第三章 纳米微粒的制备方法
- 格式:ppt
- 大小:3.61 MB
- 文档页数:140
纳米颗粒的制备方法一、纳米粒子的制备方法分类:1、按照物质的原始状态,可分为固相法、液相法和气相法。
2、按照研究纳米粒子的学科分类,可分为物理方法、化学方法和物理化学方法。
3、按照制备的技术分类,可分为机械粉碎法、气体蒸发法、溶液法、等离子体合成法、激光合成法、溶胶凝胶法等。
本文着重针对纳米粒子生成机理与制备过程,粗略地分为物理方法、化学方法。
二、纳米颗粒的物理制备方法:(一)蒸发法制备纳米颗粒:1、定义:直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理或化学变化,在冷却过程中凝聚长大形成纳米粒子。
2、气相蒸发法原理:在高真空室中冲入低压的纯净惰性气体或反应气体,预蒸发的物质置于坩埚,通过加热装置逐渐加热蒸发,产生原物质烟雾。
由于惰性气体的对流,烟雾向上移动(与反应气体发生化学反应)并接近充液氮的冷却棒(77K)。
在蒸发过程中原物质原子与惰性气体碰撞损失能量冷却,造成局域的过饱和,形成均匀的成核过程,然后形成原子簇,长大成纳米粒子。
收集。
3、按照原料加热蒸发技术手段的不同,可将蒸发法分为:1)电阻加热;2)等离子喷射加热;3)高频感应加热;4)电子束加热;5)激光加热;6)电弧加热;7)微波加热。
(二)流动油面上的真空蒸发沉积法(VEROS):1、将物质在真空中连续地蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,制备纳米粒子。
2、优点:可以得到平均粒径小于10nm的各类金属粒子,粒子分布窄。
3、缺点:粒子太细,难以从油中分离。
(三)化学气相冷凝法(CVC):1、原理:将反应室抽真空,冲入少量的惰性气体,形成数百帕的真空度,(通入反应气体),在加热的反应器内得到目标产物或其前驱体,然后在对流的作用下,到达后部的骤冷转筒器(加入液氮作为冷却介质),转筒后面有一刮刀不断的移去沉积的纳米颗粒,可以提供一个干净的金属表面来进行连续的收集操作。
2、特点:粒径小、分布窄、避免团聚。
纳米粒子制备方法及材料调控性能纳米粒子是指直径在1-100纳米之间的颗粒,由于其特殊的尺寸效应和表面效应,具有许多独特的物理、化学和生物学性能,因此在许多领域都具有广阔的应用前景。
纳米粒子的制备方法和材料的调控性能是实现纳米技术应用的关键。
本文将介绍常见的纳米粒子制备方法以及材料调控性能的相关内容。
一、纳米粒子制备方法1. 化学合成法:化学合成法是最常用的纳米粒子制备方法之一。
通过控制反应条件、溶剂、催化剂等因素来合成所需尺寸和形状的纳米粒子。
常见的化学合成方法包括溶液法、沉淀法、气相法等。
其中,溶液法是最常用的方法之一,可以通过溶胶-凝胶、共沉淀等方式来制备纳米粒子,具有简单、灵活的优点。
2. 物理法:物理法是指通过物理手段制备纳米粒子的方法。
常见的物理法包括热蒸发法、气相凝聚法、溅射法等。
物理法制备的纳米粒子通常具有较高的纯度和均一性,但制备过程较为复杂,设备要求较高。
3. 生物合成法:生物合成法是利用生物体,如细菌、真菌、植物等来制备纳米粒子。
通过植物的吸收和叶绿体的光合作用,可以有效地实现对金属离子的还原和纳米粒子的形成。
生物合成法制备的纳米粒子具有环境友好、成本低廉等优点。
二、纳米材料的调控性能1. 形状调控:纳米粒子的形状对其性能具有重要影响。
通过调节合成方法、反应条件等可以控制纳米粒子的形状,如球形、棒状、片状等。
不同形状的纳米粒子具有不同的表面积和晶面结构,从而影响其光学、电学、催化等性能。
2. 尺寸调控:纳米粒子的尺寸对其性能同样具有重要影响。
尺寸的减小可以增加纳米粒子的比表面积,从而提高催化反应速率等。
通过调节合成条件和添加表面活性剂等手段,可以有效地调控纳米粒子的尺寸,从而实现对其性能的调控。
3. 表面调控:纳米粒子的表面是其与周围环境相互作用的重要界面,通过表面修饰和功能化可以调控纳米粒子的分散性、稳定性、吸附性等性能。
例如,通过聚合物包覆、功能化修饰等手段可以增加纳米粒子与基底的相容性,提高其分散性和稳定性。
纳米粒的制备方法
纳米粒的制备方法主要有以下几种:
1. 物理法:利用物理力学重力、离心力、超声波或磁力等对大颗粒物料进行机械分散,从而得到纳米级颗粒。
2. 化学法:通过化学反应,在适当的条件下,选择溶剂中的化学物质,使其发生反应生成纳米颗粒。
3. 蒸发法:通过溶剂的挥发和蒸发使颗粒逐渐凝聚形成纳米级颗粒。
4. 水热法:将反应物溶解在水中,在高温高压条件下进行水热反应,得到纳米颗粒。
5. 气相沉积法:在高温下,将反应物蒸发,通过充气使气体中的反应物在表面上凝聚形成纳米颗粒。
6. 溶剂热法:将反应物溶解在适当的溶剂中,通过加热使反应发生,得到纳米颗粒。
需要根据具体实践需求选择合适的制备方法,为获得所需纳米颗粒提供技术支持。