砾石充填防砂井砾石尺寸设计实例
- 格式:docx
- 大小:212.96 KB
- 文档页数:5
水平井裸眼砾石充填防砂工艺技术优化研究与应用刘树新杨喜柱等(大港油田公司采油工艺研究院滩海工艺室)摘要:本文通过对埕海一区储层、流体性质分析,基于理论分析、地层砂粒经分析试验,提出水平井裸眼砾石充填防砂工艺,优化了工艺设计参数,实施后已取得显著效果,该工艺的成功实施大大提高了我油田水平井防砂工艺技术水平,也将对环渤海类似储层的滩海油田开发具有良好的借鉴作用。
主题词:埕海一区裸眼水平井防砂工艺研究裸眼砾石充填防砂应用效果1 引言埕海油田位于渤海湾滩海- 浅海地区,由于储层为疏松砂岩,前期研究结果表明必须采取先期防砂才能投产,而本区采用人工岛开发,井型以水平井为主,且井底位移大,水平段长,在防砂工艺方面存在极大难度。
因此开展了水平井裸眼砾石充填防砂工艺技术优化研究与应用课题。
在国内,该项技术的研究工作起步较晚,仅在胜利油田进行了试验与应用,但对于超过700m长水平井段的防砂仍然存在很大技术难度。
1 地质概况埕海一区位于大港油田滩海区南部埕北断阶区,地理位置位于河北省黄骅市关家堡村以东的滩涂一海域水深4m的极浅海地区。
该区主要包括二个井区:庄海4X 1、庄海8断块。
自下而上发育Es、Ed、Ng Nm等四套含油层系。
其中,Ngl 1组为主力油组,有具有以下油藏特征:油藏埋藏较浅。
埋深为1240 - 1268m储层成岩作用弱,属于岩性-构造底水油藏。
油层胶结疏松,易出砂。
试采井存在出砂的现象。
储层呈现高孔、高渗的特征,根据庄海802井粘土矿物X衍射分析报告来看,储层粘土以伊蒙间层为主,平均含量达到62.5%,其中蒙脱石含量约为70%,伊/ 蒙混层是易水化膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。
原油性质具有三高、三低的特点。
即高密度、高胶质沥青含量、高初馏点、低凝固点、低含蜡、低含硫。
该地区地层水矿化度平均为10350mg/L,水型为NaHCOO型。
油藏属于正常的温度压力系统。
针对该区上述储层特点,储层极易出砂,同时,原油粘度较高对出砂影响较大,本区地处滩海,以水平井为主,防砂难度大,因此开展了该区水平井防砂工艺研究与应用。
砾石充填防砂粒径筛选和施工参数优选方法研究[摘要]:油井出砂会造成井下设备和工具的磨蚀及井眼的堵塞,使油井的产量降低甚至停产。
绕丝管砾石充填防砂是目前应用最广泛最主要的防砂工艺。
但对油层厚度大、油层多等油井防砂成功率不是很高。
本文通过对充填砾石规格和施工排量的研究,并就地层砂筛析曲线及砾石和施工排量的优选方法进行了阐述。
[关键词]:砾石充填砾石尺寸砂侵最小排量中图分类号:td872+.8 文献标识码:td 文章编号:1009-914x(2012)12- 0102 -011 防砂效果的影响因素1.1 防砂效果与砾石尺寸的关系砾石充填井中砾石层是主要的挡砂屏障。
由于地层砂较细,地层砂会不同程度侵入砾石层导致防砂失败。
地层砂侵入砾石层的程度取决于砂砾比gsr(砾石与地层砂中值之比):gsr15,地层砂可以自由通过砾石层,起不到防砂作用。
1.2 防砂效果与炮眼中砾石充填过程的关系砾石充填过程中,炮眼内流动的携砂液达到一定值后,固体颗粒开始呈砂堤状向前推移,流速继续增加颗粒的悬浮程度增加,颗粒完全悬浮后,混合物的流动阻力将随流速的增加而增加。
炮眼中的流速必须高于淤积流速,才能将砾石携带到炮眼以外地层,因此,淤积流速是砂浆的最低流速。
用清水或地层污水做携砂液时,因其携砂能力差,砾石问题首先沉积于炮眼入口处,若炮眼吸液速度高于淤积流速,砾石在液流携带下,沿着沉积下来的砂堤逐渐向炮眼深处蠕动,当砂堤推进到射孔孔眼端部地层亏空部位后,再反向充填平衡堤上部区域。
2 砾石充填施工参数的优化2.1 砾石尺寸的选择tausch和corly法:建立在半对数筛析曲线的基础上,它建议最小砾石应等于4d10,最大砾石应等于6d10,即dmin=4d10;dmax=6d10。
saucier法:建立在完全挡砂的机理上,d50=(5~6) d50,即砾石的粒度中值为地层砂粒度中值的5~6倍,此时砾石充填带的有效渗透率/地层渗透率最大。
1 砾石充填防砂井砾石尺寸设计实例砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。
较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。
油气井防砂领域使用的标准砾石尺寸如表1所示。
