煤矿瓦斯气体的光声光谱检测
- 格式:pdf
- 大小:385.28 KB
- 文档页数:5
光声光谱微量气体检测技术及其应用研究共3篇光声光谱微量气体检测技术及其应用研究1光声光谱微量气体检测技术及其应用研究在各种工业生产和科学研究中,微量气体检测技术变得越来越重要。
然而,传统的检测方法通常需要大型仪器和昂贵的操作费用,这极大地限制了其实际应用。
光声光谱技术因其快速,准确,非侵入性和高灵敏度而备受关注,尤其是在微量气体检测中的应用。
本文将阐述光声光谱技术的原理及其应用研究成果。
光声光谱技术简介光声光谱技术是一种新兴的检测技术,结合了光学和声学的优势,通过激光光束的吸收和散射声波的检测来实现气体分子的检测。
当一束激光穿过待测气体时,光子会和气体分子发生相互作用,产生吸收的效应,从而激发声波信号。
检测的声波信号可以被转化为数值信号分析和研究。
由于气体分子的吸收光谱与其分子构型和化学组成有关,因此,可以通过测量吸收光谱的波长和强度来鉴定待测气体分子,进而实现其检测。
光声光谱技术的应用大气环境监测:空气中存在的微量气体成分是影响大气环境质量的重要因素。
传统的大气环境监测方法通常需要收集样品后带回实验室进行分析,无法实现在线监测。
而光声光谱技术可以在现场对空气中的微量气体,如二氧化碳和甲醛等进行在线监测。
韩国科技大学研究发现,利用光声光谱技术可以在空气中检测到ppm级别的甲醛浓度,这与传统的红外吸收光谱相比具有更高的检测灵敏度。
生物医学检测:在生物医学领域,研究人员一直在寻找一种高灵敏度、快速、非侵入性检测微量分子的方法。
光声光谱技术可以通过检测人体呼出气体中携带的微量气体,如一氧化氮和碳氢化合物等,来辅助疾病诊断。
研究人员利用光声光谱技术检测呼出气体中的一氧化氮和乙醇等,可以实现对肝癌和乳腺癌的早期诊断。
食品安全检测:光声光谱技术也可以用于食品安全检测。
例如,在辣椒果实中,甲醛、乙醛和丙酮等有毒化学物质的含量可能会超过安全标准。
研究人员可以利用光声光谱技术检测出这些化学物质,以确保食品的安全性。
煤矿瓦斯可燃性气体及井下环境参数的检测李文峰(西安科技大学通信学院,陕西西安710054)摘要:国内对瓦斯的检测以CH4检测为主,毒气的检测以CO检测为主;国外用可燃性气体的检测代替单一CH4气体的测量,毒气包括H2S的测量。
文章讨论了井下环境参数检测的种类和必要性。
关键词:瓦斯;可燃性气体;井下环境参数;检测中图分类号:TD71文献标识码:B文章编号:1003-496X(2006)01-0049-02为保障煤矿安全生产和职工人身安全,防止煤矿事故,制定了《煤矿安全规程》。
煤矿井下空气成分、环境温度等环境参数必须满足规程要求。
国内对瓦斯的检测以CH4检测为主,毒气的检测以CO检测为主;而国外用可燃性气体的检测代替单一CH4气体的测量,毒气包括H2S的测量。
环境参数主要指可燃性气体、CO、O2和环境温度。
1瓦斯的检测瓦斯是矿井中主要由煤层气构成的以CH4为主的有害气体,有时单独指CH4。
CH4无色、无臭、沸点-161.49℃,对空气的比重为0.554。
CH4气体与空气的混合气中,CH4的爆炸范围(explosionrange)是4.9%(V/V)~16%(V/V)。
这里,V/V(体积百分比)是浓度测量单位,例如:混合气中含有1%(V/V)的CH4意味着每一百单位体积的气体中含有一个单位体积的CH4。
此外,用于气体检测领域的单位还有百万分比浓度。
煤矿井下工作场合要使CH4浓度保持在安全限值以下,建立相应的瓦斯检查制度,CH4浓度达到2%时,工作人员应迅速撤离现场〔1〕。
国内外测量瓦斯浓度的方法有:光学干涉法瓦斯检测〔1〕、催化燃烧型瓦斯检测〔2〕以及红外瓦斯检测〔3〕。
2可燃性气体检测煤层气除含CH4气体外,还含有少量的CO、NO、SO2、H2S、NH3等有害或易燃气体。
所以国外用可燃性气体(combustiblegases)的测量代替单一CH4气体的测量。
各种可燃性气体的爆炸门限(flammablelimits)不尽相同,又分为爆炸下限(lowerexplosivelevel)和爆炸上限(upperexplosivelevel)。
光学瓦斯检测仪使用步骤Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998光学瓦斯检测仪使用步骤瓦斯仪器操作进入检查区域后,按巡回图表所拟定路线及时间依次达到各检查点。
1.瓦斯测定一手将连接瓦斯入口的胶管按二氧化碳吸收剂管用测仗伸向测点(距离巷道顶200板mm以下处)手压气球10次以上,待测气体入气室,然后收回测仗,打开目镜护盖。
观察光谱黑线在分划板上的移动位置,同时调整测微手轮,使光谱黑线在分划板上移到靠近的整数位置上。
再观测测微刻度盘上指示的读数,将分划板上指示的整数与测微盘上指示的小数相加即为该点的瓦斯浓度。
2.二氧化碳测定在测定点距巷道底板200mm以上处,首先测出该点的瓦斯浓度,然后拔开二氧化碳吸收剂管,将仪器吸气嘴伸向同一地点。
同测瓦斯浓度方法一样。
