对称性分岔理论基础(唐云著)思维导图
- 格式:xmin
- 大小:6.47 KB
- 文档页数:1
图形推理第一节平面规律推理概述题目特征:题干给出若干个图形,要求考生通过观察找出图形之间排列的规律,选出符合规律的一项。
解题思维:(1)观察给出图形构成的特点;(2)根据特点总结图形间的规律;(3)根据规律结合选项推出答案。
确定图形构成的特点是解答图形推理的起点,具体如下:(1)图形组成元素相同,一般考查位置规律;(2)图形组成元素相似,一般考查样式规律;(3)图形组成元素不同,一般考查属性、数量及其他特殊规律。
第二节位置规律位置规律是图形推理的一个高频命题规律。
题型特征:图形元素组成完全相同常考的位置规律有三种:平移、旋转、翻转考点一:平移平移是指图形中的某一个或几个元素沿特定方向进行规律移动。
常见考法:(1)平移方向。
①直线方向:上下平移、左右平移②时针方向:顺时针平移、逆时针平移(2)平移的步长(移动几格):恒定、递增(递减)提示:遇到平移问题,一般先判断平移的方向(怎么走),后判断平移的步长(走几步)。
考点二:旋转旋转是指图形在平面上按特定规律进行转动。
常见考法:(1)旋转的方向(怎么转):顺时针旋转、逆时针旋转。
(2)旋转的角度(转几度):恒定、规律变化。
考点三:翻转翻转是指图形仅痛殴平面转动无法变化得到,必须经过类似于"翻书"的动作才能得到。
常见考法:(1)翻转的方向(怎么翻):关于横轴(x轴)进行上下翻转,或关于纵轴(y轴)进行左右翻转,或关于自身对称轴进行自身对折。
(2)翻转和旋转的区分:利用"时针法"进行判断。
第三节样式规律样式规律是图形推理的一个高频命题规律。
题型特征:图形元素组成相似,优先考虑样式规律。
常见考点:样式遍历、加减同异、黑白运算考点一:样式遍历通俗地说,遍历就是缺什么补什么,首先要求构成图形的元素在一定范围内都要出现,在此基础上要求元素出现的次数相同。
常见考法:(1)整体遍历(2)部分遍历考点二:加减同异加减同异是指两个图形经过相互加、减、去异存同、去同存异得到一个新图形。
第三章分子的对称性3.1 对称操作与对称元素3.2分子点群3.3 分子的对称性和分子的物理性质对称在自然界中普遍存在。
北京天坛北京地坛在化学中,我们研究的分子、晶体等也有各种对称性。
有时会感觉这个分子对称性比那个分子高(如HF、H2O、NH3、CH4 、PF5 、SF6)。
如何表达、衡量各种对称?数学中定义了对称元素来描述这些对称。
3.1 对称操作与对称元素•对称操作:是指不改变物体内部任何两点间的距离而使物体复原或与原分子等价的操作。
•对称元素:对称操作所依据的几何元素。
•对称元素与对称操作紧密联系又有区别。
•点操作:对于分子等有限物体,在进行操作时,物体中至少有一点是不动的,这种对称操作叫点操作。
点对称操作和相应的点对称元素旋转反映操作旋映轴S n反演操作对称中心I 反映操作对称面σ旋转操作对称轴(真轴)C n 恒等操作恒等元素E对称操作对称元素符号分子中若存在一条轴线,绕此轴旋转一定角度能使分子复原或与原分子等价,就称此轴为旋转轴,符号为C n 。
1. 对称轴C n和旋转操作旋转轴的性质C n 旋转轴能生成n 个旋转操作,记为:EC C C C C C n n n n n n n n ˆˆ,ˆ,,ˆ,ˆ,ˆˆ1321=⋅⋅⋅=−m n m n b a nb n a n C C C C C ˆˆˆˆˆ22==⋅+•基转角:和C n 轴相应的基本旋转操作为Ĉn 1,它为绕轴转360˚/n 的操作,该旋转角度为基转角。
旋转角度按逆时针方向计算。
C n 旋转轴有如下性质:分子中若有多个旋转轴,轴次最高的轴一般叫主轴,其它的叫副轴。
通常将主轴取笛卡尔坐标的z轴。
旋转可以实际进行,旋转轴称为真轴。
分子中若存在一个平面,将分子两半部分互相反映而能使分子与原分子等价,则该平面就是对称面σ(镜面),这种操作就是反映。
