第五章不确定性推理
- 格式:ppt
- 大小:275.50 KB
- 文档页数:41
不确定性推理概述4.1.1 不确定推理的概念所谓推理就是从已知事实出发,运⽤相关知识(或规则)逐步推出结论或证明某个假设成⽴或不成⽴的思维过程。
其中已知事实和知识(规则)是构成推理的两个基本要素。
已知事实是推理过程的出发点,把它称为证据。
4.1.2 不确定性推理⽅法的分类可信度⽅法、主观Bayes⽅法、证据理论都是在概率论的基础上发展起来的不确定性推理⽅法。
4.1.3 不确定性推理知识库是⼈⼯智能的核⼼,⽽知识库中的知识既有规律性的⼀般原理,⼜有⼤量的不完全的专家知识,即知识带有模糊性、随机性、不可靠或不知道不确定因素。
世界上⼏乎没有什么事情是完全确定的。
不确定性推理即是通过某种推理得到问题的精确判断。
(1)不确定性问题的代数模型⼀个问题的代数模型由论域、运算和公理组成。
建⽴不确定性问题模型必须说明不确定知识的表⽰、计算、与语义解释。
不确定性的表⽰问题:指⽤什么⽅法描述不确定性,通常有数值和⾮数值的语义表⽰⽅法。
数值表⽰便于计算,⽐较,再考虑到定性的⾮数值描述才能较好的解决不确定性问题。
例如对规则A->B(即A真能推导B真)和命题(或称证据、事实)A,分别⽤f(B,A)来表⽰不确定性度量。
推理计算问题:指不确定性的传播和更新,也即获得新的信息的过程。
包括:①已知C(A),A->B,f(B,A),如何计算C(B)②证据A的原度量值为C1(A),⼜得C2(A),如何确定C(A)③如何由C(A1)和C(A2)来计算C(A1∧A2),C(A1∨A2)等。
⼀般初始命题/规则的不确定性度量常常由有关领域的专家主观确定。
语义问题:是指上述表⽰和计算的含义是什么?即对它们进⾏解释,概率⽅法可以较好地回答这个问题,例如f(B,A)可理解为前提A为真时对结论B为真的⼀种影响程度,C(A)可理解为A为真的程度。
特别关⼼的是f(B,A)的值是:①A真则B真,这时f(B,A)=?②A真则B假,这时f(B,A)=?③A对B没有影响时,这时f(B,A)=?对C(A)关⼼的值是①A真时,C(A)=?②A假时,C(A)=?③对A⼀⽆所知时,C(A)=?(2)不确定推理⽅法的分类不确定推理⽅法在⼈⼯智能系统中通常是不够严谨的,但尚能解决某些实际问题,符合⼈类专家的直觉,在概率上也可给出某种解释。
人工智能领域的贝叶斯最小风险模型在不确定性推理中的应用研究第一章绪论人工智能领域一直以来都是研究者们关注的热点话题。
随着科技的发展和应用需求的增加,人工智能技术在各个领域中的应用也变得越来越广泛。
在人工智能的研究中,不确定性一直是一个重要的问题。
不确定性推理是指在面对不完备或不确定的信息时,通过推理进行决策或预测的过程。
贝叶斯最小风险模型是一种能够有效应对不确定性推理问题的方法,本文将对其在人工智能领域中的应用进行研究。
第二章贝叶斯最小风险模型的理论基础2.1 贝叶斯推理贝叶斯最小风险模型基于贝叶斯推理的思想,通过使用贝叶斯定理来更新先验概率,得到后验概率。
这种方法能够在面对不确定性的情况下,通过不断的观测和学习来逐渐减少不确定性,提高推理的准确性。
2.2 最小风险模型最小风险模型是基于决策论的思想,通过定义风险函数来评估决策的好坏,选取风险最小的决策作为最终结果。
在不确定性推理中,最小风险模型可以通过评估不同的决策结果对应的风险来选择最优的推理策略。
第三章贝叶斯最小风险模型在机器学习中的应用3.1 贝叶斯最小风险分类器贝叶斯最小风险分类器是基于贝叶斯最小风险模型的一种分类器。
在分类任务中,贝叶斯最小风险分类器能够通过计算不同类别对应的后验概率和损失函数,选取使总体风险最小的类别作为最终结果。
3.2 贝叶斯最小风险回归贝叶斯最小风险回归是一种将贝叶斯最小风险模型应用于回归任务的方法。
在回归任务中,贝叶斯最小风险回归能够通过计算不同预测结果对应的后验概率和风险函数,选取使总体风险最小的预测结果作为最终输出。
第四章贝叶斯最小风险模型在自然语言处理中的应用4.1 自然语言处理中的不确定性在自然语言处理任务中,存在各种不确定性,如语言歧义、词语消歧义等。
这些不确定性给自然语言处理任务的准确性和可靠性带来了挑战。
