一阶微分方程在经济学中的4个应用_王伟珠
- 格式:pdf
- 大小:116.44 KB
- 文档页数:2
1.某商品的需求函数与供给函数分别为d Q a bP =-,s Q c dP =-+(其中,,,a b c d 均为正常数)。
假设商品价格P 是时间t 的函数,已知初始价格0(0)P P =,且在任一时刻t ,价格()P t 的变化率与这一时刻的超额需求d s Q Q -成正比(比例常数为0k >)。
⑴求供需相等时的价格e P (均衡价格);⑵求价格()P t 的表达式;⑶分析价格()P t 随时间的变化情况。
【解】⑴供需相等时的价格,即为满足d s Q Q =的P 值,即由已知得a bP c dP -=-+,解出P 得:e a c P b d+=+。
⑵求价格()P t 的表达式; 由题设得关系式()d s dP k Q Q dt =-,即为[()()]dP k a bP c dP dt=---+, 整理得一阶线性微分方程()()dP k b d P k a c dt++=+, 其齐次部份()0dP k b d P dt ++=的解为1ln ()P k b d t C =-++,整理得()k b d t P Ce -+=, 即设方程()dP b d P a c dt++=+的解为()()k b d t P C t e -+=, 将()()k b d t P C t e -+=代入方程()()dP k b d P k a c dt ++=+, 得()()()'()()()()()()k b d t k b d t k b d t C t e k b d C t e k b d C t e k a c -+-+-+-+++=+,即为()'()()k b d t C t k a c e+=+,积分得()()k b d t a c C t e C b d ++=++, 即得通解()()[]k b d t k b d ta c P e C eb d +-++=++()k b d t ac Ce b d-++=++, 由于初始价格0(0)P P =, 即有00a c P Ce b d +=++,即0a c C P b d+=-+0e P P =-, 即知价格()P t 的表达式为()0()()k b d t e e P t P P P e -+=+-。
微分方程在经济学模型中的应用在经济学领域中,微分方程是一种重要的数学工具,被广泛应用于各种经济学模型中。
微分方程的使用可以帮助经济学家对经济系统的变化进行建模和预测,从而帮助他们做出合理的决策。
本文将探讨微分方程在经济学模型中的应用,以及它对经济学研究的影响。
一、微分方程在宏观经济模型中的应用宏观经济模型用于描述国家或地区整体经济的运行状况和变化趋势。
这些模型通常包括多个变量,如国内生产总值(GDP)、通货膨胀率、失业率等。
微分方程提供了一种描述这些变量之间关系的数学方法。
以经济增长模型为例,我们可以用一个微分方程来描述GDP的增长速度。
假设GDP的增长率与人口增长率、资本投资率以及技术进步率相关,我们可以得到如下微分方程:\[ \frac{dGDP}{dt}=sGDP-kN \]其中,\( s \) 表示资本投资率,\( k \) 表示技术进步率,\( N \) 表示人口增长率。
通过解这个微分方程,我们可以得到GDP随时间的变化趋势,帮助决策者制定经济政策。
除了经济增长模型,微分方程还可以应用于宏观经济中的其他领域,如通货膨胀模型、货币政策模型等。
这些模型的建立离不开微分方程的支持,使经济学家能够更好地理解和解释经济现象。
二、微分方程在微观经济模型中的应用微观经济模型用于研究个体经济主体的决策与行为。
这些模型通常包括供给与需求、市场均衡以及消费者行为等变量。
微分方程在微观经济模型中同样发挥着重要的作用。
以供给与需求模型为例,我们可以通过微分方程描述市场价格随着时间的变化。
假设市场价格的变化率与供给量和需求量之间的差异有关,我们可以得到如下微分方程:\[ \frac{dp}{dt}=a(Q_s-Q_d) \]其中,\( p \)表示价格,\( Q_s \)表示供给量,\( Q_d \)表示需求量,\( a \)表示价格调整的速度。
通过解这个微分方程,我们可以推导出价格的变化轨迹,帮助市场参与者做出决策。
