多倍体育种和单倍体育种的比较
- 格式:ppt
- 大小:140.50 KB
- 文档页数:1
第九章倍性育种植物的倍性育种是植物育种的重要研究内容,主要包括单倍体育种和多倍体育种。
1.单倍体的基因呈单存在,加倍后获得的个体基因型高度纯合。
而常规育种需经多代自交才能获得基因型基本纯合的个体。
因此,单倍体育种可缩短育种的年限。
2.同源多倍体较二倍体具有某些器官增大或代谢产物含量提高的特点,对于以收获营养器官为目的的作物及无性繁殖作物有极好的育种利用价值。
3.人工创造多倍体也可以将野生种与栽培种的遗传物质重组,育成新型作物。
第一节多倍体育种多倍体:是指体细胞中有3个或3个以上染色体组的植物个体。
多倍体广泛存在于植物中。
据估计被子植物中约 50%以上是多倍体,禾本科中有75%,豆类中有18%,草类中有的物种80%为多倍体。
蓼科、景天科、蔷薇科、锦葵科、禾本科和鸢尾科中多倍体最多。
自然界存在的多倍体主要是异源多倍体,同源多倍体较少。
一、多倍体的种类、起源及特点自然界的多倍体是由二倍体进化而来的。
二倍体物种的染色体加倍,不同二倍体物种间杂交,染色体自发加倍是多倍体产生的主要来源(图9-1)。
(一)多倍体的来源多倍体的发生可通过二倍体的染色体数目加倍形成,也可经不同种属间杂交,而后经染色体数目加倍形成。
植物体细胞染色体数目加倍主要通过下列三种途径产生。
1 .合子染色体数目加倍一般是二倍体产生少数四倍体细胞或四倍体组织。
2.分生组织染色体加倍体细胞在有丝分裂过程中受外界环境的影响而发生异常,染色体正常复制、分裂,但细胞不分裂,导致细胞染色体数目加倍,染色体数目加倍的细胞发育成多倍性组织和器官。
3.不减数配子的受精结合(二)多倍体的类别根据多倍体染色体组的组成特点可将多倍体分为同源多倍体、异源多倍体、同源异源多倍体、节段异源多倍体、异数的(混合的)异源多倍体和倍半二倍体等多种类型。
育种上应用的主要是同源多倍体和异源多倍体。
1 .同源多倍体指体细胞中染色体组相同的多倍体,如同源四倍体黑麦(RRRR。
同源多倍体与二倍体相比,主要有下列两方面的效应:(1)生物学性状的变化。
一、诱变育种:诱变育种是指利用人工诱变的方法获得生物新品种的育种方法原理:基因突变方法:辐射诱变,激光、化学物质诱变,太空(辐射、失重)诱发变异→选择育成新品种优点:能提高变异频率,加速育种过程,可大幅度改良某些性状;变异范围广。
缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。
改良数量性状效果较差。
二、杂交育种:杂交育种是指利用具有不同基因组成的同种(或不同种)生物个体进行杂交,获得所需要的表现型类型的育种方法。
其原理是基因重组。
方法:杂交→自交→选优优点:能根据人的预见把位于两个生物体上的优良性状集于一身。
缺点:时间长,需及时发现优良性状。
三、单倍体育种:单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其染色体加倍,从而获得所需要的纯系植株的育种方法。
(主要是考虑到结合中学课本,经查阅相关资料无误。
)其原理是染色体变异。
优点是可大大缩短育种时间。
原理:染色体变异,组织培养方法:选择亲本→有性杂交→F1产生的花粉离体培养获得单倍体植株→诱导染色体加倍获得可育纯合子→选择所需要的类型。
优点:明显缩短育种年限,加速育种进程。
缺点:技术较复杂,需与杂交育种结合,多限于植物。
四、多倍体育种:原理:染色体变异(染色体加倍)方法:秋水仙素处理萌发的种子或幼苗。
优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。
缺点:只适于植物,结实率低。
五、细胞工程育种:细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。
原理:细胞的全能性方法:(1)植物:去细胞壁→细胞融合→组织培养(2)动物克隆:核移植→胚胎移植优点:能克服远缘杂交的不亲和性,有目的地培育优良品种。
动物体细胞克隆,可用于保存濒危物种、保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等。
