铸造工艺方法确定
- 格式:docx
- 大小:42.61 KB
- 文档页数:9
铸造工艺技术方法铸造工艺技术方法是一门将熔化的金属材料注入模具中并冷却凝固的工艺,被广泛应用于制造各类金属制品的行业。
铸造工艺技术方法的选择和运用对于产品质量和生产效率具有重要的影响。
下面将介绍几种常见的铸造工艺技术方法。
一、砂型铸造工艺技术方法砂型铸造是铸造工艺中最常见的一种方法。
它的工艺流程是:制作砂型,熔化金属,填充砂型,冷却固化,分离模具,修整和后处理。
砂型铸造方法具有成本低、可制造复杂形状、适用于大批量生产等优点,广泛应用于汽车零部件、机械设备等行业。
二、压铸工艺技术方法压铸是一种将熔化的金属通过高压注入模腔中的工艺。
它的工艺流程是:熔化金属,注入模腔,冷却凝固,开模取出。
压铸工艺技术方法适用于制造复杂形状、高精度要求的制品,如电子设备外壳、汽车发动机零部件等。
三、失重铸造工艺技术方法失重铸造是一种利用熔化金属在失重条件下凝固的铸造方法,主要有真空吸铸和气体动力喷射铸造两种方法。
失重铸造工艺技术方法适用于制造高温合金、钛合金等难以进行传统铸造的材料和复杂形状的制品。
四、连续铸造工艺技术方法连续铸造是一种将熔化金属连续注入模具中,通过连续冷却凝固得到长条状的产品的工艺。
它的工艺流程是:熔化金属,连续注入模具,连续冷却凝固,切割产品。
连续铸造方法适用于制造长条状的金属制品,如钢铁、铝合金等材料。
五、低压铸造工艺技术方法低压铸造是一种利用压力将熔化金属从底部注入模腔中的铸造方法。
它的工艺流程是:熔化金属,模具旋转,底部注入,冷却凝固,开模取出。
低压铸造方法适用于制造厚壁、大尺寸的金属制品,如管道、容器等。
六、精密铸造工艺技术方法精密铸造是一种制造高精度、复杂形状的金属制品的铸造方法。
它的工艺流程是:制作精密模具,熔化金属,注入模腔,冷却凝固,开模取出。
精密铸造方法具有高精度、表面质量好的优点,广泛应用于光学、仪器仪表等行业。
综上所述,铸造工艺技术方法在金属制品的生产中起到了至关重要的作用。
不同的产品和材料需要选择合适的铸造工艺技术方法,以提高产品质量和生产效率。
铸造技术的方法选择铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。
铸造是常用的制造方法,优点是:制造成本低,工艺灵活性大,可以获得复杂形状和大型的铸件,在机械制造中占有很大的比重,如机床占60~80%,汽车占25%拖拉机占50~60%。
铸件的质量直接影响着产品的质量,因此,铸造在机械制造业中占有重要的地位。
铸造是一种古老的制造方法,在我国可以追溯到6000年前。
随着工业技术的发展,铸造技术的发展也很迅速,特别是19世纪末和20世纪上半叶,出现了很多的新的铸造方法,如低压铸造、陶瓷铸造、连续铸造等,在20世纪下半叶得到完善和实用化。
由于现今对铸造质量、铸造精度、铸造成本和铸造自动化等要求的提高,铸造技术向着精密化、大型化、高质量、自动化和清洁化的方向发展,例如我国这几年在精密铸造技术、连续铸造技术、特种铸造技术、铸造自动化和铸造成型模拟技术等方面发展迅速铸造主要工艺过程包括:金属熔炼、模型制造、浇注凝固和脱模清理等。
铸造用的主要材料是铸钢、铸铁、铸造有色合金(铜、铝、锌、铅等)等。
铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造......等。
而砂型铸造又可以分为粘土砂型、有机粘结剂砂型、树脂自硬砂型、消失模等等,如下图:VRH: VRH(Vacuum Replace Hardening)即真空置换硬化,其工艺过程如下:将用有机或无机粘结剂砂造好的铸型,送入真空室内抽取真空,当达到一定的真空度后,充入硬化气体;硬化气体进入砂型的砂粒间并均匀扩散,经过化学反应使砂型得到硬化。
