4,∴对称轴与BC 的交点H (1,3),∴S △BDC =S △BDH +S △DHC =•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.3.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.4.(2016•大连)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d 最大===,∴D 点的坐标为(,). 5.(2016•黔南州)已知二次函数y=x 2+bx+c 的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.【解答】解:(1)∵把C (0,﹣6)代入抛物线的解析式得:C=﹣6,把A (﹣2,0)代入y=x 2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x 2﹣x ﹣6.∴y=(x ﹣)2﹣.∴抛物线的顶点坐标D (,﹣).(2)二次函数的图形沿x 轴向左平移个单位长度得:y=(x+2)2﹣. 令y=0得:(x+2)2﹣=0,解得:x 1=,x 2=﹣.∵a >0,∴当y <0时,x 的取值范围是﹣<x <. 6.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.7.(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.8.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=﹣10x 2+400x ﹣3000,令W=840,则﹣10x 2+400x ﹣3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.9.(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.10.(2016•湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。
二次函数的解析式二次函数的解析式有三种形式:2 bx c a b c a y ax 是常数,〔1〕一般一般式:( , , 0)2〔2〕两根当抛物线y ax bx c 与x轴有交点时,即对应二次好方程 2 bx c ax x1 x2有实根和存在时,依照二次三项式的分解因式2 bx c a x x x x 2ax y ax bx c( 1)( 2 ),二次函数可转变为两根式y a( x x1 x x2)( ) 。
若是没有交点,那么不能够这样表示。
a 的绝对值越大,抛物线的张口越小。
2 k a h k a y a x h是常数,〔3〕极点式:( ) ( , , 0)知识点八、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕2b 4ac bx y,即当时,。
最值2a 4ab 若是自变量的取值范围是x1 x x2 ,那么,第一要看可否在自变量取值范2a2b 4ac b围x1 x x2 内,假设在此范围内,那么当 x= 时,;假设不在此范围y最值2a 4a内,那么需要考虑函数在x1 x x2 范围内的增减性,若是在此范围内, y随x的增大而2 2增大,那么当x x2 时,y最大ax bx c,当x x1时,y ax bx1 c;如最小2 2 12果在此范围内, y随x的增大而减小,那么当x x1时,y ax bx1 c,当最大x x212时,y ax bx2 c。
最小2知识点九、二次函数的性质1 、二次函数的性质二次函数函数 2 bx c a b c ay ax ( , , 是常数,0)a>0 a<0yy图像0 x 0 x〔1〕抛物线张口向上,并向上无量延伸;〔1〕抛物线张口向下,并向下无量延伸;b b〔2〕对称轴是 x= ,极点坐标是〔2a 2ab〔2〕对称轴是 x= ,极点坐标是〔2a24ac b ,〕;4a2 b 4ac b,〕;2a 4a性b〔3〕在对称轴的左侧,即当 x< 时,y随2ab〔3〕在对称轴的左侧,即当 x< 时,y2a x的增大而减小;在对称轴的右侧,即当 x随x的增大而增大;在对称轴的右侧,质b b> 时,y随x的增大而增大,简记左即当x> 时,y随x的增大而减小,2a 2a减右增;简记左增右减;b 〔4〕抛物线有最低点,当 x= 时,y有最2ab 〔4〕抛物线有最高点,当 x= 时,y有2a小值,y最小值4ac4ab 2最大值,y最大值4ac4ab 22 bx c a b c a2、二次函数y ax ( , , 是常数, 0) 中,a、b、c 的含义:a a表示张口方向: >0 时,抛物线张口向上a <0 时,抛物线张口向下b b 与对称轴有关:对称轴为 x=2ac c表示抛物线与 y轴的交点坐标:〔 0,〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与 x轴的交点坐标。
中考二次函数题型总结
在中考数学中,二次函数是一个重要的知识点,通常会被涉及到小题和大题中。
以下是一些常见的中考二次函数题型总结:
1. 小题类
小题类通常包括以下题型:二次函数的定义域、值域、对称轴、顶点、最值等。
这些题型通常需要根据题意进行图像分析,然后利用函数性质进行求解。
2. 大题类
大题类通常包括以下题型:二次函数的图像和性质、二次函数的最值、二次函数与一元二次方程的联系、二次函数的应用等。
这些题型通常需要结合图像、性质和方程等方面进行求解。
3. 综合类
综合类通常包括以下题型:二次函数与一次函数的关系、二次函数与三角形的关系、二次函数的应用等。
这些题型通常需要结合函数、几何和方程等方面进行求解。
在考试中,二次函数的题型种类虽然多样,但都可以通过对函数图像、性质和方程等方面的掌握来进行求解。
因此,在中考数学中,对于二次函数的掌握是非常重要的。
【二次函数的定义】(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是 .①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x;⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。
2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4秒时,该物体所经过的路程为。
3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。
4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。
6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。
【二次函数的对称轴、顶点、最值】(技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。
2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= .3.抛物线y=x2+3x的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )B.5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴6.已知抛物线y=x2+(m-1)x-14的顶点的横坐标是2,则m的值是_ .7.抛物线y=x2+2x-3的对称轴是。
8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。
9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.11.已知二次函数y=mx2+(m-1)x+m-1有最小值为0,则m= ______ 。
12.已知二次函数y=x2-4x+m-3的最小值为3,则m=。
【函数y=ax2+bx+c的图象和性质】1.抛物线y=x2+4x+9的对称轴是。
2.抛物线y=2x2-12x+25的开口方向是,顶点坐标是。
3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式。