第四节 微分方程在经济学中的应用微分方程在经济学中有着广泛的应用,有关经济量的变化、变化率问题常转化为微分方程的定解问题.一般应先根据某个经济法则或某种经济假说建立一个数学模型,即以所研究的经济量为未知函数,时间t 为自变量的微分方程模型,然后求解微分方程,通过求得的解来解释相应的经济量的意义或规律,最后作出预测或决策,下面介绍微分方程在经济学中的几个简单应用.一、 供需均衡的价格调整模型在完全竞争的市场条件下,商品的价格由市场的供求关系决定,或者说,某商品的供给量S 及需求量D 与该商品的价格有关,为简单起见,假设供给函数与需求函数分别为S =a 1+b 1P , D =a -bP ,其中a 1,b 1,a ,b 均为常数,且b 1>0,b >0;P 为实际价格.供需均衡的静态模型为⎪⎩⎪⎨⎧=+=-=).()(,,11P S P D P b a S bP a D显然,静态模型的均衡价格为P e =11b b a a +-. 对产量不能轻易扩大,其生产周期相对较长的情况下的商品,瓦尔拉(Walras )假设:超额需求[D (P )-S (P )]为正时,未被满足的买方愿出高价,供不应求的卖方将提价,因而价格上涨;反之,价格下跌,因此,t 时刻价格的变化率与超额需求D -S 成正比,即 tP d d =k (D -S ),于是瓦尔拉假设下的动态模型为 ⎪⎪⎩⎪⎪⎨⎧-=+=-=)].()([),(),(11P S P D k tP t P b a S t bP a D d d 整理上述模型得tP d d =λ(P e -P ), 其中λ=k (b +b 1)>0,这个方程的通解为P (t )=P e +C e -λt .假设初始价格为P (0)=P 0,代入上式得,C =P 0-P e ,于是动态价格调整模型的解为P (t )=P e +(P 0-P e )·e -λt ,由于λ>0,故lim ()t P t →+∞=P e .这表明,随着时间的不断延续,实际价格P (t )将逐渐趋于均衡价格P e .二、 索洛(Solow )新古典经济增长模型设Y (t )表示时刻t 的国民收入,K (t )表示时刻t 的资本存量,L (t )表示时刻t 的劳动力,索洛曾提出如下的经济增长模型:⎪⎪⎩⎪⎪⎨⎧====.),(),1,(),(0t L L t sY t K r Lf L K f Y λe d d 其中s 为储蓄率(s >0),λ为劳动力增长率(λ>0),L 0表示初始劳动力(L 0>0),r =LK 称为资本劳力比,表示单位劳动力平均占有的资本数量.将K =rL 两边对t 求导,并利用t L d d =λL ,有rL tr L t L r t r L t K λ+=+=d d d d d d d d . 又由模型中的方程可得tK d d =sLf (r ,1), 于是有tr d d +λr =sf (r ,1). (10-4-1) 取生产函数为柯布-道格拉斯(Cobb -Douglas)函数,即f (K ,L )=A 0K αL 1-α=A 0Lr α,其中A 0>0,0<α<1均为常数.易知f (r ,1)=A 0r α,将其代入(10-4-1)式中得tr d d +λr =sA 0r α. (10-4-2) 方程两边同除以r α,便有r -αt r d d +λr 1-α=sA 0. 令r 1-α=z ,则tz d d =(1-α)λ-α t r d d ,上述方程可变为 tz d d +(1-α)λz =sA 0(1-α). 这是关于z 的一阶非齐次线性方程,其通解为 z =C e -λ(1-α)t +0sA λ(C 为任意常数). 以z =r 1-α代入后整理得 r (t )=ααλλ---⎥⎦⎤⎢⎣⎡+110)1(sA C t e. 当t =0时,若r (0)=r 0,则有C =r 01-α-λs A 0. 于是有r (t )= ααλαλλ----⎥⎦⎤⎢⎣⎡+110)1(010(sA A sr t )e -.因此, αλ-∞→=110)()(lim A s t r t .事实上,我们在(10-4-2)式中,令tr d d =0,可得其均衡值r e =αλ-110)(A s . 三、 新产品的推广模型设有某种新产品要推向市场,t 时刻的销量为x (t ),由于产品良好性能,每个产品都是一个宣传品,因此,t 时刻产品销售的增长率t x d d 与x (t )成正比,同时,考虑到产品销售存在一定的市场容量N ,统计表明tx d d 与尚未购买该产品的潜在顾客的数量N -x (t )也成正比,于是有 tx d d =kx (N -x ), (10-4-3) 其中k 为比例系数,分离变量积分,可以解得x (t )=kNtC N -+e 1 (10-4-4) 方程(10-4-3)也称为逻辑斯谛模型,通解表达式(10-4-4)也称为逻辑斯谛曲线. 