该工艺被列为国家科技成果重点推广项目。
根据我国铸造行业的实际情况,我所于90年设计生产了第一台真空室容积为1.4立方米VRH 设备,目前我所制造的VRH设备已经被多家企业采用,其中最大容积达10立方米,产品已经形成“钟罩式”和“隧道式”两种系列。
我所竭诚欢迎全国各地客户来京考察指导。
确定铸造材料的熔炼方法与浇注工艺一、学习目标知识目标:·掌握合金的铸造性能评定指标;·明确影响合金流动性、收缩性的因素;·熟悉铸造应力产生原因及减小与消除的措施;·了解铸铁、铸钢、铝合金等常用铸造材料的熔炼设备及熔炼过程;·明确铸铁、铸钢、铝合金等铸造材料浇注工艺要点。
能力目标:·能分析判断合金的铸造性能优劣;·熟悉常用铸造材料的熔炼设备、熔炼过程,能确定铸造合金的浇注工艺。
二、任务引入铸造合金熔炼和铸件的浇注是铸造生产的主要工艺,浇注工艺选择是否合理决定铸件的质量。
三、相关知识(一)铸铁的熔炼与浇注在铸造生产中,铸铁件占铸件总重量的70%~75%,其中绝大多数采用灰铸铁。
为获得高质量的铸铁件,首先要熔化出优质铁水。
1.铸件的熔炼要求(1)铁水温度要高;(2)铁水化学成分要稳定在所要求的范围内;(3)提高生产率,降低成本。
2.铸件的熔炼设备图4-31 冲天炉的构造1-出铁口;2-出渣口;3-前炉;4-过桥;5-风口;6-底焦;7-金属料;8-层焦;9-火花罩;10-烟囱;11-加料口;12-加料台;13-热风管;14-热风胆冲天炉是铸铁熔炼的设备,如图4-31所示。
炉身是用钢板弯成的圆筒形,内砌以耐火砖炉衬。
炉身上部有加料口、烟囱、火花罩,中部有热风胆,下部有热风带,风带通过风口与炉内相通。
从鼓风机送来的空气,通过热风胆加热后经风带进入炉内,供燃烧用。
风口以下为炉缸,熔化的铁液及炉渣从炉缸底部流人前炉。
冲天炉的大小是以每小时能熔炼出铁液的重量来表示,常用的为1.5 t/h ~10t/h。
3.冲天炉炉料及其作用(1)金属料金属料包括生铁、回炉铁、废钢和铁合金等。
生铁是对铁矿石经高炉冶炼后的铁碳合金块,是生产铸铁件的主要材料;回炉铁是浇口、冒口和废铸件等,利用回炉铁可节约生铁用量,降低铸件成本;废钢是机加工车间的钢料头及钢切屑等,加入废钢可降低铁液碳的含量,提高铸件的力学性能;铁合金如硅铁、锰铁、铬铁以及稀土合金等,用于调整铁液化学成分。
铸造工艺方案铸造是一种常见的制造工艺,广泛应用于各行各业。
通过铸造工艺,我们可以将熔化的金属或合金注入到特定的模具中,经过冷却和固化后得到所需的铸件。
在铸造工艺中,制定合适的工艺方案非常关键,它直接影响到铸件的质量和成本。
本文将详细介绍铸造工艺方案的制定过程。
一、铸造工艺方案的选择在制定铸造工艺方案之前,我们首先需要了解铸件的设计要求和功能需求。
根据铸件的形状、尺寸、材料等特点,选择适用的铸造方法,包括砂型铸造、金属型铸造、压力铸造等。
同时还需要考虑到生产批量和周期等因素,确定最佳的工艺路线。
二、模具设计和制造模具是铸造工艺中不可或缺的一部分,它直接决定着铸件的精度和表面质量。
在模具设计中,要充分考虑铸件的缩孔、气孔等缺陷,采取相应的设计措施,如设置浇口和排气系统,以提高铸件的质量。
同时,模具的制造也需要严格按照设计图纸和工艺要求进行,确保模具的尺寸精度和加工质量。
三、熔炼和浇注在熔炼和浇注过程中,要选择合适的炉具和熔炼设备,控制熔炼温度和时间,确保金属液的纯净度和化学成分的稳定性。
同时,根据模具的设计要求,在浇注过程中要注意浇注速度和施力方式,以避免产生气孔和夹杂等缺陷。
四、冷却和固化铸件在浇注后需要进行冷却和固化,以便获得所需的力学性能和表面质量。
在冷却过程中,可以采取适当的冷却介质或控制冷却速度,以实现铸件的组织均匀和凝固收缩的控制。