=为奇数)(为偶数)n n E nσσˆ(ˆˆ2.对称面σ和反映操作和主轴垂直的镜面以σh 表示;通过主轴的镜面以σv 表示;通过主轴,平分副轴夹角的镜面以σd 表示。
分叉理论和方法对于含参数的系统,当参数变化并经过某些临界值时,系统的定性性态(如平衡态和或周期运动的数目和稳定性等)会发生突然变化,这种变化称为分叉。
分叉是重要非线性现象,与其它非线性现象(如混沌、突变、分形、拟序结构等)紧密相关。
主要研究:(a)相空间中轨线的集合;(b)控制参数空间中分叉集的性态。
分叉包括两类:(a)静态分叉:讨论平衡态数目和稳定性的变化,常见有:极限点分叉(鞍结分叉)、叉形分叉、跨临界分叉、滞后分叉、孤立点分叉等;(b)动态分叉:讨论系统在相空间中轨线拓扑结构的变化,常见有:Hopf分叉、次谐和超谐分叉、概(准)周期分叉(不变环面分叉)、同异宿轨线分叉等。
分叉问题起源于力学失稳现象的研究。
18世纪中叶,D.Bernoulli和L.Euler等人研究了杆件在纵向压力下的屈曲问题。
1834年C.G.J.Jacobi在研究自引力介质的椭球形旋转液体星的平衡图形时,首次引进“分叉”术语。
1885年,Poincare提出旋转液体星平衡图形演化过程的分叉理论。
1883年,O.Reynods发现在临界雷诺数时层流转变为湍流的现象,从此开创了流动稳定性的研究。
本世纪20年代,van der Pol 和安德罗诺夫等在非线性振动研究中即已发现大量分叉现象。
本世纪70年代形成分叉的数学理论和方法。
分叉揭示系统不同运动状态之间的联系和转化,且与失稳和混沌密切相关,是非线性动力学重要组成部分。
主要应用于:非线性振动、结构力学、流体力学、非线性波、飞行器动力学、机器人动力学、化学动力学、控制、非线性电学、非线性光学、生态学、经济学、交通动力学、转子动力学等等。
主要研究方法有:(1) 奇异性方法奇异性研究可微映射的退化性和分类,首先将分叉问题化为较简单的GS范式进行识别和分类,再通过“普适开折”得到一般扰动下可能出现的所有分叉性态,随后讨论分叉图的保持性和转迁集等。
可以处理:静态分叉、Hopf分叉和退化Hopf分叉。
高中数学知识网络结构图第一部分 集合、映射、函数、导数及微积分集合映射 概念元素、集合之间的关系 运算:交、并、补 数轴、Venn 图、函数图象性质确定性、互异性、无序性 定义表示 解析法 列表法三要素图象法定义域对应关系值域 性质奇偶性周期性 对称性 单调性 定义域关于原点对称,在x =0处有定义的奇函数→f (0)=01、函数在某个区间递增(或减)与单调区间是某个区间的含义不同;2、证明单调性:作差(商)、导数法;3、复合函数的单调性 最值二次函数、基本不等式、双钩(耐克)函数、三角函数有界性、数形结合、导数.幂函数 对数函数 三角函数基本初等函数抽象函数 复合函数 赋值法、典型的函数函数与方程 二分法、图象法、二次及三次方程根的分布 零点函数的应用 建立函数模型使解析式有意义 导数函数基本初等函数的导数导数的概念导数的运算法则导数的应用表示方法 换元法求解析式分段函数 几何意义(切线问题)、物理意义单调性导数的正负与单调性的关系生活中的优化问题注意应用函数的单调性求值域周期为T 的奇函数→f (T )=f (T2)=f (0)=0 复合函数的单调性:同增异减三次函数的性质、图象与应用一次、二次函数、反比例函数指数函数图象、性质 和应用平移变换对称变换 翻折变换 伸缩变换图象及其变换最值极值第二部分 三角函数与平面向量角的概念 任意角的三角函数的定义 三角函数 弧度制 弧长公式、扇形面积公式三角函数线同角三角函数的关系 诱导公式 和角、差角公式 二倍角公式公式的变形、逆用、“1”的替换 化简、求值、证明(恒等变形)三角函数 的 图 象定义域奇偶性 单调性 周期性 最值对称轴(正切函数除外)经过函数图象的最高(或低)点且垂直x 轴的直线,对称中心是正余弦函数图象的零点,正切函数的对称中心为(k π2,0)(k ∈Z ).