动态博弈经典模型
- 格式:ppt
- 大小:857.50 KB
- 文档页数:28
博弈论教学/双寡头垄断的斯塔克伯格模型出自MyKnowledgeBase< 博弈论教学Bread crumbs:教学工作 > 博弈论教学 > 博弈论教学/双寡头垄断的斯塔克伯格模型目录■1 一般模型■1.1 背景■1.2 博弈模型■1.3 后退归纳法分析■2 不变单位成本和线性逆需求函数的双寡头垄断斯塔克伯格模型■2.1 参数分析■2.2 后退归纳法求解最优反应函数■3 子博弈完美均衡的性质■4 模型推广■5 延伸阅读1 一般模型1.1 背景Stackelberg(1934)提出了一个双寡头垄断的动态博弈模型,其中领导者先行动,然后追随者行动。
1.个厂商生产同样的商品;厂商i的生产成本为;当总产量为时,产品出售价格为2.每个厂商的策略为产量;3.两个厂商相继行动:一个厂商选择它的产量,然后另一厂商在知道了第一个厂商已选择的产量后选择自己的产量。
1.2 博弈模型1.局中人:两个厂商2.终端历史:厂商所有产量序列的集合(非负数)3.局中人函数:,并且对所有的,有4.偏好:厂商关于终端历史的盈利是它的利润1.3 后退归纳法分析1.厂商1(博弈起点)的策略是一个产量;厂商2的策略是将厂商2的产量与厂商1的每个可能产量相关联的一个函数。
的任何产量,求厂商的产量为,厂商利润最大化的产量为的子博弈:在给定厂商2的策略下,求厂商1极大化自己利润的产量。
当厂商择产量,厂商2选择产量,则总产量为,价格为,厂的利润为。
利润达到最大值时的厂商1的产量记为给定了厂商1的均衡选择,厂商2的选择的产量为,那么子博弈完美均衡点为成本函数:线性逆需求函数:;, (,)的每一个产量,厂商有唯一的最优反应,为:,如果;,如果厂商2的策略(产量)是,厂商1的利润是:,厂商最大化时的产量,求导数得的最优产量为的利润为,厂商2的利润为注意区别古诺模型的同时行动:产量都为,利润都为二次成本函数的斯塔克伯格双寡头垄断博弈:,成立,以及对于所有的有,且对于有,求斯塔克伯格双寡头垄断博弈的子博弈完美均衡。
3.4 几个经典动态博弈模型453.4.1 寡占的斯塔克博格模型46动态的寡头产量竞争博弈厂商1先选择,厂商2后选择。
21q q Q +=121111112)](8[)(q q q q q c Q P q u -+-=-=221222222)](8[)(q q q q q c Q P q u -+-=-=策略空间:[0,Q max ]中所有实数。
Q max 为不至于使价格降到亏本的最大限度的产量。
Q Q P P -==8)(价格函数:边际生产成本:无固定成本得益函数:221==c c 2121116q q q q u --=2221226q q q q u --=47两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
1 、第二阶段厂商2的选择目标:得益最大化。
求使自己得益最大化下的产量值,即最大化时的一阶条件:得益函数:2221226q q q q u --=用逆推归纳法进行分析:02602122=--⇒=∂∂q q q u 112213)6(21q q q -=-=求出厂商2对厂商1产量的反应函数:48两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
2 、第一阶段厂商1的选择。
用逆推归纳法进行分析:12213q q -=厂商1可直接求出使自己得益最大化时的产量:厂商1知道2的决策思路:直接将上式代入厂商1的得益函数,得到:2112111121*211*211213)213(66),(q q q q q q q q q q q q u -=---=--=3030*1*111=⇒=-⇒=∂∂q q q u厂商1的最佳产量是生产3单位。
将之代入厂商2的反应函数,得到厂商2的最佳产量5.15.13*2=-=q 此时市场价格为3.5,双方的得益别为4.5和2.25单位。
3*1=q 12213q q -=用逆推归纳法分析得出,该动态博弈的唯一的子博弈完美纳什均衡:厂商1在第一阶段生产3单位产量,厂商2第二阶段生产1.5单位产量。
十大经典博弈论模型博弈论是一门研究决策者之间互动的学科,其应用范围广泛,涉及到经济、政治、生物学等领域。
在博弈论中,经典博弈论模型是基础和核心,以下是介绍十大经典博弈论模型:1. 囚徒困境博弈模型囚徒困境博弈模型是博弈论中最为著名的模型之一,也是最为典型的非合作博弈模型。
该模型主要讲述的是两个囚犯被抓后面临的选择问题,如果两个人都招供,那么都将受到较重的惩罚;如果两个人都不招供,那么都将受到轻微的惩罚;如果一个人招供而另一个人不招供,那么招供的人将受到宽大处理,而另一个人将受到较重的惩罚。
2. 零和博弈模型零和博弈模型是博弈论中最为简单的模型之一,其特点是参与者之间的利益完全相反,即一方获得利益就意味着另一方的利益受到损失。
在这种情况下,参与者之间的互动往往是竞争和对抗的。
3. 博弈树模型博弈树模型是一种用于描述博弈过程的图形模型,它可以清晰地展示出参与者在不同阶段的选择和决策,以及每个选择所带来的收益和风险。
4. 纳什均衡模型纳什均衡模型是博弈论中最为重要的概念之一,它指的是一个博弈中所有参与者都采取了最优策略的状态。
换句话说,如果所有参与者都遵循纳什均衡,那么任何一个人单方面改变策略都将无法获得更多的利益。
5. 最小最大化模型最小最大化模型是一种解决零和博弈问题的方法,其思想是在所有可能的情况中,选择让对手收益最小的情况,从而实现自己的最大化收益。
6. 帕累托最优解模型帕累托最优解模型是一种解决多人博弈问题的方法,其核心思想是通过合作和协商,使得所有参与者都能获得最大的收益,而不是只有某个人获得了最大的收益。
7. 博弈矩阵模型博弈矩阵模型是一种常用的博弈论分析工具,它可以清晰地展示出参与者在不同策略下的收益和风险,从而帮助参与者做出最优决策。
8. 拍卖模型拍卖模型是博弈论中的一个重要应用领域,其目的是通过竞价的方式,让参与者以最低的价格获得所需的商品或服务。
9. 逆向选择模型逆向选择模型是一种解决信息不对称问题的方法,其核心思想是通过知道对方的信息,来预测对方的行为和决策,从而做出最优策略。