波谱分析知识点
- 格式:doc
- 大小:1.58 MB
- 文档页数:29
第一章1.红外光谱法(IR)基本原理:当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。
红外活性:分子振动过程中能引起偶极矩变化产生红外吸收的两个条件:⑴振动频率与红外光光谱段的某频率相等⑵偶极矩变化伸缩振动键长变化剪式振动振动形式面内面内摇摆振动弯曲振动键角变化面外面外摇摆振动面外摇摆振动吸收带类型:基频带、倍频带、合频带。
红外三要素:峰位、峰数、峰强▲频率位移的影响因素:内部因素有诱导效应、共轭效应、空间效应、氢键作用、张力效应、振动耦合、Fermi共振。
外部因素有物态的影响和溶剂的影响。
2.拉曼散射光谱基本原理:由于键上电子云分布产生瞬间变形引起的暂时极化,产生诱导偶极,当返回基态时发生的散射。
拉曼散射:当激发光照射样品时,光子与分子碰撞后发生了能量交换,即发生拉曼散射。
拉曼位移:拉曼散射光与入射光的频率之差称为拉曼位移。
拉曼位移产生条件:激发能量应大于振动能级的能量差,低于电子能级间的能量差,并且激发光要远离分析物的紫外—可见吸收光范围。
3.核磁共振(NMR)原理:在强磁场中,一些具有磁性的原子核的能量可以裂分为2个或2个以上的能级。
如果此时外加的能量等于相邻2个能级之差,则该核就会吸收能量,产生共振吸收,从低能态跃迁至高能态。
所吸收能量的数量级相当于频率范围为0.1~100MHz的电磁波,同时产生核磁共振信号,得到核磁共振谱。
产生核磁共振的条件:⑴原子核的自旋⑵外磁场能级分裂⑶照射频率与外磁场的比值ν0/H0=γ/2π。
化学位移:能够反映磁核在分子中所处的化学环境。
质子周围基团的性质不同,使它的共振频率不同,这种现象称为化学位移。
影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键4.X射线分析WAXD广角X射线:⑴聚合物晶型及有规立构的分析鉴定⑵高聚物物相鉴定⑶聚合物材料中添加物的分析⑷结晶参数的测定SAXS小角X射线散射:⑴粒子的尺寸、形状及分布⑵粒子的分散状态⑶高分子链结构和分子运动⑷多相聚合物的界面结构和相分离第二章1.分子量与分子量分布M z≥M w≥Mη≥M n第三章1.扫描电子显微镜(SEM)基本结构:电子光学系统(主要组成部分)、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。
波谱分析(spectra analysis)波谱分析的内涵与外延:定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。
特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等)特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等化合物:一般为纯的有机化合物分子结构:分子中原子的连接顺序、位置;构象,空间结构仪器分析(定量),波谱分析(定性)综合性、交叉科学(化学、物理、数学、自动化、计算机)作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。
第一章紫外光谱(ultraviolet spectra,UV)一、电磁波的基本性质和分类1、波粒二象性光的三要素:波长(λ),速度(c),频率 (v)电磁波的波动性电磁波的粒子性光速 c:c=3.0×10^10 cm/s波长λ :电磁波相邻波峰间的距离。
用nm,μm,cm,m 等表示频率v:v=c/ λ,用 Hz 表示。
光子具有能量,其能量大小由下式决定:E = hν =hc/λ (式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s )2、分子的能量组成(能级图)E 分子= E平+ E转+ E振+E电子能量大小: E转< E振< E电子X-射线衍射紫外-可见光谱红外光谱微波吸收谱核磁共振谱内层电子能级跃迁外层电子分子振动与转动分子转动电子自旋核自旋X-射线远紫外近紫外可见近红外中红外远红外微波无线电波0.1~1nm 4~200nm 200~400nm400~800nm0.8~2.5um25~400um0.04~25cm25~1000cm 紫外光谱远紫外(4~200nm):又叫真空紫外区近紫外(200~400nm):又叫石英紫外区,最为常用。
电子跃迁类型的影响σ→σ*跃迁:150nm左右,真空紫外区n→σ*跃迁:一般小于200nm 弱吸收,ε约100π→π*跃迁:160~180nm(孤立双键),>200nm (共轭双键)强吸收,ε约104n→π*跃迁:200~400nm 弱吸收,ε约1002.3.表示方法和常用术语发色团:广义上讲,是分子中能吸收紫外光或可见光的结构系统。