吸取二氧化碳和瓦斯的混合气体,读出混合气体浓度数值减去已测出的同点的瓦斯浓度再乘以所得数即为该点的二氧化碳浓度。
瓦斯检测程序及操作(一)入井前的准备工作1.佩戴好瓦斯检查工特种作业人员操作证。
2、对携带的光学瓦斯检测仪的药品、气路及气密性、条纹进行检查,确认其性能良好。
⑴对药品效能进行检查。
吸收管内的干燥剂用氯化钙或变色硅胶。
变色硅胶为蓝色颗粒状,直径2~3mm 为宜,极易吸收水分而逐渐变为粉红色。
吸湿变色后就应更换。
但吸湿变色后的硅胶经过干燥处理后可以复用。
吸收二氧化碳的是钠石灰又名碱石灰,仪器使用的是含有变色指示剂的粉红色颗粒,吸收后变为淡黄色。
药品颗粒粒度以3~5mm为宜。
⑵对一起进行气密性检查。
先检查吸气球是否漏气。
检查方法是:一只手捏扁吸气球压出球内气体,另一只手压住球上的橡皮管,如球不膨胀还原,就证明不漏气,否则可以从气球是否损坏、活塞芯子是否清洁等方面来找原因。
然后对仪器的气样通道进行检查。
其检查方法与检查吸气球一样,只是把压住吸气球上的橡皮管改为堵住仪器的进气口,如漏气应对各连接部分分别检查,找出原因进行检修。
一光学瓦斯检定器理论1、如何检查瓦斯?(1)把胶管伸到要检查的地点挤压气球7-8次,(2)按电门,观察光谱移动距离。
浓度不超过一分时,转动微动手轮,把光谱基线对到零位,读出瓦斯几厘。
如光谱移动超过整分的位置时,转动微动手轮,把光谱的基准线对到整分位置,然后观察微动刻度盘,就可读出几分几厘。
2、如何检查二氧化碳?(1)在需测量地点先测瓦斯含量;(2)甩掉苏打石灰附管,测出混合气体的含量;(3)从混合气体中减去瓦斯含量,乘以系数0.955,就是二氧化碳含量。
注:测二氧化碳时,测瓦斯和混合气体要在同一地点、同一位置进行。
3、10%光学瓦斯检定器精确度与误差?精度为:万分之一误差:0.05%--0.3%10%瓦斯含量允许误差的范围%以上10%瓦斯含量允许误差的范围%以上0~1 ± 0.051~4 ±0.14~7 ±0.27~10 ±0.34、100%光学瓦斯检定器精确度与误差?100%瓦斯含量允许误差的范围%以上 100%瓦斯含量允许误差的范围%以上0~10 ±0.5 >10~4 ±1>40~70 ±2 >70~100 ±35、光学瓦斯检定器测量范围?10%:测量的范围:0~10% 100%:测量的范围: 0~100%6、光学瓦斯检定器最低刻度?10%刻度最低为: 0.02% 100%测微刻度盘最小值 0.2%7、光学瓦斯检定器的用途?光学瓦斯鉴定器应用了光波干涉原理,迅速而准确的测定矿井中的沼气(甲烷)CO2等有害气体的浓度,同时也可用于其他工业部门的气体测定。
8、光学瓦斯检定器使用环境温度?—15度——40度9、仪器的构造及部件名称?瓦斯鉴定器的构造为电、光、气组成。
:1、照明装置组 2、聚光镜组 3、平面镜组 4、折光棱镜组 5、反射棱镜组 6、物镜组 7、目镜组 8、测微组 9、目镜组10、测微镜组 11、吸收管组10、目镜的作用?起放大作用,便于观察。
光声光谱技术检测痕量气体具有较高的灵敏度和良好的选择性,选题方向适宜。
请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。
80利用光声光谱技术检测痕量气体0.绪论传统的气体检测技术通常是基于非光学的检测,如气相色谱法、化学催化法。
但这些都存在很多问题,为了解决这些问题,又提出了光学检测手段,首先提出的是光谱吸收法,但他对试样的浓度有很高的要求,而另一种检测方法则采用的是光声光谱技术。
该技术既不受电磁干扰,也不需要损耗替换检测物质,可以免疫外界背景噪声,并且具有较高的灵敏度和良好的选择性。
因此光声光谱技术可以在微型化,远程化和普及化的同时实现实时远程的精确探测,并且非常适合用在很多极端环境以及针对易燃易爆物质的监测的条件下。
特别是近些年在原本的研究基础上开始出现使用石英音叉代替原本的麦克风共振腔,令光声光谱技术在灵敏度和抗环境噪声干扰方面提升了一大步。
1.光声光谱技术的发展历史放在密闭容器里的试样,当用经过斩波器调制的强度以一定频率周期变化的光照射时,容器内能产生同与斩波器频率的声波。
这一现象称为光声效应。
1880年贝尔发现固体的光声效应,1881年他又和廷德尔和伦琴相继发现气体和液体的光声效应。
他们将气体密封于池子里,用阳光间断照射池中样品,通过接到池上的一个听筒听到了某种声响。
20世纪60年代以后,由于微信号检测技术的发展,高灵敏微音器和压电陶瓷传声器的出现,强光源(激光器、氙灯等)的问世,光声效应及其应用的研究又重新活跃起来。
将光声效应和光谱技术结合起来,就形成了光声光谱技术。
光声光谱技术在不断发展,二氧化碳激光光源红外光声光谱仪适用于气体分析;氙灯紫外-可见光声光谱仪适用于固体和液体的分析;傅里叶变换光声光谱仪能对样品提供丰富的结构信息。
光声喇曼光谱法也在迅速发展。
2光声光谱光纤传感器基本原理2.1光声光谱技术原理传统的光声光谱技术是利用一个谐振腔,腔中充满一定压强的待测混合气体,采用调制的激光光源。