第8章第二节纳米粒子的制备方法
- 格式:pptx
- 大小:17.86 MB
- 文档页数:229
纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。
物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。
以下是关于纳米粒子的常见制备方法及其应用的详细介绍。
1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。
这种方法的特点是造粒速度快、控制性好,应用广泛。
例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。
2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。
这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。
例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。
3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。
这种方法具有操作简单、制备快速的优点。
例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。
4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。
这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。
5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。
这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。
6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。
这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。
例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。
7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。
这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。
纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。
以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。
材料科学中的纳米粒子制备方法纳米粒子是指直径在1 ~100纳米范围内的固体颗粒,其因具备独特的物理和化学特性被广泛应用于生物医学、光电信息、能源环保等领域。
然而,由于纳米粒子体积及表面积与其它材料相比很小,则制备上存在很多难点。
在本文中,我们将介绍一些常见的纳米粒子制备方法。
1. 物理制备物理制备法是利用物理原理实现纳米颗粒的制备,主要包括因缩小材料至纳米级别而可以获得新的物理和化学性质的光学,电化学,光电子和磁学制备方法。
其中,溅射、蒸汽沉积、气相沉积和机械合成法是比较常见的物理制备方法。
其中,溅射法和蒸汽沉积法通过溅射或升华材料的高能量粒子,在充气环境中使其沉积在基底上,由于粒子能量高、多孔,因此纳米材料制备效果好;而气相沉积法是利用高温作用下的化学反应合成纳米颗粒,比如有机金属气流能反应生成纳米颗粒;机械合成法是通过样品高速旋转或振动实现颗粒小化,比如超声波下机械合成,可实现纳米级别的颗粒制备。
2. 化学制备化学制备法主要是通过化学反应制备纳米颗粒,比较常见的化学合成方法有沉淀法、微乳法、反相微乳法和凝胶溶胶法等。
沉淀法主要是利用不同物质的沉淀性不同,沉积出不同的沉淀物来制备纳米粒子。
常见的有氢氧化铜沉淀制备纳米铜颗粒、硝酸钴沉淀法制备纳米碳酸钴颗粒等。
微乳法是通过在水/油/表面活性剂/共溶剂四成分体系中形成微乳相,产生小泡沫,混合反应,实现纳米颗粒制备。
其优势是可控性高、颗粒分散性好、反应速度快等。
反相微乳法与微乳法相似,但需要共溶剂的存在,有更高的制备效率,也可制备出具有复合结构和核壳结构的暗红宝石纳米粒子、铂/多层硫化钴/镍薄膜的复合纳米准晶体颗粒等。
凝胶溶胶法是通过化学或物理手段获得溶胶或凝胶样品,再通过适当的处理使其纳米化。
经过控制,可制备出不同粒径的纳米管、纳米线、多晶颗粒等不同结构的纳米材料。
3. 环境友好型制备近年来,由于传统的纳米粒子制备方法产生的工艺污染和亲水性等缺点,人们提出了一些环境友好型的制备方法,如微波辅助制备法、超临界流体法、生物法等。
物理实验技术的纳米粒子制备方法纳米科技是当今科技领域中备受关注的热点之一。
纳米材料由于其特殊的物理、化学和生物学性质,展示出与其宏观物体截然不同的特性,被广泛应用于能源、环境、医学等多个领域。
在纳米科技的研究中,纳米粒子制备是一个关键步骤,而物理实验技术则成为纳米粒子制备的有效手段。
一、溶胶凝胶法溶胶凝胶法是纳米粒子制备中常用的一种方法。
这种方法主要通过溶胶的凝胶过程来制备纳米粒子。
在溶胶凝胶法中,首先需要选择合适的溶胶,如金属盐溶胶、金属氧化物溶胶等。
然后,在适当的条件下,通过调节溶胶中的物理和化学参数,使溶胶凝胶成粒子,并进行后续的处理和表征。
溶胶凝胶法制备纳米粒子的优势在于可以制备多种材料的纳米粒子,并且具有制备过程简单、操作灵活的特点。