由t x d d =()221kNt kNtC k CN --+e e 以及22t x d d =()3231)1(kNt kNt kNt C C k CN ---+-e e e , 当x (t *)<N 时,则有t x d d >0,即销量x (t )单调增加.当x (t *)=2N 时,22t x d d =0;当x (t *)>2N 时,22t x d d <0;当x (t *)<2N 时,22t x d d >0.即当销量达到最大需求量N 的一半时,产品最为畅销,当销量不足N 一半时,销售速度不断增大,当销量超过一半时,销售速度逐渐减小.国内外许多经济学家调查表明,许多产品的销售曲线与公式(10-4-4)的曲线十分接近,根据对曲线性状的分析,许多分析家认为,在新产品推出的初期,应采用小批量生产并加强广告宣传,而在产品用户达到20%到80%期间,产品应大批量生产,在产品用户超过80%时,应适时转产,可以达到最大的经济效益.习题10-41. 某公司办公用品的月平均成本C 与公司雇员人数x 有如下关系:C ′=C 2e -x -2C且C (0)=1,求C (x ).2. 设R =R (t )为小汽车的运行成本,S =S (t )为小汽车的转卖价值,它满足下列方程:R ′=Sa , S ′=-bS , 其中a ,b 为正的已知常数,若R (0)=0,S (0)=S 0(购买成本),求R (t )与S (t ).3. 设D =D (t )为国民债务,Y =Y (t )为国民收入,它们满足如下的关系:D ′=αY +β, Y ′=γY其中α,β,γ为正已知常数.(1) 若D (0)=D 0,Y (0)=Y 0,求D (t )和Y (t );(2) 求极限)()(lim t Y t D t +∞→. 4. 设C =C (t )为t 时刻的消费水平,I =I (t )为t 时刻的投资水平,Y =Y (t )为t 时刻的国民收入,它们满足下列方程⎪⎩⎪⎨⎧>'=><<+=+=.0,,,,0,10,,为常数均为常数k C k I b a b a b aY C I C Y(1) 设Y (0)=Y 0,求Y (t ),C (t ),I (t );(2) 求极限)()(lim t I t Y t +∞→ 5. 某养殖场在一池塘内养鱼,该池塘最多能养鱼5000条,鱼可以自然繁殖,因此鱼数y 是时间t 的函数y =y (t ),实验表明,其变化率与池内鱼数y 和池内还能容纳的鱼数(5000-y )的乘积成正比,若开始放养的鱼为400条,两个月后池塘内鱼的数量为550条,求放养半年 后池塘内鱼的条数.。
线性代数在经济学中的应用作者:王伟珠来源:《中外企业家·下半月》 2015年第10期王伟珠(辽宁对外经贸学院基础课教研部,辽宁大连116052)摘要:数学是科学发展的基础,线性代数又是数学的一个分支,数字化时代的我们离不开数学,更离不开数学在其中的应用。
通过介绍投入产出模型和动物种群增长模型,阐述线性代数在经济学中的应用。
关键词:线性代数;经济;应用中图分类号:F014 文献标志码:A 文章编号:1000-8772(2015)30-0270-02收稿日期:2015-09-10基金项目:辽宁省教育评价协会课题“ 民办应用型本科高校高等数学课程教学改革的研究与实践”(编号:PJHYYB15299)。
作者简介:王伟珠(1976-),女,黑龙江哈尔滨人,硕士,副教授。
研究方向:应用数学。
一、投入产出模型投入产出模型是一种经济均衡模型,它是美国经济学家里昂节夫(leontiefw)于20 世纪30 年代提出的。
1936 年,里昂节夫在“经济统计评论”上发表了“美国经济系统中的投入和产出的数量关系”,首次提出投入产出方法,并长期致力于该方法的研究。
1973 年,里昂节夫以其杰出的研究成果获诺贝尔经济学奖。
在此,仅介绍产出平衡方程。
设一个经济系统由3 个生产部门组成. 用表示第个生产部门的总产值,表示第个部门生产过程中所消耗的第个部门产品的数量,表示第的部门的最终产品(最终加工完毕,可供社会消费和使用的产品)。
将这些数据列成表格,这种表格称为投入产出表,见图1。
二、动物的种群增长模型研究动物种群的增长,对保持生态平衡具有实际意义。
莱斯利(Leslie)模型是常用的动物种群增长模型,该模型只考虑两性种群中的雌雄,将雌性按年龄分成若干类,研究种群的年龄分布规律。
故十年后,0~5 岁的雌性动物有3500 只,5~10 岁的雌性动物有5500 只,10~15 岁的雌性动物有125 只。
本文中仅列举了两类线性代数的数学模型在经济中应用的案例,实际的应用还有很多。