波谱解析知识点总结一、波谱解析的基本原理1. 光谱学基础知识光谱学涉及到物质对光的吸收、发射、散射等现象,它是物质分析的重要手段之一。
常见的光谱包括紫外光谱、可见光谱、红外光谱、拉曼光谱等。
每种光谱方法都有其独特的应用领域和分析特点。
2. 原子光谱原子光谱是指研究原子吸收、发射光谱的一门学科,主要包括原子吸收光谱和原子发射光谱。
原子光谱可以用于分析金属元素和非金属元素的含量,它是分析化学中的重要手段。
3. 分子光谱分子光谱是指研究分子在光的作用下吸收、发射、散射等现象的一门学科,主要包括紫外光谱、红外光谱、拉曼光谱等。
分子光谱可以用于研究分子的结构和性质,对于有机化合物的分析具有重要意义。
4. 核磁共振波谱核磁共振波谱是指研究核磁共振现象的一门学科,它可以用于研究原子核的磁共振现象,得到有关物质结构和性质的信息。
核磁共振波谱在有机化学、生物化学等领域有着广泛的应用。
二、波谱解析的仪器和设备1. 分光光度计分光光度计是用于测量物质吸收、发射光谱的仪器,它可以测量紫外、可见、红外等波段的光谱,是分析化学中常用的仪器之一。
2. 核磁共振仪核磁共振仪是用于测量核磁共振波谱的仪器,它可以测量氢、碳等核的共振信号,得到物质的结构和性质信息。
3. 质谱仪质谱仪是用于测量物质离子的质量和荷质比的仪器,它可以得到物质的分子量、结构等信息,是很多化学分析的重要手段。
4. 激光拉曼光谱仪激光拉曼光谱仪是用于测量拉曼光谱的专用仪器,它可以用激光光源激发样品,得到与分子振动信息有关的拉曼光谱。
三、波谱解析的应用领域1. 化学分析波谱解析技术在化学分析中有着广泛的应用,它可以用于定量分析、质量分析、结构分析等多个方面,对于复杂的化合物和材料有很高的分析能力。
2. 药物研发波谱解析技术在药物研发中有着重要的应用,它可以用于研究药物的成分、结构和性质,对于新药物的研究和开发有很大帮助。
3. 生物医学波谱解析技术在生物医学领域有着广泛的应用,它可以用于研究生物分子的结构和功能,对于临床诊断和治疗有着重要意义。
波谱解析复习总结(一)常用解谱数据总结关于数据,是一定要记的···大家想怎么记爱怎么记就怎么记吧,建议自己总结,这样记的好一些。
下面是鄙人的,嘻嘻。
(老师PPT上有很多总结的)一、氢谱化学位移值δ(ppm)影响化学位移值的因素:只有空间效应和共轭效应是屏蔽效应增大,向高场位移,即ζ↑,δ↓.(一)0.4~4.0为饱和C上的H① 0.4~1.8 连饱和C的饱和C上的H② 1.8~2.5 连不饱和C的饱和C上的HI. 1.8~2.1 连C=C、C≡C的饱和C上的HII. 2.1~2.5 连C=O、N、S、苯环的饱和C上的H③ 3.0~4.6 连-O-的饱和C上的H其中,4.1左右可能有酯基④例外的:2.3~3.0是叁键上的H(二)4.6~8.0为不饱和C上的H① 4.6~6.0 C=C上的H② 6.0~8.0 苯环上的H(三)4.0~5.5为脂肪醇-OH的H若有0.5~1.0,为稀溶液(四)3.5~7.7为酚的-OH的H若有10~16,为分子内氢键(五)9.0~10.0为H-C=0的H(六)10.5~13为-COOH的H(七)胺类①~1.0 脂肪胺②4~5(气泡峰)芳香胺③6~7(气泡峰)酰胺,仲胺类其它:J值:①任何情况下J顺<j反< p="">②总体情况:J苯环H<j邻(烯h)<j邻(烷h)<j偕h< p="">③苯环H:J对<j间<="">④烯烃H:J邻(顺)<j邻(反)(j邻(顺)6~14hz;j邻(反)11~18hz)< p="">⑤烷烃H:J邻6~8Hz⑥同碳上的H:J偕10~16Hz要求掌握给图能测量算得J值,再推化合物种类。
二、碳谱碳谱的DEPT值:季碳消失!θ=45°,季C消失;θ=90°,季C消失,只有CH向上;θ=135°,季C消失,只有CH2向下。
有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。
有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。
本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。
一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。
红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。
2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。
红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。