缺点:技术复杂,难度大;它将对生物多样性提出挑战,有性繁殖是形成生物多样性的重要基础,而“克隆动物”则会导致生物品系减少,个体生存能力下降。
染色体变异与五种育种方式一、常见的一些关于单倍体与多倍体的问题⑴一倍体一定是单倍体吗?单倍体一定是一倍体吗?⑵二倍体物种所形成的单倍体中,其体细胞中只含有一个染色体组,这种说法对吗?为什么?⑶如果是四倍体、六倍体物种形成的单倍体,其体细胞中就含有两个或三个染色体组,我们可以称它为二倍体或三倍体,这种说法对吗?(4)单倍体中可以只有一个染色体组,但也可以有多个染色体组,对吗?二、多倍体育种方法:三、单倍体育种方法:四、几种育种方式的总结:1、杂交育种(一)概念:将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。
(二)原理:基因重组。
(三)过程:选择具有不同优良性状的亲本通过杂交获得F1,F1连续自交或杂交,从中筛选获得需要的类型。
(四)应用:改良作物品质,提高农作物单位面积产量;培育优良的家畜、家禽。
2、诱变育种(一)概念:利用物理因素或化学因素处理生物,使生物发生基因突变,从而获得优良变异类型的育种方法。
(二)原理:基因突变。
(三)特点:可以提高突变率,在较短时间内获得更多优良变异类型。
(四)应用:主要用于农作物育种和微生物育种。
五、染色体组数目的判断(1)细胞中同种形态的染色体有几条,细胞内就含有几个染色体组 。
问:图中细胞含有几个染色体组?(图一)(2) 根据基因型判断细胞中的染色体数目,根 据细胞的基本型 确定控制每一性状的基因出现的次数,该次数就等于染色体组数。
问:图中细胞含有几个染色体组? (图二)(3)根据染色体数目和染色体形态数确定染色体数目。
染色体组数=细胞内染色体数目/染色体形态数。
果蝇的体细胞中含有8条染色体,4对同源染色体,即染色体形态数为4六、三倍体无子西瓜的培育过程图示:注:亲本中要用四倍体植株作为母本,二倍体作为父本,两次使用二倍体花粉的作用是不同的。
单倍体与多倍体的区别二倍体三倍体多倍体(a +b )生物单倍体(N=ax):单倍体(N=bx)①由合子发育来的个体,细胞中含有几个染色体组,就叫几倍体; ②而由配子直接发育来的,不管含有几个染色组,都只能叫单倍体 。
关于单倍体和多倍体及育种⽅法关于单倍体和多倍体及育种⽅法临洮⽟井职专黎伟 7305021.染⾊体组数的判断1.1根据染⾊体的形态判断:由染⾊体组的定义可知:染⾊体组是由⾮同源染⾊体组成的,不含同源染⾊体,⼀个染⾊体组是由⾮同源染⾊体组成的最⼩组合,细胞中含有⼏条同源染⾊体就含有⼏个染⾊体组。
如图1.2 根据基因数判断染⾊体祖数,细胞或⽣物体中,控制同⼀性状的基因出现⼏次,该细胞或⽣物体中含有⼏个染⾊体组, AAABBb含有三个染⾊体组,aaAABBbb含有四个染⾊体组。
1.3 根据染⾊体数和染⾊体形态数推算染⾊体组数,根据染⾊体组数=染⾊体数/染⾊体形态数,1.4 根据染⾊体数和染⾊体组的组成推算,染⾊体组数=染⾊体总数/染⾊体组中的染⾊体数。
普通⼩麦细胞中有42条染⾊体,每个染⾊体组由7条染⾊体组成,该⼩麦细胞中含有42/7=6个染⾊体组。
2.⽣物⼏倍体的判断⽣物体的倍体类型是根据体细胞中染⾊体组数划分的,同时还要考虑⽣物个体的来源,判断⽅法如下:2.1 如果个体由受精卵或合⼦发育的,⽣物体细胞中含有⼏个染⾊体组就属于⼏倍体。
2.2 如果⽣物是由⽣殖细胞发育的,⽆论体细胞中含有⼏个染⾊体组,都叫做单倍体。
3.同源染⾊体的判断根据⼈教版⾼⼆⽣物(⼀)的叙述:⼤⼩和形态相同,⼀条来⾃于⽗⽅、⼀条来⾃于母⽅的两条染⾊体称为同源染⾊体,因此,识别是否是同源染⾊体⼀看⼤⼩和形态是否相同,⼆看是否来⾃⽗母双⽅,另外同源染⾊体还有⼀个显著的特征在减数分列时能联会配对,这是同源染⾊体最本质的特征。
同源染⾊体的判断不仅看⼤⼩、形态、来源,还要看能否配对。
3.1单倍体的形成及可育性单倍体的形成有两种途径,⾃然形成和⼈⼯获得,真菌低等藻类苔藓蕨类植物中配⼦在⾃然条件下发育成单倍个体,少数种⼦植物,如棉花、⽔稻、甜菜、⼤麦、油菜、⼩麦和西红柿中发现过单倍体;动物果蝇、蛙、⼩⿏、鸡和膜翅昆⾍蜜蜂、蚂蚁黄蜂中的孤雌⽣殖形成单倍体。
