第三章 纳米微粒的制备方法
- 格式:ppt
- 大小:3.61 MB
- 文档页数:140
纳米颗粒的制备方法一、纳米粒子的制备方法分类:1、按照物质的原始状态,可分为固相法、液相法和气相法。
2、按照研究纳米粒子的学科分类,可分为物理方法、化学方法和物理化学方法。
3、按照制备的技术分类,可分为机械粉碎法、气体蒸发法、溶液法、等离子体合成法、激光合成法、溶胶凝胶法等。
本文着重针对纳米粒子生成机理与制备过程,粗略地分为物理方法、化学方法。
二、纳米颗粒的物理制备方法:(一)蒸发法制备纳米颗粒:1、定义:直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理或化学变化,在冷却过程中凝聚长大形成纳米粒子。
2、气相蒸发法原理:在高真空室中冲入低压的纯净惰性气体或反应气体,预蒸发的物质置于坩埚,通过加热装置逐渐加热蒸发,产生原物质烟雾。
由于惰性气体的对流,烟雾向上移动(与反应气体发生化学反应)并接近充液氮的冷却棒(77K)。
在蒸发过程中原物质原子与惰性气体碰撞损失能量冷却,造成局域的过饱和,形成均匀的成核过程,然后形成原子簇,长大成纳米粒子。
收集。
3、按照原料加热蒸发技术手段的不同,可将蒸发法分为:1)电阻加热;2)等离子喷射加热;3)高频感应加热;4)电子束加热;5)激光加热;6)电弧加热;7)微波加热。
(二)流动油面上的真空蒸发沉积法(VEROS):1、将物质在真空中连续地蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,制备纳米粒子。
2、优点:可以得到平均粒径小于10nm的各类金属粒子,粒子分布窄。
3、缺点:粒子太细,难以从油中分离。
(三)化学气相冷凝法(CVC):1、原理:将反应室抽真空,冲入少量的惰性气体,形成数百帕的真空度,(通入反应气体),在加热的反应器内得到目标产物或其前驱体,然后在对流的作用下,到达后部的骤冷转筒器(加入液氮作为冷却介质),转筒后面有一刮刀不断的移去沉积的纳米颗粒,可以提供一个干净的金属表面来进行连续的收集操作。
2、特点:粒径小、分布窄、避免团聚。
纳米粒子制备方法及材料调控性能纳米粒子是指直径在1-100纳米之间的颗粒,由于其特殊的尺寸效应和表面效应,具有许多独特的物理、化学和生物学性能,因此在许多领域都具有广阔的应用前景。
纳米粒子的制备方法和材料的调控性能是实现纳米技术应用的关键。
本文将介绍常见的纳米粒子制备方法以及材料调控性能的相关内容。
一、纳米粒子制备方法1. 化学合成法:化学合成法是最常用的纳米粒子制备方法之一。
通过控制反应条件、溶剂、催化剂等因素来合成所需尺寸和形状的纳米粒子。
常见的化学合成方法包括溶液法、沉淀法、气相法等。
其中,溶液法是最常用的方法之一,可以通过溶胶-凝胶、共沉淀等方式来制备纳米粒子,具有简单、灵活的优点。
2. 物理法:物理法是指通过物理手段制备纳米粒子的方法。
常见的物理法包括热蒸发法、气相凝聚法、溅射法等。
物理法制备的纳米粒子通常具有较高的纯度和均一性,但制备过程较为复杂,设备要求较高。
3. 生物合成法:生物合成法是利用生物体,如细菌、真菌、植物等来制备纳米粒子。
通过植物的吸收和叶绿体的光合作用,可以有效地实现对金属离子的还原和纳米粒子的形成。
生物合成法制备的纳米粒子具有环境友好、成本低廉等优点。
二、纳米材料的调控性能1. 形状调控:纳米粒子的形状对其性能具有重要影响。
通过调节合成方法、反应条件等可以控制纳米粒子的形状,如球形、棒状、片状等。
不同形状的纳米粒子具有不同的表面积和晶面结构,从而影响其光学、电学、催化等性能。
2. 尺寸调控:纳米粒子的尺寸对其性能同样具有重要影响。
尺寸的减小可以增加纳米粒子的比表面积,从而提高催化反应速率等。
通过调节合成条件和添加表面活性剂等手段,可以有效地调控纳米粒子的尺寸,从而实现对其性能的调控。
3. 表面调控:纳米粒子的表面是其与周围环境相互作用的重要界面,通过表面修饰和功能化可以调控纳米粒子的分散性、稳定性、吸附性等性能。
例如,通过聚合物包覆、功能化修饰等手段可以增加纳米粒子与基底的相容性,提高其分散性和稳定性。
纳米粒的制备方法
纳米粒的制备方法主要有以下几种:
1. 物理法:利用物理力学重力、离心力、超声波或磁力等对大颗粒物料进行机械分散,从而得到纳米级颗粒。
2. 化学法:通过化学反应,在适当的条件下,选择溶剂中的化学物质,使其发生反应生成纳米颗粒。
3. 蒸发法:通过溶剂的挥发和蒸发使颗粒逐渐凝聚形成纳米级颗粒。
4. 水热法:将反应物溶解在水中,在高温高压条件下进行水热反应,得到纳米颗粒。
5. 气相沉积法:在高温下,将反应物蒸发,通过充气使气体中的反应物在表面上凝聚形成纳米颗粒。
6. 溶剂热法:将反应物溶解在适当的溶剂中,通过加热使反应发生,得到纳米颗粒。
需要根据具体实践需求选择合适的制备方法,为获得所需纳米颗粒提供技术支持。
纳米微粒的制备方法应用化工技术08.2 刘碧08032050208物理制备方法早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法、分子束外延法等等。
近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度。