同时,还需要考虑到冷却应力的产生和消除,以避免铸件的开裂和变形。
五、加工和表面处理在铸造工艺方案中,还需要考虑到铸件的后续加工和表面处理工艺。
根据铸件的要求和用途,选择合适的加工方法,包括切割、钻孔、磨削等。
同时,在表面处理中,可以采用喷丸、热处理、镀层等方式,提高铸件的耐腐蚀性和装饰性。
六、质量控制和检验在整个铸造工艺中,质量控制和检验是至关重要的环节。
通过制定合理的工艺参数和控制方法,进行现场检查和在线监测,及时发现和解决潜在问题,确保铸件的一致性和稳定性。
铸造工艺与方法铸造是一种通过熔化金属并将其倒入模具中,然后让其冷却凝固的制造工艺。
铸造工艺广泛应用于制造各种金属零件和组件。
它提供了一种经济、快捷且适用于大批量生产的方式,同时还能制造出复杂形状的产品。
在本文中,我们将深入探讨铸造工艺的几种常见方法和一些重要的工艺要点。
一、砂型铸造砂型铸造是最常见的铸造方法之一。
它的工艺流程包括模具制备、芯型制备、铸型浇注、冷却凝固、脱模和清理等几个重要步骤。
在砂型铸造中,铸造材料通常是一种基于石英砂或其他矿物砂的砂浆。
这种砂浆可以轻松塑造出复杂的产品形状,并具有较好的耐高温性能。
二、金属型铸造金属型铸造是一种利用金属模具进行铸造的方法。
与砂型铸造相比,金属型铸造可以制造出更加精确和表面光滑的产品。
金属型通常采用铸铁、铸钢或铝合金等材料制成。
这种方法适用于制造高精度、高质量要求的零件,但成本相对较高。
三、压力铸造压力铸造是一种通过施加高压将熔融金属注入模具中,使其快速凝固的方法。
压力铸造可分为冷室压力铸造和热室压力铸造两种类型。
压力铸造具有生产周期短、产品质量稳定的优点,广泛用于制造汽车零部件、航空航天零件等高要求的产品。
四、蜡型铸造蜡型铸造是一种精密铸造方法,通常用于制造复杂形状的零件。
在蜡型铸造中,首先制作出与最终产品形状相同的蜡模。
然后将蜡模浸入石膏混合物中,形成石膏壳体。
当石膏干燥后,将其放入高温烘箱中,使蜡模燃尽,留下空腔。
最后,将熔融金属倒入石膏壳体,待其冷却凝固后,获得成品。
蜡型铸造可以制造出高精度和精细表面处理的产品。
五、连铸连铸是一种用于生产连续坯料(铜、铁、铝等)的铸造工艺。
它是通过将熔融金属倒入长型模具中,然后通过冷却凝固使其形成坯料。
连铸工艺具有高效性和高质量的优点,被广泛应用于钢铁和有色金属工业中。
在选择合适的铸造工艺时,需要考虑到产品的设计要求、成本、生产周期以及所需材料等因素。
此外,铸造过程中还应注意控制合金的化学成分、铸型的温度和湿度,以及铸造过程中的冷却速度,以确保产品质量。
铸造工艺方案设计的主要内容有
铸造工艺方案设计的主要内容包括:
铸造工艺选择:确定所需产品的铸造方法,例如砂型铸造、金属型铸造、压力铸造等。
选择适合产品形状、材料和数量的最佳铸造方法。
材料选择:选择合适的铸造材料,如铸铁、铸钢、铝合金等,根据产品的要求和性能进行材料选择。
模具设计:设计和选择合适的模具,以便制造产品的准确形状和尺寸。
包括模具材料选择、模具结构设计和模具制造工艺。
浇注系统设计:设计合理的浇注系统,确保熔融金属能够顺利流入模腔,并获得良好的充型效果。
包括浇注杯、浇口和浇注道的设计。
凝固与冷却控制:确定合适的凝固与冷却控制措施,以确保产品的凝固过程正常进行,并避免缺陷的产生。
包括冷却介质的选择、冷却通道的设计等。
铸造工艺参数设定:确定合适的铸造工艺参数,如浇注温度、浇注速度、浇注压力等,以确保产品的质量和性能。
模具和铸件加工工艺:确定模具和铸件的加工工艺,包括修模、修边、修砂等工艺步骤,以确保产品的精度和表面质量。
铸造设备选择:选择适当的铸造设备,如铸造机床、熔炼设备等,以满足产品的生产要求和工艺流程。