传统与现代植物育种方法的优缺点,分子育种的进展生物工程系马云海学号:8201203077摘要: 植物育种是一门很复杂的技术,针对不同的植物应采用不同的育种方式,要对各种育种方式进行比较,选择简易、可操作的方式。
近年来, 随着基因组测序等多种技术实现突破, 基因组学、表型组学等多门“组学”及生物信息学得到迅猛发展, 作物育种理论和技术也发生了重大变革。
以分子标记育种、转基因育种、分子设计育种为代表的现代作物分子育种技术逐渐成为了全世界作物育种的主流,本文在比较传统育种和现代育种的优缺点, 由于传统育种工作依赖于育种家的经验和机遇, 往往存在很大的盲目性和不可预测性, 而分子育种能显著提高育种效率, 为保障我国粮食安全、生态安全提供更强有力的技术支撑。
关键词: 植物育种; 传统植物育种;; 分子育种;增加作物单产对于社会稳定与可持续发展具有重要的战略意义。
良种是一种最为经济有效的增产因素,而良种的获得与作物育种方法的不断改进密不可分。
随着人类文明的不断进步,作物育种经历了一个漫长的发展过程,从最初的系统选育,到后来的杂交育种、杂交优势育种、诱变育种、分子标记辅助育种、转基因育种等。
从20世纪60年代起,我国进入了现代多样化育种阶段,方法的创新呈现出快速发展态势,现在基本形成了以杂交育种方法为主,多种育种方法并存的局面。
近些年来,生物技术广泛应用于作物育种当中,展示了其特有的作用和前景,如分子标记辅助育种和转基因育种,但是这些技术或方法在育种中的应用还处于起步阶段,还有很多基础理论和具体应用技术需要解决。
以水稻为例,目前已拥有较完整全基因组数据、高密度分子标记和转化技术等,但仍然缺乏品质、产量、抗性等复杂性状综合改良的高效育种策略;目前采用的转化方法对外源基因在受体植物上的整合是随机的且单基因导入,在定点整合和多基因导入技术等方面有待进一步改进和提高。
同时,作物育种还存在育种周期长、公共平台和共享资源建设不够、遗传基础狭窄等一系列其他问题。
基因突变及其他变异第2节染色体变异核心素养能力培优课堂对点素养达标课时作业核心素养能力培优知识点一 染色体数目的变异1.细胞内 的增加或减少。
2.细胞内染色体数目以 为基数成倍地增加或成套地减少。
(1)染色体组:①从组成上看:组成一个染色体组的所有染色体,互为 ,在一个染色体组中无 存在。
②从形式上看:一个染色体组中的所有染色体的 各不相同。
个别染色体 一套完整的非同源染色体 非同源染色体 同源染色体 形态、 大小(2)二倍体和多倍体:①概念:②多倍体的特点:茎秆粗壮, 都比较大, 等营养物质的含量都有所增加。
叶片、果实和种子 糖类和蛋白质③多倍体形成原因:在 或 处理的情况下,抑制了 的形成,导致染色体不能移向细胞两极,从而引起细胞内染色体数目加倍。
染色体数目加倍的细胞继续进行有丝分裂,将来就可能发育成多倍体植株。
低温 秋水仙素 纺锤体(3)单倍体: ①概念:体细胞中的染色体数目与本物种 数目相同的个体。
②特点: 。
配子染色体 植株长得弱小,而且高度不育3.染色体变异与生物育种:(1)多倍体育种: ①育种原理: 。
②处理材料: 。
③处理方法:。
④实例:三倍体无子西瓜培育过程染色体变异 萌发的种子或幼苗 用秋水仙素或低温处理(2)单倍体育种: ①原理:。
②方法:③优点:所得个体均为 ,明显 。
④缺点:需要和 育种配合使用,技术复杂。
染色体变异 纯合子 缩短育种年限 杂交1.染色体组数的判断:(1)根据染色体形态判断:①依据:细胞内形态相同的染色体有几条,则含有几个染色体组。
②实例:如图所示的细胞中,形态相同的染色体a中有4条,b中有3条,c中两两相同,d中各不相同,则可判定它们分别含4个、3个、2个、1个染色体组。
(2)根据基因型判断:①依据:控制同一性状的基因出现几次,就含几个染色体组(每个染色体组内不含等位或相同基因)。
②实例:据图可知,e~h中依次含4、2、3、1个染色体组。
(3)根据染色体数和形态数的比值判断:①依据:染色体数与形态数的比值意味着每种形态染色体数目的多少,每种形态的染色体有几条,即含几个染色体组。