然后用物理气相沉积法在其表面上沉积一层银膜,经过热处理,即可得到银纳米颗粒的阵列。
中科院物理所开发了对玻璃态合金进行压力下纳米晶化的方法。
例如:ZrTiCuBeC玻璃态合金在6GPa和623K的条件下进行晶化,可以制备出颗粒尺寸小于5nm的纳米晶。
化学制备方法固相法固相法包括固相物质热分解法和物理粉碎法。
固相物质热分解法是利用金属化合物的热分解来制备超微粒,但其粉末易固结,还需再次粉碎,成本较高。
物理粉碎是通过机械粉碎、电火花爆炸等法制得纳米粒子。
其原理是利用介质和物料间相互研磨和冲击,以达到微粒的超细化,但很难使粒径小于100纳米。
机械合金法(MA)是1970年美国INCO公司Benjamin 为制作镍的氧化物粒子弥散强化合金而研制成功的一种新工艺。
该法工艺简单,制备效率高,并能制备出常规法难以获得的高熔点金属或合金纳米材料,成本较低但易引进杂质,降低纯度,颗粒分布也不均匀。
近年来,助磨剂物理粉碎法和超声波粉碎法的采用,可制得粒径小于100纳米的微粒。
但仍然存在上述不足,故固相法还有待继续深入研究。
气相法气相法在纳米微粒制造技术中占有重要地位,利用此法可以制造出纯度高、颗粒分布性好、粒径分布窄而细的纳米超微粒。
尤其是通过控制气氛,可制备出液相法难以制备的金属碳化物、硼化物等非氧化物的纳米超微粒.该法主要包括:真空蒸发—冷凝法在高纯惰性气氛下(Ar、He) ,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。
在1987年,Biegles等采用此法又成功制备了纳米级TiO2陶瓷材料。
制备纳米粒子的物理方法1 机械粉碎法机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。
物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。
一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。
理论上,固体粉碎的最小粒径可达0101~0105μm。
然而,用目前的机械粉碎设备与工艺很难达到这一理想值。
粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。
比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。
其中,气流磨是利用高速气流(300~500 m/ s)或热蒸气(300~450 ℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。
气流磨技术发展较快,20世纪80年代德国Alpine 公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。
降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到011μm以下。
除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。
因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。
2 蒸发凝聚法蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。
利用这种方法得到的粒子一般在5~100 nm之间。
蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。
而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。
3离子溅射法用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar (40~250Pa) ,两极间施加的电压范围为013~115 kV。
由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。
纳米微粒的制备方法
——摘选自《纳米微粒制备技术》张金才、王敏、戴静,1006- 4990( 2005) 11- 0007- 04
许多纳米微粒因其独特性质在材料学方面有着重要的用途对于各种生产和生活中非常有用的纳米微粒, 实现其制备方法的优化, 以及发展更加有利于实现工业化的制备方法, 目前仍是纳米材料工作者的主要研究方向。
纳米微粒的制备方法基本如下:
1.固相法:机械粉碎发、(室温)固相反应法
2.液相法:维乳液法、水热法、沉淀法(共沉淀法、均相沉淀法)、溶胶-凝胶法(Sol
-Gel法)、水解法
3.气象法:化学气象沉积法、气相冷凝法、溅射沉积法、气相燃烧法
4.其他方法:电化学法、微波诱导等离子体热解法、超声波震荡法、辐射合成法、喷
雾热解法
除以上方法外, 还有许多方法正在被尝试使用,比如超临界流体法、微波介电加热法、激光气相法等。
每种制备方法都有各自的特点, 但作为一种功能材料, 在研究其制备过程时, 不能不考虑其应用前景和工业化的可行性。
相信随着研究的不断深入, 纳米材料在实现其工业化过程中, 会在诸多方面得到更广泛的应用。