直线与二次曲线的位置关系
- 格式:pdf
- 大小:93.21 KB
- 文档页数:3
直线与双曲线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求双曲线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、渐近线)解决相关问题;3.能够把直线与双曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】【要点梳理】要点一、双曲线的定义及其标准方程 双曲线的定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.双曲线的标准方程:焦点在x 轴上的双曲线的标准方程说明:焦点是F 1(-c ,0)、F 2(c ,0),其中c 2=a 2-b 2焦点在y 轴上的双曲线的标准方程说明:焦点是F 1(0,-c)、F 2(0,c),其中c 2=a 2-b 2要点诠释:求双曲线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设双曲线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值.要点二、双曲线的几何性质双曲线双曲线的定义与标准方程 双曲线的几何性质 直线与双曲线的位置关系 双曲线的综合问题双曲线的弦问题双曲线离心率及渐近线问题22221(0,0)x y a b a b -=>>22221(0,0)y x a b a b -=>>标准方程22221x y a b -=(0,0)a b >> 22221y x a b-=(0,0)a b >> 图形性质焦点 1(,0)F c -,2(,0)F c 1(0,)F c -,2(0,)F c焦距 2212||2()F F c c a b ==+ 2212||2()F F c c a b ==+范围 {}x x a x a ≤-≥或,y R ∈ {}y y a y a ≤-≥或,x R ∈对称性 关于x 轴、y 轴和原点对称顶点 (,0)a ±(0,)a ±轴 实轴长=a 2,虚轴长=2b离心率 (1)ce e a=> 渐近线方程x ab y ±= a y x b =±要点三、直线与双曲线的位置关系 直线与双曲线的位置关系将直线的方程y kx m =+与双曲线的方程22221x y a b-=(0,0)a b >>联立成方程组,消元转化为关于x或y 的一元二次方程,其判别式为Δ.222222222()20b a k x a mkx a m a b ----=若2220,b a k -=即bk a =±,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若2220,b a k -≠即bk a≠±,①Δ>0⇔直线和双曲线相交⇔直线和双曲线相交,有两个交点; ②Δ=0⇔直线和双曲线相切⇔直线和双曲线相切,有一个公共点;③Δ<0⇔直线和双曲线相离⇔直线和双曲线相离,无公共点. 直线与双曲线的相交弦设直线y kx m =+交双曲线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP12|x x -同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -双曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在双曲线22221x y a b -=(0,0)a b >>中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 要点四、双曲线的实际应用与最值问题对于双曲线的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用双曲线定义,构建参数a,b,c 之间的关系,得到双曲线方程,利用方程求解双曲线中的最值问题,按照转化途径主要有以下三种: (1) 利用定义转化(2) 利用双曲线的几何性质 (3) 转化为函数求最值 【典型例题】类型一:双曲线的方程与性质例1.设F 1、F 2是双曲线22221x y a b-=1(a >0,b >0)的两个焦点,点P 在双曲线上,若120PF PF ⋅=,且122PF PF ac ⋅=,其中c =【解析】由双曲线定义知,||PF 1|-|PF 2||=2a , ∴|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2, 又|PF 1|2+|PF 2|2=4c 2,∴|PF 1|·|PF 2|=2b 2, 又122PF PF ac ⋅=,∴2ac =2b 2,∴b 2=c 2-a 2=ac ,∴e 2-e -1=0,∴e =12,即双曲线的离心率为12+. 【总结升华】根据双曲线的定义,几何性质,找到几何量的关系是解决这类问题的关键。
今天我们研究直线与双曲线相交,即直线与双曲线有一个或两个交点。
直线方程与双曲线方程联立,消去y 或x 得到关于x 或y 的一元二次方程或一元一次方程,则(1)一元一次方程情形,直线与双曲线有一个交点等价于直线与双曲线的渐近线平行;(2)一元二次方程情形,直线与双曲线有一个有两个交点等价于直线与双曲线方程联立后方程有两个不同的解,其判别式大于0。
先看例题:例:若直线y =kx +2与双曲线x 2-y 2=6相交,求k 的取值范围。
解:由22=+26y kx x y ⎧⎨-=⎩得22410)0(1k x kx ---=, (1)直线与双曲线有两个公共点,即:()()222101641100k k k ⎧-≠⎪⎨∆=--⨯->⎪⎩, 解得1515(1)(1,1)(1,33k ∈--⋃-⋃ (2)直线与双曲线有一个公共点,21=0k -,解得1k =± 综上有151533k -<< 整理: 设直线l :y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b(1)若0222=-k a b 即a bk ±=,且0m ≠时,直线与双曲线渐近线平行,直线与双曲线相交于一点;(2)若0222≠-k a b 即a bk ±≠,))((4)2(222222222b a m a k a b mk a -----=∆0>∆⇒直线与双曲线相交,有两个交点。
注意:一解不一定相切,相交不一定两解,两解不一定同支。
再看一个例题,加深印象例:若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是 ()A.⎛ ⎝⎭B.⎛ ⎝⎭C.⎛⎫ ⎪ ⎪⎝⎭D.1⎛⎫- ⎪ ⎪⎝⎭解:由22=+26y kx x y ⎧⎨-=⎩得22410)0(1k x kx ---=,∴()()222121210164110000k k k x x x x ⎧-≠⎪∆=--⨯->⎪⎨+>⎪⎪>⎩,解得13k -<<-,正确答案D.总结:1.直线与双曲线相交,即直线与双曲线有一个或两个交点。
直线与双曲线的位置关系 xx 中学 教者xxx教学目标:1、知识目标: 直线与双曲线的位置关系。
2、能力目标: 深化双曲线性质,提高分析问题,解决问题的能力。
3、德育目标: 事物之间即有区别又有联系的辩证观点。
教学重点: 直线与双曲线的位置关系及判断方法。
教学难点: 学生解题综合能力的培养。
教学时数: 两课时教学方法: 启发式教学过程:一、课题导入回忆直线与椭圆的位置关系及判断方法(将直线方程代入椭圆方程中 得到一个一元二次方程,然后用判别式来判断)。
二、讲授新课通过观察第一组动画演示,学生能够直观的发现直线与双曲线的位 置关系:相离:没有公共点。
相切:有一个公共点。
相交:有两个公共点。
通过观察第二组动画演示,使学生能够发现,当直线与双曲线的渐 近线平行时,直线与双曲线相交,但只有一个公共点。
练习:判断直线x y 21=与双曲线322=-y x 的位置关系。
例:已知直线l :1+=kx y ,双曲线422=-y x 。
问k 取何值时,直线与双曲线相交、相切、相离?分析:结合前面观察的结果和直线与椭圆位置关系的判断方法引导学生将直线方程代入双曲线方程中,得到一个方程,研究方程解的情况。
解:结论:直线与双曲线的位置关系的判断方法:把直线方程与双曲线方程联立,消去x (或y )后得到一个方程。
若方程的二次项系数不 为零,则方程为一元二次方程。
此时,当⊿ >0时,直线与双曲 线相交;当⊿=0时,直线与双曲线相切;当 ⊿<0时,直线与双 曲线相离。
若方程的二次项系数为零,则方程为一元一次方程。
此时,直线与双曲线的渐近线平行,直线与双曲线相交,只有一个 公共点。
得由⎩⎨⎧=-+=4122y x k x y 052122=---kx x k )(。
是它们只有一个公共点直线与双曲线相交,但平行与双曲线的渐近线时,直线,即:当,101)1(2l k k ±==-时,即当101:)2(2±≠≠-k k 2016)1(20)2(222+-=-+=∆k k k ()个公共点。