目前国内外的主要砾石尺寸设计方法为三类:(1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型;(2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型;(3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。
上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。
我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。
表1 油气井防砂领域使用的标准砾石尺寸第一类设计方法的设计结果如表2所示。
使用DePriester方法进行砾石尺寸设计结果如图2所示。
设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。
图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。
使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。
砾石充填防砂工艺参数优化设计砾石充填防砂工艺是一种常用的防止水土流失和保护土壤的措施。
通过充填砾石,可以提高土壤的稳定性,减少河流或河岸的冲刷和侵蚀,保护生态环境和人类安全。
为了进一步提高砾石充填防砂的效果,需要对工艺参数进行优化设计。
首先,要确定砾石的大小和种类。
砾石可以分为不同的等级和规格,一般有5-10cm、10-20cm、20-40cm等规格可供选择。
选择砾石的大小和种类应根据具体工程的需要和水文地质条件来确定。
一般来说,对于大型水利工程,可以选择大小规格较大的砾石,以增加充填层的坚固性和稳定性。
其次,要确定充填砾石的厚度和密度。
充填砾石的厚度决定了其对土壤的保护效果,过薄的砾石层容易被水流冲刷,过厚的砾石层则会增加工程的成本和施工难度。
一般来说,砾石充填层的厚度应在20-40cm之间。
充填砾石的密度决定了其对土壤的压实效果和稳定性,过松的砾石层易被水流冲刷,过紧的砾石层则可能导致土壤的排水性不佳。
因此,在充填砾石时,应根据土壤的类型和水文地质条件来确定合适的压实措施,例如辊压、振动等。
另外,要确定砾石充填层的倾斜度和边坡设计。
倾斜度是指充填砾石层的坡度,通常取45°-60°之间。
较大的坡度可以增加充填层的稳定性和抗冲刷能力,但也会增加工程的成本和土地的占用。
边坡设计是指充填层的边缘线形,一般可以选择直线形、斜线形、曲线形等。
边坡设计应根据充填层的厚度、坡度和土壤的稳定性来确定,以确保工程的安全性和稳定性。
最后,要进行充填砾石的施工技术和质量控制。
充填砾石的施工技术包括挖掘、运输、充填、压实等环节。
在施工过程中,要选择合理的施工设备和方法,并进行密实度测定和质量检测,以确保充填砾石的均匀性、稳定性和工程质量。
总之,砾石充填防砂工艺参数的优化设计是一项复杂而关键的工作。
只有合理选择砾石的大小和种类,确定充填层的厚度和密度,以及进行倾斜度和边坡设计,同时结合施工技术和质量控制,才能提高砾石充填防砂的效果,减少水土流失,保护土壤和生态环境。
砾石充填井工业砾石尺寸优选陈宇1,邓金根1,何宝生2,周建良2,朱春明3,齐鑫1【摘要】砾石充填防砂设计中,合理的砾石尺寸是防砂措施得以成功实施的关键。
针对目前几种常用砾石尺寸设计方法的不足,以及施工中实际使用的工业砾石是多种粒径的砾石混合而成的特点,通过研究实际充填条件下两种粒径混合的砾石排列结构,建立了砾石层孔隙结构模型,并对砾石层的孔隙尺寸进行了计算和分析。
在Saucier方法的基础上,提出了一种新的、符合工业砾石实际情况的、混合粒径砾石充填防砂的砾石尺寸精选思路,并给出了该思路的计算方法。
考虑到新建模型的理想性,因此又对计算方法进行了修正,使之更符合砾石充填的实际情况。
该砾石尺寸设计方法同时还考虑了地层砂的均匀性对防砂效果的影响,因此,具有实用性强、适用性广、设计结果较其他常规方法更为精确的特点。
【期刊名称】石油钻探技术【年(卷),期】2011(039)003【总页数】4【关键词】砾石充填防砂数学模型优化设计◀油气开采▶国内外多项研究表明,对于砾石充填完井,砾石尺寸的选择对产能有明显影响[1-5]。
针对这一问题,出现了多种多样的砾石尺寸设计方法,常用的有Saucier、Schwartz和Depriester方法等[6-17]。
其中,Saucier方法是以均匀性良好的砾石和细砂为材料进行多次试验总结出的,已得到广泛的认可,但由于实际条件不可能是这种理想状况,因而在针对均匀性差的地层砂时存在缺陷,设计者往往根据经验采取保守原则选择较小一级的砾石[2]。
