第7章 化学动力学基础
- 格式:ppt
- 大小:4.28 MB
- 文档页数:41
第七章化学动力学基础7-1:区别下列概念:(a) 碰撞理论和过渡态理论;(b) 有效碰撞与无效碰撞;(c) 活化能与反应热;(d) 均相催化剂与多相催化剂;(e) 催化剂、助催化剂与阻化剂;(f) 物理吸附与化学吸附;(g) 反应分子数与反应级数;(h) 单分子过程和双分子过程。
答:(a) 碰撞理论和过渡态理论是描述反应速率理论的两个不同理论:碰撞理论:1918 年Lewis 运用气体分子运动论的成果提出的一种反应速率理论。
它假设:①原子、分子或离子只有相互碰撞才能发生反应,即碰撞是反应的先决条件;②只有少部分碰撞能导致化学反应,大多数反应物微粒碰撞后发生反弹而与化学反应无缘。
过渡状态理论:20 世纪30 年代,在量子力学和统计力学发展基础上,由Eyring等提出的另一种反应速率理论。
它认为反应物并不只是通过简单碰撞就能变成生成物,而是要经过一个中间过渡状态,即反应物分子首先形成活化络合物,通常它是一种短暂的高能态的“过渡区物种”,既能与原来的反应物建立热力学的平衡,又能进一步解离变为产物。
(b) 在碰撞理论中,能导致化学反应的碰撞为有效碰撞,反之则为无效碰撞。
(c) 为使反应得以进行,外界必需提供的最低能量叫反应的活化能;反应热是反应过程(从始态至终态)的热效应(放出或吸收的热量)。
(d) 决定于是否与反应物同处一相。
(e) 催化剂是一类能改变化学反应速率而本身在反应前后质量和化学组成都没有变化的物质;助催化剂是能够大大提高催化剂催化效率的一类物质;阻化剂则是严重降低甚至完全破坏催化剂催化活性的一类杂质。
(f) 两者的区别在于催化剂与被吸附物之间作用力的本质不同。
如果被吸附物与催化剂表面之间的作用力为范德华力, 这种吸附叫物理吸附;如果被吸附物与催化剂表面之间的作用力达到化学键的数量级, 则叫化学吸附。
(g) 反应级数是描述速率方程的一个术语,不必考虑方程所描述的反应是否为元反应,它等于速率方程中浓度项指数的和;而只是元反应才能按反应分子数分类,参与元过程的分子的数目叫该元过程的分子数;(h) 单分子过程和双分子过程是元反应设计的术语,单分子过程前者涉及单个分子的解离;双分子过程则涉及两个分子的碰撞。
第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应速率的定义3.化学反应的速率方程4.具有简单级数的反应5.几种典型的复杂反应6.温度对反应速率的影响7.链反应 重点1.重点掌握化学反应速率、反应速率常数及反应级数的概念2.重点掌握一级和二级反应的速率方程及其应用3.重点掌握复杂反应的特征,了解处理对行反应、平行反应和连串反应的动力学方法。
4.重点理解阿罗尼乌斯方程的意义并会应用。
明确活化能及指前因子的定义 难点1.通过实验建立速率方程的方法2.稳态近似法、平衡近似法及控制步骤的概念及其运用3.复杂反应的特征及其有关计算 教学方式1.采用CAI 课件与黑板讲授相结合的教学方式。
2.合理运用问题教学或项目教学的教学方法。
教学过程第7.1节化学动力学研究的内容和方法热力学讨论了化学反应的方向和限度,从而解决了化学反应的可能性问题,但实践经验告诉我们,在热力学上判断极有可能发生的化学反应,实际上却不一定发生。
例如合成氨的反应,223()3()2()N g H g NH g ,在298.15K 时,按热力学的结论,在标准状态下此反应是可以自发进行的,然而人们却无法在常温常压下合成氨。
但这并不说明热力学的讨论是错误泊,实际上豆科植物就能在常温常压下合成氨,只是目前还不能按工业化的方式实现,这说明化学反应还存在一个可行性的问题。
因此,要全面了解化学反应的问题,就必须了解化学变化的反应途径----反应机理,必须引入时间变量。
研究化学反应的速率和各种影响反应速率的因素,这就是化学动力学要讨论的主要内容。
一、化学热力学的研究对象和局限性:研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。
化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?例如:热力学只能判断这两个反应都能发生,但如何使它发生,热力学无法回答。
二、化学动力学的研究对象 化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。