3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。
此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。
二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。
紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。
2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。
紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。
3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。
此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。
三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。
质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。
有机波普分析知识点总结1. 概述有机波普分析是一种利用有机物的挥发性成分进行分析的方法,它是从气相中分析有机化合物的一种有效手段。
有机波普分析是通过气相色谱-质谱联用技术进行分析的,它广泛应用于环境监测、食品安全、生物医药等领域。
有机波普分析的关键技术是气相色谱-质谱联用技术,它具有分辨能力高、灵敏度高、选择性好等特点。
2. 基本原理有机波普分析是基于有机物质挥发性成分进行分析的,它利用气相色谱-质谱联用技术将有机物质挥发性成分分离并进行检测与定性。
气相色谱利用气态载气将有机物质挥发成分进行分离,质谱则利用质谱仪对分离后的物质进行检测与定性。
有机波普分析的原理是分析样品挥发蒸馏后的气体混合物,然后利用气相色谱将其分离,最后通过质谱对分离后的物质进行检测与定性。
3. 分析步骤有机波普分析的分析步骤包括样品的制备、挥发蒸馏、气相色谱分离、质谱检测、数据分析等几个主要步骤。
样品的制备是将待分析的有机样品制备成适合进行气相色谱-质谱联用分析的形式;挥发蒸馏是将有机样品中挥发性成分进行蒸馏分离;气相色谱分离是利用气相色谱将挥发性成分进行分离;质谱检测是利用质谱对分离后的物质进行检测与定性;数据分析是对分析结果进行处理与解释。
4. 应用领域有机波普分析广泛应用于环境监测、食品安全、生物医药等领域。
在环境监测领域,有机波普分析可以用于监测水质、大气、土壤中的有机物质,检测环境中的有机物污染情况;在食品安全领域,有机波普分析可以用于检测食品中的有机污染物,保障食品安全;在生物医药领域,有机波普分析可以用于检测药物中的有机成分,分析药物的成分与含量,保证药物的质量。
5. 技术发展有机波普分析技术发展较快,主要表现在以下几个方面:一是仪器技术的提高,气相色谱-质谱联用仪器的灵敏度、分辨率及稳定性都有所提高;二是分析方法的改进,有机波普分析的分析方法不断完善,能够更好地适应各种样品的分析要求;三是应用领域的拓展,有机波普分析技术被广泛应用于环境、食品、医药等领域,对于保障公共健康具有重要意义。
有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。
本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。
一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。
通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。
有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。
二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。
通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。
红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。
2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。
质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。
3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。