4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12x2-2x+1 ;(2)y=-3x2+8x-2;(3)y=-14x2+x-45.把抛物线y=x2+bx+c的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x2-3x+5,试求b、c的值。
6.把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
7.某商场以每台2500元进口一批彩电。
如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?【函数y=a(x-h)2的图象与性质】1.填表:(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。
(2)分析分别通过怎样的平移。
可以由抛物线y=2x2得到抛物线y=2(x-4)2和y=2(x+1)2?3.试写出抛物线y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移23个单位;(3)先左移1个单位,再右移4个单位。
4.试说明函数y=12(x-3)2的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。
5.二次函数y=a(x-h)2的图象如图:已知a=12,OA=OC,试求该抛物线的解析式。
【二次函数的增减性】1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而;当x<1时,y随x的增大而;当x=1时,函数有最值是。
2.已知函数y=4x2-mx+5,当x> -2时,y随x的增大而增大;当x< -2时,y随x的增大而减少;则x=1时,y的值为。
3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是 .4.已知二次函数y=-12x2+3x+52的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且3<x1<x2<x3,则y 1,y2,y3的大小关系为 .【二次函数图象的平移】技法:只要两个函数的a 相同,就可以通过平移重合。
将二次函数一般式化为顶点式y=a(x -h)2+k,平移规律:左加右减,对x;上加下减,直接加减6.抛物线y= -32x2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为。
7.抛物线y= 2x2,,可以得到y=2(x+4}2-3。
8.将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为。
9.如果将抛物线y=2x2-1的图象向右平移3个单位,所得到的抛物线的关系式为。
10.将抛物线y=ax2+bx+c向上平移1个单位,再向右平移1个单位,得到y=2x2-4x-1则a =,b=,c= .11.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为 _.【函数图象与坐标轴的交点】11.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
12.直线y=7x+1与抛物线y=x2+3x+5的图象有个交点。
【函数的的对称性】13.抛物线y=2x2-4x关于y轴对称的抛物线的关系式为。
14.抛物线y=ax2+bx+c关于x轴对称的抛物线为y=2x2-4x+3,则a= b= c=【函数的图象特征与a、b、c的关系】1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为()A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a>0,b<0,c<02.已知抛物线y=ax2+bx+c的图象2如图所示,则下列结论正确的是()A.a+b+c> 0 B.b> -2aC .a-b+c> 0D .c< 03.抛物线y=ax 2+bx+c 中,b =4a ,它的图象如图3,有以下结论: ①c>0; ②a+b+c> 0③a-b+c> 0 ④b 2-4ac<0 ⑤abc< 0 ;其中正确的为( )A .①②B .①④C .①②③D .①③⑤4.当b<0是一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系内的图象可能是( )5.已知二次函数y =ax 2+bx +c ,如果a>b>c ,且a +b +c =0,则它的图象可能是图所示的( )6.二次函数y =ax2+bx+c 的图象如图5所示,那么abc ,b 2-4ac , 2a +b ,a +b +c 四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个7.在同一坐标系中,函数y= ax 2+c 与y= cx(a<c)图象可能是图所示的( )A B C D8.反比例函数y= kx 的图象在一、三象限,则二次函数y =kx 2-k 2x-1c 的图象大致为图中的( )9.反比例函数y= kx 中,当x> 0时,y 随x 的增大而增大,则二次函数y =kx 2+2kx 的图象大致为图中的( )1xyO 1x By O 1xyO 1xyOA B CD10.已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a,b同号;②当x=1和x=3时,函数值相同;③4a+b=0; ④当y=-2时,x的值只能取0;其中正确的个数是()A.1 B.2 C.3 D.411.已知二次函数y=ax2+bx+c经过一、三、四象限(不经过原点和第二象限)则直线y=ax+bc不经过()A.第一象限B.第二象限C.第三象限 D.第四象限【二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)】1.如果二次函数y=x2+4x+c图象与x轴没有交点,其中c为整数,则c=(写一个即可)2.二次函数y=x2-2x-3图象与x轴交点之间的距离为3.抛物线y=-3x2+2x-1的图象与x轴交点的个数是( )A.没有交点B.只有一个交点C.有两个交点D.有三个交点4.如图所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.15.已知抛物线y=5x2+(m-1)x+m与x轴的两个交点在y轴同侧,它们的距离平方等于为49,则m的值为( )25A.-2B.12C.24D.486.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m 的取值范围是7.已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B,且它的顶点为P,求△ABP的面积。
【函数解析式的求法】一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解; 1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
2.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC=5,求该二次函数的解析式。
二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x-h)2+k求解。
3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。
三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x-x1)(x-x2)。
5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
6.已知x=1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式。
7.抛物线y=2x 2+bx+c 与x 轴交于(2,0)、(-3,0),则该二次函数的解析式 。
8.若抛物线y=ax 2+bx+c 的顶点坐标为(1,3),且与y=2x 2的开口大小相同,方向相反,则该二次函数的解析式 。
9.抛物线y=2x 2+bx+c 与x 轴交于(-1,0)、(3,0),则b = ,c = . 10.若抛物线与x 轴交于(2,0)、(3,0),与y 轴交于(0,-4),则该二次函数的解析式 。