2020新课标高考数学(理)二轮总复习(课件+专题限时训练)专题7 高效解答客观题-6
- 格式:doc
- 大小:60.50 KB
- 文档页数:6
专题02 函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x ,则x 的象为20,即2x +x =20.由于x ∈N ,2x +x 随着x 的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 则f (1)=______;若f (0)+f (a )=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f (1)=3.又f (0)=-1,所以f (a )=-1, 当a ≤0时,由a -1=-1得a =0;当a >0时,由-a 2+2a +2=-1,即a 2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( ) (A)22)(,t y x y ==(B)2|,|t y x y ==(C)1,112+=--=x y x x y (D)x x y x y 2,==【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域 (1);11--=x y(2);3212-+=x x y(3);)1()3lg(0-+-=x xx y(4);2|2|12---=x x y解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0. 所以,所求函数的定义域为{x |x ≥2或x ≤0}.(2)由x 2+2x -3>0得,x >1或x <-3. 所以,所求函数的定义域为{x |x >1或x <-3}.(3)由⎪⎩⎪⎨⎧=/-=/>-,01,0,03x x x 得x <3,且x ≠0,x ≠1, 所以,所求函数的定义域为{x |x <3,且x ≠0,x ≠1}(4)由⎩⎨⎧=/=/≤≤-⎩⎨⎧=/-≥-⎩⎨⎧≠--≥-,4,0,112|2|01,02|2|0122x x x x x x x 且即,,得,所以-1≤x ≤1,且x ≠0.所以,所求函数定义域为{x |-1≤x ≤1,且x ≠0}.例5 已知函数f (x )的定义域为(0,1),求函数f (x +1)及f (x 2)的定义域.【分析】此题的题设条件中未给出函数f (x )的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x 的取值范围;②受对应法则f 制约的量的取值范围在“已知”和“求”当中是一致的.那么由f (x )的定义域是(0,1)可知法则f 制约的量的取值范围是(0,1),而在函数f (x +1)中,受f 直接制约的是x +1,而定义域是指x 的范围,因此通过解不等式0<x +1<1得-1<x <0,即f (x +1)的定义域是(-1,0).同理可得f (x 2)的定义域为{x |-1<x <1,且x ≠0}.例6 如图,用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并指出定义域.解:根据题意,AB =2x .⋅--==2π2,πxx l AD x 所以,.)2π2(π212π2222lx x x x x l x y ++-=+--=⋅⋅根据问题的实际意义.AD >0,x >0.解.π20,02π2,0+<<⎪⎩⎪⎨⎧>-->l x xx l x 得 所以,所求函数定义域为⋅+<<}π20|{lx x【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y =tan x ,则2ππ+≠k x ,k ∈Z . (2)不给出f (x )的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知21)1(x xxf -=,求f (x )的解析式; (2)已知221)1(xx x x f +=+,求f (3)的值;(3)如果f (x )为二次函数,f (0)=2,并且当x =1时,f (x )取得最小值-1,求f (x )的解析式; (4)*已知函数y =f (x )与函数y =g (x )=2x 的图象关于直线x =1对称,求f (x )的解析式. 【分析】(1)求函数f (x )的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.⋅-=-=1)1(111)1(2xxx xxf 通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,⋅-=1)(2x xx f 方法二.设t x =1,则tx 1=.则1111)(22-=-=t t t t t f ,所以⋅-=1)(2x x x f 这样,通过“换元”的方法也可以明确看到法则是什么. (2)用“凑型”的方法,.7)3(,2)(.2)1(1)1(2222=-=-+=+=+f x x f xx x x x x f 所以 (3)因为f (x )为二次函数,并且当x =1时,f (x )取得最小值-1, 所以,可设f (x )=a (x -1)2-1,又f (0)=2,所以a (0-1)2-1=2,所以a =3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.40元/kW·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.30元/kW·h .(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x 元/kW·h 时,用电量将增加至,4.0a x k+-故电力部门的收益为)75.055.0)(3.0)(4.0(≤≤-+-=x x a x ky .