检验与质量控制:制定合理的检验和质量控制方案,包括对原材料、半成品和成品的检验要求和方法,以确保产品符合规定的质量标
准。
铸造加工的工艺流程铸造加工是一种被广泛应用的加工工艺,是将熔化的金属或合金倒入模型中,然后冷却凝固,最后经过一系列的加工和精密处理,形成所需的产品。
铸造加工被广泛应用于汽车、航空、建筑等行业,几乎涉及到生活中的方方面面。
在这里,我们将为您介绍铸造加工的工艺流程。
铸造加工的流程并不复杂,主要可以分为以下几个步骤:第一步:确定材料和模具铸造加工的第一步是确定材料和模具。
通常情况下,模具会根据产品的形状、尺寸和设计图来制作。
而材料的选择则取决于产品的用途和性能要求。
不同的材料具有不同的特性,有些材料是非常耐热、耐腐蚀和强度高,而另一些材料则可能具有更加坚固的成品。
第二步:熔化铸造加工的第二步是熔化金属或合金。
熔化后的金属变得更加容易流动,这样可以更好地填充模具。
为了让金属完全熔化,需要采用熔炼设备,通常将金属或合金放入熔融炉中进行加热。
需要注意的是,为了控制合金的成分和减少杂质,需要掌握熔炼材料的合适温度和时间。
第三步:浇铸铸造加工的第三步是浇铸,即将熔化的金属倒入预先准备好的模具中。
为了确保预先准备的模具描绘了预期的图案和细节,需要在浇铸之前进行仔细的测量和校正。
第四步:冷却和除渣铸造加工的第四步是等待金属冷却和除渣。
模具中的铸件会通过水冷却或空气冷却,在适当的时间内自然冷却。
冷却后,需要去除模具和杯子的残留物,比如砂块和气泡,以确保最终产品的质量。
第五步:切割和破折铸造加工的第五步是最初的工艺加工,包括模具的切割和破折。
这一步通常采用磨石、电锯和切割设备等工具。
第六步:修磨和打磨铸造加工的第六步是修磨和打磨,使用液体润滑剂和模具上的打磨工具,将表面磨平。
需要注意的是,这一步需要仔细检查和测量产品的质量,以确保产品符合预期的要求。
第七步:质量检查铸造加工的最后一步是质量检查。
通过使用特殊的仪器和工具来评估产品平面度、形状、表面光洁度等质量特征,来确定最终产品的质量和耐用程度。
总的来说,铸造加工是一项复杂而又细致的工艺,并且需要熟练的技术和高度的专业知识。
铸造工艺设计说明书一、铸造工艺设计的目的和意义铸造是将液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法。
铸造工艺设计则是根据零件的结构特点、技术要求、生产批量等因素,确定铸造方法、铸型分型面、浇注系统、冒口和冷铁等工艺参数,以保证获得高质量的铸件,并提高生产效率、降低成本。
良好的铸造工艺设计具有重要意义。
首先,它能够保证铸件的质量,减少铸造缺陷的产生,如气孔、缩孔、夹渣等。
其次,合理的工艺设计可以提高生产效率,降低生产成本,缩短生产周期。
此外,还能为后续的机械加工提供良好的基础,减少加工余量,提高材料利用率。
二、零件分析1、零件结构对需要铸造的零件进行结构分析,包括形状、尺寸、壁厚均匀性等。
例如,形状复杂的零件可能需要采用复杂的分型面和浇注系统;壁厚不均匀的零件容易产生缩孔、缩松等缺陷,需要合理设置冒口和冷铁。
2、技术要求明确零件的技术要求,如材质、力学性能、表面质量等。
不同的材质和性能要求会影响铸造工艺的选择和参数的确定。
3、生产批量生产批量的大小直接影响铸造方法的选择。
大批量生产时,通常采用金属型铸造、压力铸造等高效率的铸造方法;小批量生产则多采用砂型铸造。
三、铸造方法的选择1、砂型铸造砂型铸造是应用最广泛的铸造方法,其优点是成本低、适应性强,可生产各种形状和尺寸的铸件。
但砂型铸造的生产效率较低,铸件的表面质量相对较差。
2、金属型铸造金属型铸造的生产效率高,铸件的精度和表面质量好,但模具成本高,适用于大批量生产形状简单、尺寸较小的铸件。