通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。
核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。
4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。
紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。
三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。
结构鉴定法常用于核磁共振谱和质谱。
2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。
波谱解析知识点总结
波谱解析是一种重要的分析技术,用于确定不同化学物质的组成和结构。
以下是一些波谱解析的知识点总结:
## 红外光谱学
-红外光谱是一种分析技术,用于确定化合物中的功能性基团和化学键类型。
-红外光谱图谱中峰的位置和强度可以提供有关样品的信息,例如它的结构和杂质。
-峰的位置是由化学键的振动频率决定的,峰的强度则取决于化学键的极性和吸收系数。
## 质谱学
-质谱学是一种分析技术,用于确定化合物的分子量和组成。
-质谱图谱中,峰的位置和强度可以提供有关样品的信息,例如它的分子量、化合物的结构和分子离子的分布。
-峰的位置是由分子离子质量-电荷比决定的,峰的强度则取决于分子离子的相对丰度。
## 核磁共振
-核磁共振是一种分析技术,可以确定化合物的分子结构和组成。
-核磁共振图谱中峰的位置和强度可以提供有关样品的信息,例如它的结构、分子间的相对位置和化学环境。
-峰的位置是由核自旋能级决定的,峰的强度则取决于核自旋数和相对丰度。
以上是波谱解析的一些基本知识点总结。
不同的波谱技术可以提供不同的信息,使用合适的技术对样品进行分析可以提高分析的准确性和灵敏度。
波谱分析第一章紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。
反映了有机分子中发色团的特征,可以提供物质的结构信息。
2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。
3、Lamber-Beer 定律适用于单色光吸光度:A= lg(I 0/I) = lc透光度:-lgT = bcA :吸光度;l :光在溶液中经过的距离;:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。
4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。
5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。
吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应。
6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。
2. n →σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。
3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。
4. n →π*跃迁:含杂原子不饱和基团(-C ≡N,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。
7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,↑,吸收峰红移,↑3. 极性的影响:π→π*跃迁:极性↑,红移,↑;↓。
波谱分析(spectra analysis)波谱分析的内涵与外延:定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。
特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等)特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等化合物:一般为纯的有机化合物分子结构:分子中原子的连接顺序、位置;构象,空间结构仪器分析(定量),波谱分析(定性)综合性、交叉科学(化学、物理、数学、自动化、计算机)作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。
