《微波技术与天线实验》2
- 格式:doc
- 大小:249.50 KB
- 文档页数:6
微波技术与天线实验指导书南京工业大学信息科学与工程学院通信工程系目录实验一微波测量系统的熟悉和调整 - 2 -实验二电压驻波比的测量 - 9 -实验三微波阻抗的测量与匹配 - 12 -实验四二端口微波网络阻抗参数的测量 - 17 -实验一微波测量系统的熟悉和调整一、实验目的1. 熟悉波导测量线的使用方法;2. 掌握校准晶体检波特性的方法;3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE10波的电场分量沿轴向方向上的分布。
二、实验原理1. 传输线的三种状态对于波导系统,电场基本解为(1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。
在x=a/2处其模值为:最大值和最小值为:(2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。
在x=a/2处由此可见,行驻波由一行波与一驻波合成而得。
其模值为:可得到最大值和最小值为:(3) 终端接匹配负载时,导行波仅有入射波而无反射波――行波状态。
其模值为由上述可知,在测量线的终端分别接上短路器、任意负载和匹配负载,移动探针位置,都可以观测到测量线中不同位置的电场强度(复振幅大小)对应的电流指示读数。
2. 由测量线的基本工作原理可知,指示器的读数1是探针所在处|E|对应的检波电流。
任一位置处|E|与I的对应关系应视检波晶体二极管的检波特性而定。
一般,这种关系可通过对二极管定标而确定。
所谓定标,就是找出电场的归一化值|E’|与I的对应关系。
我们知道,当测量线终端短路时:如果我们取任意一零点(波节点)作为坐标起始位置,且坐标用d表示,则:晶体二极管上的检波电压u正比于探针所在处|E’|。
所以上式可用u的归一化值u’来表示。
即:晶体二极管的检波电流I与检波电压u之间的关系为:式中c为比例常数,n为检波率。
式中c’为比例常数。
3. 当测量线的探针插入波导时,在波导中会引入不均匀性,从而影响系统的工作状态。
探针在开槽线中与电场耦合,其效果相当于在等效传输线上并联了一个探针支路。
太原理工大学现代科技学院微波技术与天线课程实验报告专业班级学号姓名指导教师实验名称 和差器的测量 同组人 专业班级 学号 姓名 成绩 和差器是一个四端口网络,外形似两个T 字,故有双T 和魔T 之称。
一种同轴和差器是由一个两路功分器与一个平衡器对接组成,两对接处呈两个输入/输出口。
功分器的一路称和支路,平衡器的一路为差支路。
当两路信号由两个输入/输出口输入时,和支路输出为两信号的和,差支路输出的两信号的差。
而当信号由和支路输入时,信号分为两路由输入/输出口输出,两路信号是同相的,信号不到差支路。
当信号由差支路输入时,信号分为两路由输入/输出口输出,两路信号是反相的,信号不到和支路。
和差器的和与差两路之间的隔离度是关键的指标,又称共模抑制比。
因为两路信号很难真正的消到零,通常只能消到-30~-40dB 。
一、实验目的 了解和差器的外部特征,知道各项指标的测量方法。
二、实验准备 PNA362X 及全套附件,两路功分器一只,负载两只。
按功分器的使用频率设置扫频方案。
点数不要超过21点,否则数据太多。
三、测量步骤 1、驻波比测量 仪器按上图测回损连接,电桥测试端口街上双阳连接器一只,即以双阳为新的测试端口,按执行键校开路; 在双阳口上接上阴短路器,按执行键校短路; 拔下短路器,接上和支路输入插座,其他支路端接匹配负载。
此时屏幕上已出现输入阻抗轨迹,看不清时可按↓键换挡; 按菜单键,选驻波返回。
看不清是可按↓键换挡; 将差支路接到电桥上,和支路改接负载,其他不变。
记录。
2、插损的测量……………………………………装………………………………………订…………………………………………线………………………………………一起按测插损连接,在仪器输入与输出口上各接一根短电缆。
两电缆末端各接一只10dB衰减器,再用一个双阴连接起来;按执行键校直通,拔下双阴,将两根电缆带衰减器的一端,分别接到和差器的和支路与差支路。
实验报告实验课程:微波技术与天线学生姓名:学号:专业班级:2011年 6月3日目录实验一微波测量系统的认识及功率测量实验二微波波导波长、频率的测量、分析和计算实验三微波驻波比、反射系数及阻抗特性测量、分析和计算实验四微波网络参数的测量、分析和计算实验一微波测量系统的认识及功率测量一、实验目的:(1)熟悉基本微波测量仪器;(2)了解各种常用微波元器件;(3)学会功率的测量。
二、实验内容:1、基本微波测量仪器微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。
它主要包括微波信号特性测量和微波网络参数测量。
微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。
微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。
测量的方法有:点频测量、扫频测量和时域测量三大类。
所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。
图1-1 是典型的微波测量系统。
它由微波信号源、调配器/ 衰减器/隔离器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。
图1-1 微波测量系统2、常用微波元器件简介微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T 接头(3)H-T 接头(4)双T 接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器3、功率测量按图1-1 所示连接微波测量系统,在终端处接上微波小功率计探头,接通电源开关,调整衰减器,观察微波功率计指示并作相应记录。
三、实验数据及处理1、实验数据如下表:2、衰减器指示与功率指示的关系曲线四、思考题简述微波小功率计探头的工作原理。
