e1
z
的各阶导数及其在
z
0点的值,故
1
e1 z
e(1
z
3
z2
13 z3
)
1
2! 3!
因为 e1z 的唯一的奇点为 z ,1 故类似于上例可求得其
收敛圆为 z 1
例2 计算积分
I
dz
, 设L为: z 2a (a 0)
L (z2 a2 )(z 3a)
1
【解法
1】显然被积函数
f
(z)
a.指数函数ez (具有周期性)
b.三角函数
cos
z
eiz
eiz 2
, sin
z
eiz
eiz 2i
cos
z,
sin
z
可以大于1
c.双曲函数
cosh z ez ez , sinh z ez ez
2
2
从复变函数意义上说,双曲函数与三角函数基本上是
一个变量代换z iz,二者没有本质区别
(3)导数定义 (4)可导充要条件:
lim R
zn-1 或 lim
1
n zn n n zn
特别提醒:以前在实变级数中
lim
n
zn z n -1
或 lim n n
zn 然后R
1
6.圆形区域的泰勒展开
1.直接计算泰勒系数ak
f k b
k!
2.换元法:常借助 1
tk t 1
1 t k0
3.利用两个绝对收敛的幂级数的乘积和商
所以
f
'' (z)
(3 2z) (1 z)2
f
' (z),
f