而其他常用方法,其主要设计思路也是以Saucier方法为基础,并综合考虑地层砂的均匀性提出的,虽然使用效果较好,但由于缺乏足够的理论依据,尤其实际使用的工业砾石是多种粒径砾石的混合,在面对多个等级工业砾石的筛选时,也同样采取保守原则。
此外,也有的通过室内模拟试验来确定砾石尺寸,但模拟试验费时费力,而且由于很难真实反映地层实际情况,因而结果存在一定误差。
1041 概述在小井眼多层砾石充填防砂作业中,由于老式3.25"通径防砂工具,虽然在施工排量上可以满足作业需要,但防砂管柱内通径均≤69.85mm,导致中心管循环摩阻较高。
针对射孔段跨度较大的井况,往往不能实现一次多层砾石充填,被迫采用分层射孔、多次分层充填的方式才能满足现场作业要求。
7"套管井3.25"通径防砂工具的技术缺陷导致特殊井况下,甲方现场作业工期被迫提高至原设计工期的2.3倍左右,同时缺乏后期冲砂解堵和不动管柱选择性开关滑套等关键配套技术。
新式小井眼大通径防砂工具采用3-1/2"冲管+2-3/8"冲管组合,可实现250m中心管@16BPM和200m中心管@20BPM的多层砾石充填作业,有效解决了原有7"套管井3.25"通径防砂工具存在的技术缺陷。
2 小井眼大通径多层砾石充填防砂工艺介绍2.1 工艺特点使用钻杆下入防砂管柱至目的层位,利用顶部封隔器和隔离封隔器封隔产层,然后逐层进行砾石充填作业。
小井眼大通径多层砾石充填防砂工艺具有以下工艺特点:(1)大幅降低作业期间的循环摩阻,可实现一趟下入最长250m以内中心管,能够进行6层砾石充填防砂作业;(2)防砂充填管柱相对静止,液压锁定机构能够有效防止管柱窜动;(3)防砂管柱回接锚定插入密封后可实现3.88"全通径;(4)选用4-1/2"筛管进行砾石充填作业,后续需使用6"套铣管进行套铣回收作业。
2.2 小井眼大通径多层砾石充填防砂工艺管柱结构防砂外层管柱主要包括:顶部封隔器总成、隔离封隔器总成、充填滑套总成、快速接头、厚壁密封筒、左旋密封筒、双母密封筒、下部密封筒、锚定插入密封总成、筛管和盲管。
防砂内层服务管柱主要包括:送入转换工具+冲管+上部隔离密封+冲管+充填转换工具+冲管+底部隔离密封。
见图1。
小井眼大通径多层砾石充填防砂工具及配套技术应用赵志佳中海油能源发展股份有限公司工程技术分公司 天津 300452摘要:在海上油气田开发过程中,地层出砂将严重影响油井的产能和寿命。
管内砾石充填防砂技术在曙3—H1井的应用摘要:针对曙三区杜家台油藏出砂严重,水平井检泵周期短等矛盾,研制了水平井管内砾石充填防砂技术。
室内试验优化了与地层配伍的携砂液配方体系,筛选了充填砾石的粒径。
现场应用效果表明,措施油井能够维持正常生产,措施后检泵周期得到明显延长,周期产油量大幅度提高,油井生产效果得到明显改善。
对同类油藏的开发具有一定的指导意义。
关键词:曙三区稀油油藏砾石充填防砂技术一、概述曙三区位于辽河断陷盆地西部凹陷西斜坡中段,开发目的层为下第三系沙河街组四段杜家台油层,油层埋深950~1700m,含油面积19.0km2,地质储量2244×104t,可采储量758×104t,平均油层有效厚度12.7m。
杜家台油层平均空气渗透率1.071μm2,孔隙度27%,粒度中值0.1603mm,分选系数1.67。
曙三区地面脱气原油密度0.9029g/cm3,50℃粘度169.81mPa.s,沥青+胶质含量33.44%,凝固点26℃。
水型NaHCO3,平均总矿化度5251mg/l,CL-含量1 100mg/l,HCO3-含量2 285mg/l。
进入油藏开发中后期,受地质构造、沉积相带、油层发育状况等多重因素的制约,曙三区块出砂现象较严重[1],大部分油水井有出砂或泥浆的历史,严重制约正常生产。
据统计,累出砂量大于2m3的井达到149口,占油水井总数的55.8 %,累出砂量在0.5m3到2m3的井81口,所占比例为30.3%。
受出砂影响,生产管理难度加大,停产停注井多,水驱效果变差。
同时油层的单层厚度薄,采用直井井网无法进一步提高油藏开发效果,而通过部署水平井井网,可有效增加储量动用程度,提高油藏最终采收率。
目前曙三、四区射孔完井方式水平井5口,其中3口出砂比较严重,曙4-H105已因出砂导致套坏。
从1992年开始,先后在直井试验应用了机械防砂、化学防砂、高压充填防砂、携砂泵等多项防排砂工艺[2],取得了较好的效果,但存在树脂砂低温固化效果差、油层物性纵向差异大、树脂砂单层指进的问题。
1 砾石充填防砂井砾石尺寸设计实例
砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。
较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。