正弦函数y =sin x= 余弦函数y =cos x 正切函数y =tan x y =A sin(ωx +ϕ)+b①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;②图象也可以用五点作图法;③用整体代换求单调区间(注意ω的符号); ④最小正周期T =2π| ω |;⑤对称轴x =(2k +1)π-2ϕ2ω,对称中心为(k π-ϕω,b )(k ∈Z ). 平面向量 概念线性运算 基本定理 加、减、数乘几何意义坐标表示数量积几何意义模共线与垂直共线(平行)垂直 值域图象a →∥b →⇔b →=λa → ⇔ x 1y 2-x 2y 1=0 a →⊥b →⇔b →·a →=0 ⇔ x 1x 2+y 1y 2=0解三角形余弦定理 面积 正弦定理 解的个数的讨论实际应用 S △=12ah =12ab sin C =p (p -a )(p -b )(p -c )(其中p =a +b +c 2)投影b →在a →方向上的投影为|b →|cos θ=a →·b→——|a →|设a →与b →夹角θ,则cos θ=a →·b →——|a →|·|b →|对称性 |a →|=(x 2-x 1)2+(y 2-y 1)2夹角公式第三部分 数列与不等式概念 数列表示等差数列与等比数列的类比 解析法:a n =f (n )通项公式 图象法 列表法递推公式等差数列 通项公式 求和公式 性质 判断a n =a 1+(n -1)d a n =a 1q n -1 a n +a m =a p +a r a n a m =a p a r 前n 项和 S n =n (a 1+a n )2前n 项积(a n >0) T n =(a 1a n )n 常见递推类型及方法逐差累加法 逐商累积法 构造等比数列{a n +qp -1} 构造等差数列①a n +1-a n =f (n ) ②a n + 1a n=f (n ) ③a n +1=pa n +q ④pa n +1a n =a n -a n +1 化为a n +1q n =p q ·a nq n -1+1转为③ ⑤a n + 1=pa n +q n等比数列 a n ≠0,q ≠0 S n =⎩⎨⎧na 1,q =1a 1(1-q n)1-q ,q ≠1公式法:应用等差、等比数列的前n 项和公式 分组求和法 倒序相加法裂项求和法 错位相加法 常见求和方法不等式不等式的性质 一元二次不等式简单的线性规划 基本不等式:ab ≤a +b 2数列是特殊的函数借助二次函数的图象三个二次的关系可行域 目标函数一次函数:z =ax +by z =y -bx -a:构造斜率 z =(x -a )2+(y -b )2:构造距离 应用题几何意义: z 是直线ax +by -z =0在x 轴截距的a 倍,y 轴上截距的b 倍.最值问题 变形 和定值,积最大;积定值,和最小 应用时注意:一正二定三相等 2aba +b≤ab ≤a +b 2≤a 2+b 22倾斜角和斜率直线的方程位置关系直线方程的形式倾斜角的变化与斜率的变化重合平行相交垂直A1B2-A2B1=0A1B2-A2B1≠0A1A2+B1B2=0点斜式:y-y0=k(x-x0)斜截式:y=kx+b两点式:y-y1y2-y1=x-x1x2-x1截距式:xa+yb=1一般式:Ax+By+C=0注意各种形式的转化和运用范围.两直线的交点距离点到线的距离:d=| Ax0+By0+C |A2+B2,平行线间距离:d=| C1-C2 |A2+B2圆的方程圆的标准方程圆的一般方程直线与圆的位置关系两圆的位置关系相离相切相交∆<0,或d>r∆=0,或d=r∆>0,或d<r曲线与方程轨迹方程的求法:直接法、定义法、相关点法圆锥曲线椭圆双曲线抛物线定义及标准方程性质范围、对称性、顶点、焦点、长轴(实轴)、短轴(虚轴)、渐近线(双曲线)、准线(只要求抛物线)离心率对称性问题中心对称轴对称点(x1,y1) ───────→关于点(a,b)对称点(2a-x1,2b-y1)曲线f (x,y) ───────→关于点(a,b)对称曲线f (2a-x,2b-y)⎩⎪⎨⎪⎧A·x1+x22+B·y1+y22+C=0y2-y1x2-x1·(-AB)=-1特殊对称轴x±y+C=0 直接代入法截距注意:截距可正、可负,也可为0.