仪器分析——第一章紫外-可见分子吸收光谱法
- 格式:ppt
- 大小:2.19 MB
- 文档页数:127
仪器分析复习题参考答案《仪器分析》复习题第⼀章绪论⼀、仪器分析⽅法的分类(四⼤类)(⼀)光学分析法(spectroscopic analysis)以物质的光学性质(吸收,发射,散射,衍射)为基础的仪器分析⽅法。
包括原⼦吸收光谱法、原⼦发射光谱法、紫外-可见吸收光谱法、红外光谱法、核磁共振波谱法等。
(⼆)电分析(electrical analysis):电流分析,电位分析,电导分析,电重量分析,库仑法,伏安法。
(三)⾊谱分析(chromatography analysis) :⽓相⾊谱法,液相⾊谱法(四)其它仪器分析⽅法(other analysis):1. 质谱法2. 热分析法包括热重法、差热分析法、⽰差扫描量热法等。
3. 电⼦显微镜,超速离⼼机,放射性技术等。
⼆、定量分析⽅法的评价指标灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为⽅法的灵敏度,⽤S表⽰。
精密度:是指使⽤同⼀⽅法,对同⼀试样进⾏多次测定所得测定结果的⼀致程度。
精密度⽤测定结果的标准偏差 s或相对标准偏差(s r )量度。
准确度: 试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度。
检出限:某⼀分析⽅法可以检出被测物质的最⼩浓度或最⼩质量,称为该⽅法对该物质的检出限。
以浓度表⽰的称为相对检出限,以质量表⽰的称为绝对检出限。
第⼆章光谱分析导论⼀、光谱区中紫外、可见、红外对应的波长范围?紫外:200-380nm 可见:380-780nm 近红外:780-2500nm 中红外:2.5-50µm 远红外:50-300µm ⼆、原⼦光谱和分⼦光谱的⽐较。
原⼦光谱的特征:电⼦能级间的跃迁,属电⼦光谱,线状光谱。
分⼦形成带状光谱的原因能量离散,导致谱线宽度扩展测不准原理、相对论效应导致谱线宽度扩展。
再加上能级之间的能量间距⾮常⼩,导致跃迁所产⽣的谱线⾮常多,间距⾮常⼩,易于重叠。
原⼦光谱:原⼦基态与激发态能量差△E=1-20eV,与紫外-可见光的光⼦能量相适应,特征是线状光谱相邻电⼦能级间的能量差△Ee=1-20eV,与紫外-可见光的光⼦能量相适应,特征是线状光谱分⼦光谱:相邻振动能级间的能量差△Ev=0.05-1eV,与中红外区的光⼦能量相适应,特征是带状光谱相邻转动能级间的能量差△Er<0.05eV, 与远红外区的光⼦能量相适应,特征是带状光谱三、 1. 物质吸收光的过程⽆辐射退激共振发射荧光磷光2. 物质散射光的过程瑞利散射斯托克斯散射反斯托克斯散射四、荧光与磷光产⽣的量⼦解释及其区别?荧光:激发分⼦与其它分⼦相碰,⼀部分能量转化为热能后,下降到第⼀激发态的最低振动能级,然后再回到基态的其它振动能级并发射光⼦的发射光称荧光。
《仪器分析》课程标准适用专业:化学所属教研室:分析化学课程代码:ZBB092021课程名称:仪器分析课程性质:专业必修学分学时: 1 学分/ 18学时一、课程概述(一)课程性质《仪器分析》是四年制化学教育本科专业类的专业选修课,是在学生学过分析化学课程的基础上进行的,根据化学教育专业教学的要求,本课程教学以解决化合物的结构鉴定为主,讲述紫外-可见吸收光谱法、红外吸收光谱法、荧光分光光度法、原子吸收法、核磁共振波谱法、质谱法的基本原理以及在化合物结构鉴定上的应用。
(二)基本理念1.面向全体学生,注重素质教育、能力培养本课程面向化学专业全体学生,注重专业基础素质教育,激发学生的学习兴趣,提高他们的抽象思维能力,增强他们的理论联系实际的能力等。
2.突出学生主体,尊重个体差异本课程在目标设定、教学过程、课程评价和教学资源的开发等方面都突出了以学生为主的思想。
课程实施理应成为学生在教师指导下构建知识、提高技能、活跃思维、拓宽视野的过程。
3.注重教学过程、促进学生发展建立能激发学生兴趣和自主学习能力发展的评价体系。
该评价体系由形成性评价和终结性评价构成。
在教学过程中应形成性评价为主,注重培养和激发学生的学习积极性和自信心。
终结性评价应注重检测学生的知识应用能力。
评价要有利于促进学生的知识应用能力的发展;促进教师不断提高教育教学水平;促进本门课程的不断发展与完善。
4. 改变教学方式、运用现代教学技术积极利用多媒体技术,改变传统的教学方式,增加学生对知识的感性认识,培养学生分析问题、解决问题的能力。
(三)设计思路1.教学改革基本思路本课程在设计过程中,根据针对专业培养计划和人才培养规格,本着为地方经济、教育服务的原则,本着宽基础、多方向的就业思路,根据专业岗位技能要求,从而确定教学内容、教学时数和教学方法。
2.总体设计原则本课程让学生了解并熟练掌握有机、无机化合物的基本波谱知识、原理,为实践教学打下良好的基础。
紫外可见吸收光谱原理
紫外可见吸收光谱是一种常用的分析方法,用来研究物质对紫外和可见光的吸收特性。
其原理基于分子吸收光谱和比尔定律。
当紫外可见光线通过样品溶液时,部分光子会被溶液中的分子吸收。
吸收的光子会使分子的电子跃迁到更高的能级,从而产生吸收峰。
通过测量样品溶液的吸收峰强度,可以获得与溶质浓度相关的吸光度数据。
吸光度与溶质浓度之间的关系可以由比尔定律描述。
比尔定律认为吸光度与溶质浓度之间存在线性关系,即吸光度与溶质浓度成正比。
根据比尔定律的表达式A = εlc,其中A为吸光度、ε为摩尔吸光系数、l为光程长度、c为溶质浓度,可以通过测
量吸光度来确定溶质的浓度。
实际测定过程中,常用紫外可见分光光度计进行测量。
分光光度计通过分光装置将入射的光线分成不同波长区域,再通过样品池使光通过样品溶液,在光敏探测器的检测下得到吸光度信号。
然后将吸光度与浓度数据转化并分析,以得出所需的结果。
通过紫外可见吸收光谱,可以研究溶液中溶质的浓度、反应动力学、溶解度等参数,并用于定量分析和质量控制等领域。
这种分析方法广泛应用于化学、生化、制药等领域,并为科学研究和工业生产提供了强有力的支持。