例如,可以通过控制溶胶中金属离子的浓度、pH 值、温度等参数,来调控制备纳米粒子的尺寸、形貌和分散性。
二、热雾化法热雾化法是一种通过物理方法将材料转化为纳米粒子的技术。
这种方法通过将固体材料加热至熔点或沸点,并利用热膨胀效应,迅速将材料转变为微小颗粒。
热雾化法主要有热气胶凝法和电弧法两种。
在热气胶凝法中,首先将材料加热至高温区域,使其瞬间转化为气态,然后通过快速冷却将气态材料凝固为纳米粒子。
而电弧法则是利用高温电弧将金属材料蒸发,并在气相中形成纳米粒子。
热雾化法制备纳米粒子的优点是得到的纳米粒子尺寸均一、分散性好、纯度高,并且可以制备大量的纳米粒子。
缺点是制备过程中需要高温,可能会对材料的性质产生一定影响。
三、溅射法溅射法是一种将固态材料薄膜沉积到基底上并制备纳米粒子的方法。
在溅射法中,先将固体材料制备成靶材,然后使用高能粒子轰击靶材,通过溅射的方式将材料沉积到基底上形成薄膜。
接着,经过后续处理,将薄膜转变为纳米粒子。
溅射法制备纳米粒子的特点在于制备过程可控性强,可以通过调节工艺参数如靶材的成分、粒度、功率密度等来控制纳米粒子的尺寸和形貌。
此外,溅射法还具有制备材料纯度高、结晶性好等优点。
纳米粒子合成及制备方法详解引言:纳米科学与技术作为近年来迅速发展的一门跨学科前沿科技,已经在能源、信息、材料等诸多领域展示出巨大潜力和广阔前景。
纳米粒子作为纳米科学的基本研究对象和应用载体,在纳米技术的发展中发挥着重要的作用。
本文将详细介绍纳米粒子的合成及制备方法,希望能对相关领域的研究者和科技工作者有所帮助。
一、纳米粒子的概念和应用纳米粒子是指其尺寸在纳米尺度范围内的微观颗粒,一般指的是直径小于100纳米的粒子。
由于纳米颗粒具有较大的比表面积和特殊的物理、化学性质,因此在材料科学、生物医学、环境科学等领域具有广泛的应用潜力。
例如,纳米金属颗粒可用于催化、传感、光学等领域;纳米二氧化硅颗粒可应用于材料增强剂、药物传递等领域。
因此,精确控制纳米粒子的合成具有重要意义。
二、纳米粒子的合成方法纳米粒子的合成方法包括物理法、化学法和生物法三种。
下面将详细介绍各种方法的原理和应用。
1. 物理法物理法合成纳米粒子主要包括溅射、热蒸发、气相法等。
其中,溅射法是通过高能束流轰击目标材料,使其产生离子、激发原子等,然后粒子重新沉积到基底上形成纳米粒子。
热蒸发则是将目标材料加热蒸发,蒸发产生的蒸汽凝结成纳米粒子。
气相法是通过控制气体中原子或分子的浓度等条件,使其发生聚集形成纳米粒子。
2. 化学法化学法合成纳米粒子常用的方法有溶胶-凝胶法、沉积法、还原法等。
溶胶-凝胶法是将溶胶中的金属离子或化合物在合适的条件下凝胶成固体,然后通过烧结或后处理得到纳米粒子。
沉积法是通过在基底上沉积材料薄膜后,利用溶剂或气体处理得到纳米粒子。
还原法是通过还原剂将金属离子还原为金属纳米粒子的方法。
3. 生物法生物法合成纳米粒子是利用生物体内的生物酶、微生物、植物等作为催化剂,通过调控生物体内的酶活性和环境条件,合成纳米粒子。
生物法合成纳米粒子具有绿色、环保的特点,并且操作简便、成本低廉。
三、纳米粒子的制备方法纳米粒子的制备方法主要包括溶剂法、凝胶法、气相法等。
制备纳米粒子的化学方法随着科技的不断发展,纳米技术已经成为了当今社会的一个热门话题。
在这一领域中,制备纳米粒子是最为基础和常见的操作之一。
本文将为大家介绍一些常用的制备纳米粒子的化学方法,以及其原理和应用。
1. 化学还原法化学还原法是制备纳米粒子的一种常见方法。
其原理是通过还原剂将金属离子还原成金属粒子。
其制备步骤如下:首先,将金属离子溶解在溶液中,加入适量的还原剂;其次,加热反应体系,这样可以加快反应速率;最后,洗涤、分离及干燥得到所需的纳米金属粉末。
化学还原法的优点是制备简单、工艺流程短,稳定性好。
另外,该方法适用于大部分金属离子,因此在制备纳米金属粉末时,可根据需求选择不同的金属离子。
2. 氧化物热分解法氧化物热分解法是利用金属氧化物在高温条件下分解生成金属粒子的方法。
通常将金属盐在空气中热处理。
其制备步骤如下:首先,将金属盐加入反应瓶中,调节反应体系的pH值;其次,在制备过程中,将盐加热至一定温度使其分解,气体产物通过冷凝管冷却后得到水,而生成的金属粉末在瓶底沉淀;最后,去除水,将金属粉末用洗涤剂和乙醇洗涤,使其纯化,获得所需的纳米金属粉末。
氧化物热分解法的优点是制备的纳米颗粒单分散性好。
此外,该方法应用与多种金属离子,且不需使用昂贵的还原剂,因此其成本较低。
3. 沉淀法沉淀法是将溶液中的金属阳离子通过定量沉淀生成金属粒子。
其步骤如下:首先将金属盐用水或有机溶剂溶解在溶液中,然后加入络合剂,将金属阳离子络合成配合物;其次,加入氢氧化钠等碱性沉淀剂,使配合物沉淀,生成纳米金属粉末;最后,沉淀后用水洗涤,将金属粉末纯化干燥,得到所需的纳米金属粉末。
沉淀法的优点是制备简单,并且适用于多种金属离子,但沉淀法存在着分散性差的问题,因此其分散效果并不理想。
结论通过本文的介绍,我们不难发现制备纳米粒子是一个较为复杂的过程,需要熟知各种方法的原理和应用。
在制备过程中,我们需要注意各种反应条件的调节,以达到最好的制备效果。
纳米粒子的制备和应用技巧纳米技术是近年来发展最为迅猛的科技领域之一,其在各个领域都展示出了强大的应用潜力。
而纳米粒子的制备和应用技巧则是实现纳米技术应用的关键步骤之一。
本文将针对纳米粒子的制备方法及其在不同领域中的应用技巧进行介绍,以期为读者提供一定的参考和指导。
纳米粒子的制备方法多种多样,常见的方法包括物理方法、化学方法和生物合成法等。
物理方法主要包括凝聚态物理方法、气相法等,通过物理手段制备出纳米尺度的颗粒。
化学方法主要包括溶剂热法、沉淀法、蒸汽相法等,通过控制化学反应条件制备出纳米粒子。