点(x1,y1)与点(x2,y2)关于直线Ax+By+C=0对称点与线空间点、 线、面的 位置关系点在直线上 点在直线外 点与面 点在面内 点在面外线与线共面直线异面直线相交平行没有公共点 只有一个公共点线与面平行相交有公共点没有公共点 直线在平面外直线在平面内面与面平行 相交平行关系的相互转化垂直关系的相互转化线线 平行线面 平行面面 平行线线 垂直线面 垂直面面 垂直空间的角异面直线所成的角 直线与平面所成的角 二面角 范围:(0︒,90︒] 范围:[0︒,90︒] 范围:[0︒,180︒]点到面的距离 直线与平面的距离 平行平面之间的距离相互之间的转化 cos θ=|a →·b →|——|a →|·|b →|sin θ=|a →·n →|——|a →|·|n →|cos θ=n 1→·n 2→——|n 1→|·|n 2→|d =|a →·n →|——|n →|空间向量空间直角坐标系空间的距离 空间几何体柱体棱柱 圆柱 正棱柱、长方体、正方体台体 棱台 圆台 锥体 棱锥 圆锥球 三棱锥、四面体、正四面体直观图 侧面积、表面积 三视图体积长对正 高平齐 宽相等第六部分统计与概率统计随机抽样抽签法随机数表法简单随机抽样系统抽样分层抽样共同特点:抽样过程中每个个体被抽到的可能性(概率)相等用样本估计总体样本频率分布估计总体总体密度曲线频率分布表和频率分布直方图茎叶图样本数字特征估计总体众数、中位数、平均数方差、标准差变量间的相关关系两个变量的线性相关散点图回归直线正态分布列联表(2×2)独立性分析概率概率的基本性质互斥事件对立事件古典概型几何概型条件概率事件的独立性用随机模拟法求概率常用的分布及期望、方差随机变量两点分布X~B(1,p)E(X)=p,D(X)=p(1-p)二项分布X~B(n,p)E(X)=np,D(X)=np(1-p)定义概率的计算与分布列与二项分布的区别n次独立重复试验恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k超几何分布实际应用E(aX+b)=aE(X)+b2()()D aX b a D X+=P(A+B)=P(A)+P(B)P(⎺A)=1-P(A)P(A B)=P(A)·P(B)P(B | A)=P(A B)P(A)第七部分 其他部分内容合情推理演绎推理类比归纳 三段论 大前提,小前提,结论 两个原理分类加法计算原理和分步乘法计算原理 排列与组合 排列数:A m n =n !(n -m )!组合数:C m n =n !m !(n -m )!性质C m n =C n -mn C m n +1=C m n +C m -1n计算原理二项式定理通项公式T r +1=C r n a n -r b r首末两端“等距离”两项的二项式系数相等C 0n +C 2n +C 4n …=C 1n +C 3n +C 5n …=2n -1 C 0n +C 1n +…+C n n =2n二项式系数性质 直接证明 综合法 分析法 由因导果 执果索因间接证明 反证法数学归纳法推理证明推理与证明充分非必要条件、必要非充分条件、充要条件关系条件复合命题 或:p ∨ q 且:p ∧ q 非:⌝ p应用原命题:若p 则q逆命题:若q 则p否命题:若⌝p 则⌝q逆命题:若⌝q 则⌝p互逆 互逆互否互否互为逆否 等价关系一真便真 一假则假全称量词与存在量词 简易逻辑概括性、逻辑性、有穷性、不唯一性、普遍性 顺序结构条件结构 循环结构命题算法语言算法的特征程序框图 基本算法语言算法案例 辗转相除法、更相减损术、秦九韶算法、进位制 复 数概念虚数、纯虚数、实部、虚部、实轴、虚轴、模、共轭复数 运算 加、减、乘、除、乘方几何意义与复平面内的点一一对应,其模表示到原点的距离。