3、压力铸造压力铸造能生产出形状复杂、薄壁的高精度铸件,但设备投资大,主要用于生产大批量的有色金属铸件。
4、熔模铸造熔模铸造适用于生产形状复杂、精度要求高、难以机械加工的小型零件。
根据零件的结构、技术要求和生产批量,综合考虑选择合适的铸造方法。
四、铸型分型面的选择分型面的选择直接影响铸型的制造、造型操作的难易程度以及铸件的质量。
第一章铸造工艺方案确定1.夹具的生产条件,结构,技术要求●产品生产性质——大批量生产●零件材质——35Cr●夹具的零件图如图所示,夹具的外形轮廓尺寸为285mm*120mm*140mm,主要壁厚40mm,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。
零件图如下图所示:2.夹具结构的铸造工艺性零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降低成本。
审查、分析应考虑如下几个方面:1.铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。
2.铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角铸件薄厚壁的相接拐弯等厚度的壁与壁的各种交接,都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应力集中导致裂纹缺陷。
3.铸件内壁应薄于外壁铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻内应力和防止裂纹。
4.壁厚力求均匀,减少肥厚部分,防止形成热节。
5.利于补缩和实现顺序凝固。
6.防止铸件翘曲变形。
7.避免浇注位置上有水平的大平面结构。
3.造型,造芯方法的选择支座的轮廓尺寸为285mm*140mm*120mm,铸件尺寸较小,属于中小型零件且要大批量生产。
采用湿型粘土砂造型灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等,还可延长砂箱使用寿命。
因此,采用湿型粘土砂机器造型,模样采用金属模是合理的。
在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。
在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。
选择使用射芯工艺生产砂芯。
4.浇注位置的确定铸件的浇注位置是指浇注时铸件在型内所处的状态和位置。
确定浇注位置是铸造工艺设计中重要的环节,关系到铸件的内在质量,铸件的尺寸精度及造型工艺过程的难易程度。
确定浇注位置应注意以下原则:1.铸件的重要部分应尽量置于下部2.重要加工面应朝下或直立状态3.使铸件的答平面朝下,避免夹砂结疤内缺陷4.应保证铸件能充满5.应有利于铸件的补缩6.避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验初步对支座对浇注位置的确定有:方案一如图,方案二图,方案三图,方案四图图浇注系统方案一图浇注系统方案二图浇注系统方案三图浇注系统方案四5分型面的确定分型面是指两半铸型相互接触的表面。
分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。
而选择分型面时应注意一下原则:1.应使铸件全部或大部分置于同一半型内2.应尽量减少分型面的数目3.分型面应尽量选用平面4.便于下芯、合箱和检测5.不使砂箱过高6.受力件的分型面的选择不应削弱铸件结构强度7.注意减轻铸件清理和机械加工量图分型面选择方案一图分型面选择方案二图分型面选择方案三图分型面选择方案四第三章铸造工艺参数及砂芯设计1铸件尺寸公差铸件尺寸公差是指铸件公称尺寸的两个允许的极限尺寸之差。