生物合成法则利用生物体内的生物学活性分子在特定条件下合成纳米粒子。
不同的制备方法在纳米粒子的形状、尺寸及性质上有所差异,选择合适的制备方法对于实现特定应用目标至关重要。
在纳米粒子的应用方面,由于其独特的尺寸效应和表面效应,具备了许多传统材料所不具备的优异性能。
其中,纳米粒子在能源领域的应用尤为突出。
纳米粒子作为催化剂可以提高能源转换效率、降低能源消耗和污染物排放。
此外,纳米粒子在光伏、光催化和电池等领域也有广泛的应用。
例如,利用纳米粒子制备的高效催化剂可以大幅度提高氢能源的制备效率,实现清洁能源的可持续发展。
在医学领域,纳米粒子也发挥着重要作用。
纳米粒子可以作为药物载体,实现药物的靶向输送并提高疗效,同时也减少了药物对正常细胞的损伤。
此外,纳米粒子还可以作为成像剂,在肿瘤的早期诊断和治疗中发挥重要的作用。
纳米粒子通过改变其表面性质、尺寸和结构,可以实现对肿瘤细胞的高选择性,从而提高治疗效果。
纳米粒子还广泛应用于环境保护和食品安全等领域。
纳米材料可以用于水处理、废气净化和土壤修复等环境保护工作,通过纳米粒子的吸附和催化作用,有效地去除有害物质和污染物,从而净化环境。
同时,纳米粒子也可以作为食品安全领域的重要组成部分,例如利用纳米材料对食品质量进行监测和检测,提高食品安全性。
在纳米粒子的应用中,需要注意一些技巧和考虑因素。
一、纳米粒子的物理制备方法1.1 机械粉碎法机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。
物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。
一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。
理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。
然而,用目前的机械粉碎设备与工艺很难达到这一理想值。
粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。
比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。
其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。
气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。
降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。
除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。
因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。
1.2 蒸发凝聚法蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。
利用这种方法得到的粒子一般在5~100nm之间。
蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。
而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。
1.3 离子溅射法用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。
由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。
纳米微粒的制备方法应用化工技术08.2 刘碧08032050208物理制备方法早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法、分子束外延法等等。
近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度。
然后用物理气相沉积法在其表面上沉积一层银膜,经过热处理,即可得到银纳米颗粒的阵列。
中科院物理所开发了对玻璃态合金进行压力下纳米晶化的方法。
例如:ZrTiCuBeC玻璃态合金在6GPa和623K的条件下进行晶化,可以制备出颗粒尺寸小于5nm的纳米晶。
化学制备方法固相法固相法包括固相物质热分解法和物理粉碎法。
固相物质热分解法是利用金属化合物的热分解来制备超微粒,但其粉末易固结,还需再次粉碎,成本较高。
物理粉碎是通过机械粉碎、电火花爆炸等法制得纳米粒子。
其原理是利用介质和物料间相互研磨和冲击,以达到微粒的超细化,但很难使粒径小于100纳米。
机械合金法(MA)是1970年美国INCO公司Benjamin 为制作镍的氧化物粒子弥散强化合金而研制成功的一种新工艺。
该法工艺简单,制备效率高,并能制备出常规法难以获得的高熔点金属或合金纳米材料,成本较低但易引进杂质,降低纯度,颗粒分布也不均匀。
近年来,助磨剂物理粉碎法和超声波粉碎法的采用,可制得粒径小于100纳米的微粒。
但仍然存在上述不足,故固相法还有待继续深入研究。
气相法气相法在纳米微粒制造技术中占有重要地位,利用此法可以制造出纯度高、颗粒分布性好、粒径分布窄而细的纳米超微粒。
尤其是通过控制气氛,可制备出液相法难以制备的金属碳化物、硼化物等非氧化物的纳米超微粒.该法主要包括:真空蒸发—冷凝法在高纯惰性气氛下(Ar、He) ,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。
在1987年,Biegles等采用此法又成功制备了纳米级TiO2陶瓷材料。