4.2 贝叶斯最小风险模型在信息检索中的应用信息检索是一个重要的自然语言处理任务,传统的检索方法往往只考虑了检索文档与查询之间的匹配程度,忽略了查询与搜索结果的不确定性。
不确定性推理概念6.1不确定性推理概念的基本概念不确定性是智能问题的一个本质特征,研究不确定性推理概念是人工智能的一项基本内容。
为加深对不确定性推理概念的理解和认识,在讨论各种不确定性推理概念方法之前,首先先对不确定性推理概念的含义,不确定性推理概念的基本问题,以及不确定性推理概念的基本类型进行简单讨论。
6.1.1不确定性推理概念的含义不确定性推理概念是指那种建立在不确定性知识和证据的基础上的推理。
例如,不完备、不精确知识的推理,模糊知识的推理等。
不确定性推理概念实际上是一种从不确定的初始证据出发,通过运用不确定性知识,最终推出具有一定程度的不确定性但却又是合理或基本合理的结论的思维过程。
采用不确定性推理概念是客观问题的需求,其原因包括以下几个主要方面。
(1)所需知识不完备、不精确。
所谓知识的不完备是指在解决某一问题时,不具备解决该问题所需要的全部知识。
例如,医生在看病时,一般是从病人的部分症状开始诊断的。
所谓知识的不精确是指既不能完全确定知识为真,又不能完全确定知识为假。
例如,专家系统中的知识多为专家经验,而专家经验又多为不精确知识。
(2)所需知识描述模糊。
所谓知识描述模糊是指知识的边界不明确,它往往是由模糊概念所引起的。
例如,人们平常所说的“很好”、“好”、“比较好”、“不很好”、“不好”、“很不好”等都是模糊概念。
那么,当用这类概念来描述知识时,所得到的知识当然也是模糊的。
例如,“如果李清这个人比较好,那么我就把他当成好朋友”所描述的就是一条模糊知识。
(3)多种原因导致同一结论。
所谓多种原因导致同一结论是指知识的前提条件不同而结论相同。
在现实世界中,可由多种不同原因导出同一结论的情况有很多。
例如,引起人体低烧的原因至少有几十种,如果每种原因都作为一条知识,那就可以形成几十条前提条件不同而结论相同的知识。
当然,在不确定性推理概念中,这些知识的静态强度可能是不同的。
(4)解决方案不唯一。
所谓解决方案不唯一是指同一个问题可能存在多种不同的解决方案。
人工智能》教学大纲2.掌握Prolog语言的基本语法和常用操作;3.能够编写简单的Prolog程序,并能够运行和调试;4.了解Prolog语言在人工智能中的应用。
第三章搜索算法基本内容和要求:1.掌握深度优先搜索、广度优先搜索、启发式搜索等搜索算法的基本思想和实现方法;2.能够应用搜索算法解决一些典型问题;3.了解搜索算法在人工智能中的应用。
第四章知识表示与推理基本内容和要求:1.掌握命题逻辑、一阶逻辑等知识表示方法;2.了解基于规则、框架、语义网络等知识表示方法;3.掌握归结方法、前向推理、后向推理等推理方法;4.能够应用知识表示与推理解决一些典型问题。
第五章不确定性推理基本内容和要求:1.了解不确定性推理的基本概念和方法;2.掌握贝叶斯定理及其应用;3.掌握条件概率、独立性、条件独立性等概念;4.能够应用不确定性推理解决一些典型问题,如垃圾邮件过滤等。
五、教材和参考书目1)主教材:Stuart Russell。
Peter Norvig。
Artificial Intelligence: A Modern Approach。
3rd n。
Prentice Hall。
2009.2)参考书目:___。
机器研究。
___。
2016.___。
统计研究方法。
___。
2012.___。
___。
2017.六、教学进度安排第一周人工智能概述第二周逻辑程序设计语言Prolog第三周搜索算法第四周知识表示与推理第五周不确定性推理第六周期中考试第七周至第十周课程实验第十一周至第十三周课程实验第十四周课程总结与复第十五周期末考试一实验(实训)内容产生式系统实验学时分配4目的与要求:熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法。
实验(实训)内容:主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。
二实验(实训)内容搜索策略实验学时分配4目的与要求:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。