在两个允许极限尺寸之内,铸件可满足机械加工,装配,和使用要求。
夹具为砂型铸造机器造型大批量生产,由《铸造工程师手册》查表6-25得:支座的尺寸公差为CT8~12级,取CT9级。
支座的轮廓尺寸为285mm*140mm*120mm,由《铸造工艺设计》查表1-9得:支座尺寸公差数值为。
铸造收缩率又称铸件线收缩率,用模样与铸件的长度差除以模样长度的百分比表示:ε=[(L1-L2)/L1]*100%ε—铸造收缩率L1—模样长度L2—铸件长度支座受阻收缩率由《铸造工程师手册》查表6-24得:受阻收缩率为%3.1.4起模斜度为了方便起模,在模样、芯盒的出模方向留有一定斜度,以免损坏砂型或砂芯。
这个斜度,称为起模斜度。
起模斜度应在铸件上没有结构斜度的,垂直于分型面的表面上应用。
初步设计的起模斜度如下:外型模的A面(如图所示)高52mm的起模斜度由《铸造工程师手册》查表6-39得:粘土砂造型外表面起模斜度为а=0°30',a=外型模的B面(如图所示)高100mm的起模斜度由《铸造工程师手册》6-39查表得:粘土砂造型外表面起模斜度为а=0°25',a=但是同一铸件要尽量选用同一起模斜度,以免加工金属模时频繁的更换刀具。
所以选用同一起模斜度为а=0°30',a=3.1.5最小铸出孔和槽零件上的孔、槽、台阶等,究竟是铸出来好还是靠机械加工出来好,这应该从品质及经济角度等方面考虑。
一般来说,较大的孔、槽等应该铸出来,以便节约金属和加工工时,同时还可以避免铸件局部过厚所造成热节,提高铸件质量。
较小的孔、槽或则铸件壁很厚则不易铸出孔,直接依靠加工反而方便。
根据夹具的轮廓尺寸285mm*140mm*120mm由《铸造工程师手册》查表6-45得:铸钢件最小铸出孔约为直径60mm。
大孔Φ72,考虑加工余量后直径为65mm,壁厚度为24mm。
该孔直径比较大,高径比也不大,则应该铸出。
小孔Φ30,考虑加工余量后直径为24mm,小于最小铸出孔为60mm的要求,壁厚度为10mm。
该孔直径较小,高径比较大,不应该铸出,机械加工较为经济方便。
铸件重量公差铸件重量公差是以占铸件公称重量的百分比表示的铸件重量变动的允许范围。
支座的公称重量约为11kg,尺寸公差为MT9级。
由《铸造工程师手册》查表8-4得:支座的重量公差为MT9级,查《手册》8-9得重量公差数值为10%。
3.1.9分型负数干砂型、表面烘干型以及尺寸较大的湿砂型,分型面由于烘烤,修整等原因一般都不很平整,上下型接触面很不严。
为了防止浇注时炮火,合箱前需要在分型面之间垫以石棉绳、泥条等,这样在分型面处明显增加了铸件的尺寸。
为了保证铸件尺寸精确,在拟定工艺时为抵掉铸件增加的尺寸而在模样上减去相应的尺寸称为分型负数。
而支座是湿型且是小型铸件故不予考虑分型负数。
反变形量铸造较大的平板类、床身类等铸件时,由于冷却速度的不均匀性,铸件冷却后常出现变形。
为了解决挠曲变形问题,在制造模样时,按铸件可能产生变形的相反方向做出反变形模样,使其于变形量抵消,这样在模样上做出的预变形量称为反变形量。
而支座没有较大平板故基本不会产生挠曲变形,所以不用设置反变形量。
非加工壁厚负余量在手工粘土砂造型、制芯过程中,为了取出木模,要进行敲模,木模受潮时将发生膨胀,这些情况均会使型腔尺寸扩大,从而造成非加工壁厚的增加,使铸件尺寸和重量超过公差要求。
为了保证铸件尺寸的准确性,凡形成非加工壁厚的木模或芯盒内的肋板厚度尺寸应该减少,即小于图样尺寸。
为减少的厚度尺寸称为非加工壁厚的负余量。
支座砂芯属于机器造芯,造型属于机器造型。
故不用设置非加工壁厚负余量3. 2砂芯设计砂芯的功用是形成铸件的内腔、孔和铸件外型不能出砂的部分。