油气井防砂领域使用的标准砾石尺寸如表1所示。
目前国内外的主要砾石尺寸设计方法为三类:
(1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型;
(2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型;
(3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。
上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。
我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。
表1 油气井防砂领域使用的标准砾石尺寸
第一类设计方法的设计结果如表2所示。
使用DePriester方法进行砾石尺寸设计结果如图2所示。
设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。
图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。
使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。
曲线A、B分别为Cg= Cmin和为Cg= Cmin和时得到砾石尺寸分布曲线;曲线C为Cg取平均值1.35时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.160~0.300mm,匹配表1中的标准砾石尺寸为0.21~0.25mm。
使用孔喉结构模拟法对该井砾石尺寸进行设计,初步选择0.25~0.30mm、0.25~0.42mm、0.42~0.58mm、0.42~0.84mm四种砾石作为选择范围。
分别模拟四种砾石的孔喉结构并得到孔喉直径分布曲线,地层砂的重量分布曲线绘制在一起,如图4所示。
根据砾石的选取原则,0.25~0.30mm、0.25~0.42mm两种砾石的孔喉分布曲线与地层砂曲线非常接近并且在其右侧,选择其中较粗的0.25~0.42mm
砾石作为最终设计结果。
将全部七种方法的设计结果汇总如表2所示。
该井实际施工选择40~60目的砾石进行高压一次充填防砂施工作业,防砂效果良好,达到了阻止地层出砂和稳定气井产量的目的。
表2 全部方法的设计结果汇总
2 端部脱砂压裂防砂设计实例
端部脱砂压裂防砂技术是近年来逐步发展起来一种防砂工艺技术,大大拓展了水力压裂技术的应用范围,成为中高渗透油气层和不稳定松软地层的有效增产和防砂措施。
压裂充填防砂是在疏松砂岩高渗透油气层中通过水力压裂产生短而宽的裂缝,然后用砾石充填,形成高导流能力的人工裂缝。
其工艺技术核心是端部脱砂,即当水力裂缝长度和高度达到预期值时,大排量泵入低砂比砂浆,以保证砾石进入裂缝后不产生沉降,从而能够到达裂缝周边前缘后沉积。
砾石在裂缝周边的沉积可以终止裂缝长度的增加,并增大了裂缝内压力,从而使得裂缝只能在宽度方向增加,最终形成短而宽的裂缝。
从增产的角度讲,对于高渗透地层,增加裂缝导流能力不增加缝长更有利于提高增产效果。
裂缝中充填砾石形成一条高导流能力的渗滤带,有效地将地层压力传至井底,从而降低了生产压差,减小了原油的渗流阻力,达到增产和防砂效果(图5)。
中国石油大学(华东)研制的Sand control Office软件中有疏松砂岩地层端部脱砂压裂设计模块,如图6所示。
某气田属于疏松砂岩气藏,高粘土、高泥质、欠压实。
气层极易出砂,并且出砂为粉细砂,经过多年的防砂先导性试验,目前基本确定了以高压一次充填、压裂充填为主的防砂工艺技术体系。
压裂充填防砂目前主要采用纤维复合无筛管压裂充填防砂工艺。
对于无筛管纤维复合压裂防砂,纤维的选择是一项十分重要的工作。
在纤维材质选择时要考虑到其在储层条件下的稳定性和强度,并且从密度因素来考虑纤维的材质,再加上成本方面考虑,选用了特殊的G纤维,实验确定的纤维复合体主要由30~50目(0.3-0.6mm)树脂涂层砂+1%~2%SC-20防砂纤维构成。
在闭合压力20.68MPa条件下,复合体渗透率稍低于石英砂,可见围压对复合体的渗透率影响不大。
使用Sand control Office软件,以该气田某压裂防砂井为例,进行纤维压裂复合防砂施工参数优化模拟计算,施工参数计算结果结果见表3。
根据设计模型中的泵注程序设计,加砂浓度轮廓为阶梯型变化规律,如表4所示。
该井实施端部脱砂压裂防砂施工后,井口不出砂,产量增幅25%,防砂增产效果良好。
表3 某井纤维压裂复合防砂施工参数计算结果
表4 某井纤维压裂复合防砂施工泵注程序。