第一章紫外光谱(ultraviolet spectra,UV)一、电磁波的基本性质和分类1、波粒二象性光的三要素:波长(λ),速度(c),频率 (v)电磁波的波动性电磁波的粒子性光速 c:c=3.0×10^10 cm/s 波长λ :电磁波相邻波峰间的距离。
用nm,μm,cm,m 等表示频率v:v=c/ λ,用 Hz 表示。
光子具有能量,其能量大小由下式决定:E = hν = hc/λ (式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s )2、分子的能量组成(能级图)E 分子= E平+ E转+ E振+E电子能量大小: E转< E振< E电子X-射线衍射紫外-可见光谱红外光谱微波吸收谱核磁共振谱内层电子能级跃迁外层电子分子振动与转动分子转动电子自旋核自旋X-射线远紫外近紫外可见近红外中红外远红外微波无线电波0.1~1nm 4~200nm 200~400nm400~800nm0.8~2.5um25~400um0.04~25cm25~1000cm 紫外光谱远紫外(4~200nm):又叫真空紫外区近紫外(200~400nm):又叫石英紫外区,最为常用。
电子跃迁类型的影响σ→σ*跃迁:150nm左右,真空紫外区n→σ*跃迁:一般小于200nm 弱吸收,ε约100π→π*跃迁:160~180nm(孤立双键),>200nm (共轭双键)强吸收,ε约104n→π*跃迁:200~400nm 弱吸收,ε约1002.3.表示方法和常用术语发色团:广义上讲,是分子中能吸收紫外光或可见光的结构系统。
狭义上讲,凡具有π电子的基团。
如:c=c, c=o,苯环等芳香族化合物。
助色团:基团本身不能吸收大于200nm的紫外光,但它与一定的发色团相连时,则可使发色团所产生的吸收峰向长波方向移动,同时吸收强度也增加,这些基团称助色团,即有助于光波的吸收。
常见的助色团有-OH, -OR, -NHR, -SH, -Cl, -Br, -I等。
红移:由于取代作用或溶剂效应导致紫外吸收峰向长波方向移动的现象。
蓝移:紫外吸收峰向短波方向移动。
增色作用:使紫外吸收强度增加的作用。
减色作用:使紫外吸收强度降低的作用。
12.6吸收强度的主要影响因素1、跃迁几率2、靶面积2.7测定用溶剂的选择原则:1、紫外透明,无吸收 2、溶解度好 3、不与样品发生化学反应第三节推测化合物λmax的经验规则一.非共轭有机化合物的紫外吸收(了解)二、共轭有机化合物的紫外吸收(一)共轭烯烃的λmax的计算方法1、共轭二烯,三烯及四烯λmax的计算(Woodward-Fieser经验规则,)1,增加一个共轭双键(增加共轭度)2,环外双键(固定构象,增加共轭几率)3,取代基烷基和环残基(σ-π超共轭)O、N、X、S (p- π共轭)(1)环外双键:在环状烯烃中,双键碳的一个原子位于环内,另一个位于环外,这种双键称为环外双键。
只有处于共轭体系中的环外双键才会对紫外吸收产生影响(2)环残基:与双烯C相连的饱和环骨架的一部分。
注意事项:交叉共轭体系,只能选一个较长的共轭体系芳香系统也不适用,另有规则。
只适用于小于或等于四个双键的化合物。
共轭体系中的所有取代基及所有的环外双键均应考虑在内。
共轭双键基值 217 nm 环外双键 +5同环二烯 +36 共轭双键 +30烷基或环基 +5 卤素 +5-S-R +30 -O-R +6-OCOR +0 -NR2 +60烷基或环基是指与共轭双键碳相连的碳环骨架的一部分2.共轭多烯λmax计算(Fieser-Kuhn公式)λmax=114+5M+n(48-1.7n)-16.5 Rendo-10 Rexoεmax=1.74×104n其中,M―烷基数n―总共轭双键数Rendo―具有环内双键的环数Rexo―具有环外双键的环数3.a,β不饱和羰基化合物的λmax计算基值a,β不饱和醛 207 a,β不饱和五元环酮 202 a,β不饱和酮 215 a,β不饱和六元环酮 1954.苯多取代衍生物的K带的λmax计算书19页基值 Ph-CO-烷基或环基 246 Ph-CHO 250Ph-COOH 230 Ph-COO烷基或环基 230Ph-CN 224第二章红外光谱(Infrared spectra, IR)红外光谱的特点1、具有高度的特征性2、对样品的适应性相当广泛,无论固态、液态或气态样品都可进行测定4、对于特征基团的分析准确3、常规红外光谱仪价格较低(与核磁、质谱比)一、红外光谱是研究红外光与物质分子间相互作用的吸收光谱红外光谱又称作振-转光谱E 分子= E移+ E振+ E转+E电子通常将红外光分为三个区域:近红外区(泛频区:12500-4000cm-1)中红外区(基本振动:4000-400cm-1 )远红外区(转动区: 400-25cm-1 )在常温下,分子几乎均处于基态,所以在红外吸收光谱中通常只考虑下面两种跃迁:V0→V1:基频峰,峰强v0→1=v(1-2Xe)V0→V2:倍频峰,峰弱v0→2=2v(1-3Xe)23(二)多原子分子的振动 1、振动自由度与峰数 将多原子的复杂振动分解为许多简单的基本振动(简正振动)基本振动的数目:振动自由度(分子自由度) 分子自由度数(3N ):平动自由度+转动自由度+振动自由度 振动自由度: 分子自由度数(3N )-(平动自由度+转动自由度) 非线性分子振动自由度=3N -(3+3)=3N -6 线性分子振动自由度=3N -(3+2)=3N -5 2、振动类型 (1)伸缩振动(v):对称伸缩振动vs 不对称伸缩振动vas 对称伸缩振动 :两个键同时伸长或缩短 不对称伸缩振动:一个键伸长,一个缩短 特点:只有键长的变化,没有键角的变化。