砂型局部要求特殊性能的部分有时也用砂芯。
夹具砂芯的外型如图所示3.2.1芯头的设计砂芯主要靠芯头固定在砂型上。
对于垂直芯头为了保证其轴线垂直、牢固地固定在砂型上,必须有足够的芯头尺寸。
根据实际设计量取计算砂芯高度: L=140mm砂芯直径: D=65mm(考虑MRA)芯头长度初步选取由《铸造工程师手册》查表6-56得:h=25~30mm 取h=30mm大量生产中,等截面柱状砂芯,上下芯头可取相同高度,故上下芯头均取h=30mm。
芯头斜度选取由《铸造工程师手册》查表6-57得:上芯头а=10? ,a=6mm,下芯头а=5,a=3m垂直芯头与芯座之间的间隙为S,查《铸造工程师手册》表6-58得取S=3.2.3压环、防压环和集砂槽芯头结构在湿型大批量生产中,为了加速下芯、合芯及保证铸件质量,在芯头的模样上常常做出压环、防压环和集砂槽。
压环、防压环和集砂槽尺寸由《铸造工艺手册》查表1-43得:e=2mm f=3mm r=2mm3.2.4芯骨设计为了保证砂芯在制芯、搬运、配芯和浇注过程中不开裂、不变形、不被金属液冲击折断,生产中通常在砂芯中埋置芯骨,以提高其刚度和强度。
因为砂芯尺寸较小,而且采用树脂砂,故砂芯强度较好,砂芯内不用放置芯骨。
3.2.5砂芯的排气砂芯在浇注过程中,其粘结剂及砂芯中的有机物要燃烧(氧化反应)放出气体,砂芯中的残余水分受热蒸发放出气体,如果这些气体排不出型外,则要引起铸件产生气孔。
可以采用通气针,通气模板,用蜡线,尼龙管,手工开挖等方法进行排气。
3.2.6砂芯负数大型粘土砂芯在春砂过程中砂芯向四周涨开,刷涂料以及在烘干过程中发生的变形,使砂芯四周尺寸增大。
为了保证铸件尺寸准确,将芯盒的长、宽尺寸减去一定量,这个被减去的量叫做砂芯负数。
因为砂芯负数只用于大型粘土砂芯,本设计中的砂芯为小型砂芯不设计砂芯负数。
第四章浇注系统及冒口、冷铁、出气孔等设计浇注系统的设计浇注系统是铸型中引导液体金属进入型腔的通道,它由浇口杯,直浇道,横浇道和内浇道组成。
4.1.1选择浇注系统类型1.封闭式浇注系统:✍指从浇口杯底孔到内浇道的截面积逐渐缩小,阻流基元为内浇道的浇注系统。
✍这种浇注系统充满得快、挡渣能力好,金属液在浇道中不容易带入空气和氧化,金属消耗少、清理方便。
✍缺点:金属液进入型腔的线速度高,易冲坏铸型,易使金属液产生喷溅,氧化和卷入气体。
✍主要适用于不易氧化的各种铸铁件,不适用于易氧化的非铁合金铸件和用柱塞包浇注的铸钢件。
2.开放式浇注系统:✍从浇口杯底孔到内浇道的截面积逐渐增大,阻流截面位于浇口杯底孔或直浇道上口。
✍优点:进入型腔时金属液流速度小,充型平稳、冲刷力小、金属氧化少。
✍缺点:挡渣效果不好,内浇道大,消耗的金属液多。
✍适用于易氧化的非铁合金铸件,球墨铸铁件和用柱塞包浇注的中、大型铸钢件。
以上两种均不适合本设计小型铸钢件大批量生产的特点,故不选用。
针对本设计,查铸造工程师手册的:大批量生产小型铸钢件时,常采用转包浇注,多采用可充满式浇注系统,既加强当渣能力,又能减轻喷射,常采用的浇注系统截面积之比为A内:A横:A直=:():()4.1.2确定内浇道在铸件上的位置、数目、金属引入方向夹具外轮廓尺寸为285mm*120mm*140mm,查《铸造工艺装备设计手册》表5-7得:选择沙箱尺寸A*B*H=350mm*250mm*200mm ,根据最小吃沙量选择铸造时采取一箱一件,。
为了方便造型,内浇道开设在分型面上。
因为铸件采用底座朝上且铸件全部位于下箱的方式进行铸造,这样铸件凝固顺序为由下至上凝固,这样有利于支座的重要部分先凝固并得到补缩,如此内浇道则设置在底部侧面引入金属液。
4.1.3决定直浇道的位置和高度实践证明,直浇道过低使充型及液态补缩压力不足,容易出现铸件棱角和轮廓不清晰、浇不到上表面缩凹等缺陷。