微波技术与天线仿真实验报告.docx《微波技术与天线》HFSS仿真实验报告实验⼆H⾯T型波导分⽀器设计⼀.仿真实验内容和⽬的使⽤HFSS设计⼀个带有隔⽚的H⾯T型波导分⽀器,⾸先分析隔⽚位于T型波导正中央,在8~10GHz的⼯作频段内,波导输⼊输出端⼝的S参数随频率变化的关系曲线以及10GHz时波导表⾯的电场分布;然后通过参数扫描分析以及优化设计效⽤分析在10GHz处输⼊输出端⼝的S参数随着隔⽚位置变化⽽变化的关系曲线;最后利⽤HFSS优化设计效⽤找出端⼝三输出功率是端⼝⼆输出功率两倍时隔⽚所在位置。
⼆.设计模型简介整个H⾯T型波导分为两个部分:T型波导模型,隔⽚。
见图1。
图1三.建模和仿真步骤1.运⾏HFSS并新建⼯程,把⼯程另存为Tee.hfss。
2.选择求解类型:主菜单HFSS→solution type→driven modal,设置求解类型为模式驱动。
3.设置长度单位:主菜单modeler→units→in,设置默认长度单位为英⼨。
4.创建长⽅体模型1)从主菜单选择draw→box,进⼊创建长⽅体模型的⼯作状态,移动⿏标到HFSS⼯作界⾯的右下⾓状态栏,在状态栏输⼊长⽅体的起始点坐标为(0,-0.45,0),按下回车键确认之后在状态栏输⼊长⽅体的长宽⾼分别为2,0.9,0.4。
2)再次按下回车键之后,在新建长⽅体的属性对话框修改物体的位置,尺⼨,名称,材料和透明度等属性。
在attribute选项卡中将长⽅体名称项(name)修改为Tee,材料属性(material)保持为真空(vacuum)不变,透明度(transparent)设置为0.4。
3)设置端⼝激励4)复制长⽅体第⼆个和第三个臂5)合并长⽅体5.创建隔⽚1)创建⼀个长⽅体并设置位置和尺⼨2)执⾏相减操作上诉步骤完成后即可得到H⾯T型波导的三维仿真模型图如图2所⽰图26.分析求解设置1)添加求解设置:在⼯程管理窗⼝中展开⼯程并选中analyse节点,单击右键,在弹出的快捷菜单中选择add solution type并设置相关参数,完成后⼯程管理窗⼝的analyse节点下会添加⼀个名称为setup1的求解设置项2)添加扫频设置:在⼯程管理窗⼝中展开analysis节点,右键单击前⾯添加的setup1求解设置项,在弹出菜单中单击add frequency sweep,并设置sweep name,sweep type,等参数。
《微波技术与天线实验》课程实验报告实验二:集总参数滤波器设计学院通信工程学院班级13083414学号13081405姓名田昕煜指导教师魏一振2015年11 月11 日实验名称:1.实验目的一:通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来熟悉MWO2003的各种基本操作。
二:本次实验我们需要用到MWO2003的优化和Tune等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧2.实验内容设计一低通滤波器要求如下:1、通带频率范围:0MHz~400MHz2、增益参数 S 21 :通带内 0MHz~400MHz S 21 >--0.5dB3、阻带内 600MHZ 以上 S 21 <-50dB4、反射系数 S 11 :通带内 0MHz~400MHz S 11 <-10dB3.实验结果电路设计如下图然后在软件中按照设计的要求做如下的优化要求然后点击运行就可以得到仿真的结果了,我们还可以对结果进一步进行优化,利用优化选项,使用随机优化,点击开始优化,可以是结果更加理想。
之后再点开Tuner微调,多次调试后发下如下参数比较合理得到仿真结果如下4.思考题(1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤?首先需要改变电路图的结构,如下图将原来的电容接地改成电感接地。
之后在优化参数进行重新设置。
也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。
原来的600~MAX的改为0~600MHZ的频率范围。
如下图之后重复上述仿真可以得到如下结果可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。
反射系数在某个区域内比较符合。
(2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)利用TUNE进行略微条件,观察波形的变化。
可以总结出电容中:调节电容C1(位于最左边的电容)对波形的影响最大。
电感中:调节电感L3(位于最中间的电感)对波形的影响最大。
《微波技术与天线实验》课程实验报告
实验二:
学院通信工程
班级13083414
学号13041403
姓名李倩
指导教师魏一振
2015年11 月12 日
实验名称:集总参数滤波器设计
1.实验目的
(1)通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来进一步熟悉MWO2003 的各种基本操作。
(2)本次实验我们需要用到MWO2003 的优化和Tune 等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧。
2.实验内容
设计一个九级集总参数低通滤波器,要求如下:
通带频率范围:0MHz~400MHz
增益参数S 21:通带内0MHz~400MHz S 21 >--0.5dB
阻带内600MHZ以上S 21 <-50dB
反射系数S 11:通带内0MHz~400MHz S 11 <-10dB 3.实验结果
实验电路原理结构图:
运行结果:
4.思考题
(1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤?
带宽和截止频率参数的设计、结构图的设计需要改变,所以原理图属性设置、画结构图、元件参数设置、参数优化步骤需要改变。
首先需要改变电路图的结构,如下图
将原来的电容接地改成电感接地。
之后在优化参数进行重新设置。
也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。
原来的600~MAX的改为0~600MHZ的频率范围。
如下图
之后重复上述仿真可以得到如下结果
可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。
反射系数在某个区域内比较符合。
(2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)在优化过程中,电容c1和c0的参量调节对优化结果影响最大。