(2)弯曲振动 (δ):①面内弯曲振动δip,分为:剪式振动δs、平面摇摆 ②面外弯曲振动δo.o.p ,分为:非平面摇摆ω 、扭曲振动τ 弯曲振动:原子在键轴前后或左右弯曲振动。
特点:只有键角变化,无键长变化。
红外吸收在低频率区,一般在1500cm-1以下。
红外光谱产生的基本条件 1、hv 红外光=ΔE 分子振动 2、分子振动时,其偶极矩μ必须发生变化,即Δμ≠0。
3、影响峰数的原因 理论上,每个振动自由度在红外光谱区都应产生一个吸收峰,但实际峰数往往少于振动数目。
原因: 1 当振动过程中分子不发生瞬间偶极矩变化时,不引起红外吸收。
2 频率完全相同的振动彼此发生简并。
3 强宽峰覆盖与它频率相近的弱而窄的吸收峰。
4 吸收峰有时落在中红外区以外(4000~650cm-1),不被检测。
5 吸收峰太弱,无法测定。
也有使峰数增多的因素,如倍频与组频等。
但这些峰落在中红外区的较少,而且都非常弱。
三、分子偶极变化与峰强 (一)峰强的表示法 百分透光率:红外光谱用百分透光率T 表示峰强。
T %=I/I0×100% 故T%越小,吸收峰越强。
百分吸收率: 吸光度:A 摩尔吸光系数:ε>100 vs ε=20-100 s ε=10-20 m ε<1 w (二)决定峰强的因素 (1)振动过程中偶极矩的变化 原子的电负性 : vC=O>vC=C ,vOH>vC-H>vC-C 振动形式 : vas>vs, v>δ 分子的对称性 :CO2的对称伸缩O=C=O 其它(2)能级跃迁的几率 基频几率最大 四、影响峰位的因素(一)内部因素 1.电子效应 由于取代基具有不同的电负性,通过电子效应使分子中的电子云分布发生变化,从而改变化学键的键力常数,也就改变了基团的特征吸收频率。
(1)诱导效应(inductive effect) 取代基的电负性,引起电子云密度的变化,称为诱导效应。
分为吸电子诱导效应(-I 效应)和给电子诱导效应(+I 效应) F >Cl >Br >I >OCH3>NHCOCH3>C6H6>H >CH3 (2)共轭效应(简称+C 或+M 效应)共轭效应使电子密度平均化,C=O 的双键性降低,键力常数减少,故吸收峰移向低波数区。
当同时存在I 效应和C 效应时,吸收峰的位移方向由影响较大的那个效应决定。
2.空间效应 (1)场效应(简称F 效应) (2)空间障碍(位阻) (3)跨环效应:非共轭基团之间的相互作用。
分子中两个非共轭生色团处于一定的空间位置,由于两基团的空间位置相近而产生的跨环共轭效应,使红外吸收向低波数移动。
尤其是在环状体系中,有利于电子轨道间的相互作用。
(4)环张力 环外双键和环上羰基,其频率随着环张力增加而增加。
环内双键的伸缩频率则随环张力的增加而降低。
3.氢键效应氢键的形成使参与形成氢键的化学键力常数减少,可使伸缩频率向低波数方向移动,谱带变宽。
(1)分子内氢键(与浓度无关)氢键的形成使参与形成氢键的化学键力常数减少,可使伸缩频率向低波数方向移动,谱带变宽。
可使谱带大幅度向低波数方向移动 (P54举例)(2)分子间氢键(与浓度有关)醇、酚、羧酸。
其中羧酸的分子间氢键缔合不仅使羰基的吸收频率发生变化,而且也使羟基出现在3200~2500cm-1区间。
4.互变异构5.振动偶合效应当两个基团在分子中靠近,且振动频率相同或相近时,其相应的吸收峰强度增强或发生裂分,形成两个峰,这叫振动偶合。
费米共振:当倍频峰(或组频)位于某强的基频吸收峰附近时,弱的倍频或组频峰的吸收强度被大大强化,间或发生峰带裂分,这种倍频与基频峰之间的振动偶合称为费米共振。
6.样品的物理状态的影响同一样品在不同的状态测定(气、液、固),其红外吸收光谱有不同程度的差异。
核对光谱时要注意。
(二)外部因素1.溶剂影响:极性基团的伸缩频率常随溶剂极性增大而降低。
第二节红外光谱中的重要区段一、特征谱带区、指纹区及相关峰的概念1、特征谱带区:有机化合物的分子中一些主要官能团的特征吸收多发生在红外区域的4000~1333cm-1。
该区域吸收峰比较稀疏,容易辨认,故通常把该区域叫特征谱带区,该区相应的吸收峰称做特征吸收或特征峰。