(2)易知,上年度的收益为(0.8-0.3)a ,依题意,%),201)(3.08.0()3.0)(4.02.0(+-≥-+-a x a x a且0.55≤x ≤0.75,解得0.60≤x ≤0.75.所以,当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题 1.已知函数xx f -=11)(的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( ) (A){x |x >1}(B){x |x <1}(C){x |-1<x <1} (D)∅2.图中的图象所表示的函数的解析式为( )(A))20(|1|23≤≤-=x x y (B))20(|1|2323≤≤--=x x y (C))20(|1|23≤≤--=x x y(D)y =1-|x -1|(0≤x ≤2)3.已知f (x -1)=x 2+2x ,则=)1(xf ( )(A)x x 212+(B)112-x(C)22143x x x ++(D)212x x +4.已知⎪⎩⎪⎨⎧≥<<--≤+=2,3,21,,1,3)(2x x x x x x x f 若f (x )=3,则x 的值是( )(A)0 (B)0或23 (C)3± (D)3二、填空题5.给定映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(0,1)的象是______;(3,1)的原象是______. 6.函数2||3)(--=x xx f 的定义域是______. 7.已知函数f (x ),g (x )分别由下表给出则f [g (1)]的值为______;满足f [g (x )]>g [f (x )]的x 的值是______.8.已知函数y =f (x )与函数y =g (x )=2x 的图象关于点(0,1)对称,则f (x )的解析式为______. 三、解答题9.已知f (x )=2x +x -1,⎩⎨⎧<-≥=),0(1),0()(2x x x x x g 求g (-1),g [f (1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A (0,9),其轨迹方程为y =ax 2+c (a <0),D =(6,7)为x 轴上的给定区间.为使物体落在区间D 内,求a 的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点P'(-x,-f(x))都在其图象上.又点P与点P'关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间M⊆A.如果取区间M中的任意两个值x1,x2,改变量∆x=x2-x1>0,则当∆y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当∆y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性. (1);1)(-=x xx f (2);11)(+=xx f (3)f (x )=x 3-3x ;(4);11lgxxy -+= (5)⋅+-=1212xx y 解:(1)解01≥-x x,得到函数的定义域为{x |x >1或x ≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x |x ≠0},但是,由于f (1)=2,f (-1)=0,即f (1)≠f (-1),且f (1)≠-f (-1),所以此函数为非奇非偶函数.(3)函数的定义域为R ,又f (-x )=(-x )3-3(-x )=-x 3+3x =-f (x ), 所以此函数为奇函数. (4)解011>-+xx,得-1<x <1, 又),(11lg 11lg )(1)(1lg)(x f xxx x x x x f -=-+-=+-=---+=-所以此函数为奇函数.(5)函数的定义域为R ,又)(21211212)(x f x f x xxx -=+-=+-=---, 所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称; ②f (x )是奇函数,并且f (x )在x =0时有定义,则必有f (0)=0; ③既是奇函数又是偶函数的函数,其解析式一定为f (x )=0. 判定函数奇偶性按照其定义可以分为两个步骤: ①判断函数的定义域是否关于原点对称; ②考察f (-x )与f (x )的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f (x )在R 上有定义,给出下列函数:①y =-|f (x )|;②y =xf (x 2);③y =-f (-x );④y =f (x )-f (-x ). 其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F (x )=-|f (x )|,则F (-x )=-|f (-x )|,由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.②令F (x )=xf (x 2),则F (-x )=-xf [(-x )2]=-xf (x 2)=-F (x ),所以F (x )为奇函数. ③令F (x )=-f (-x ),则F (-x )=-f [-(-x )]=-f (x ),由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.④令F (x )=f (x )-f (-x ),则F (-x )=f (-x )-f [-(-x )]=f (-x )-f (x )=-F (x ),所以F (x )为奇函数.所以,②④为奇函数.例3 设函数f (x )在R 上有定义,f (x )的值不恒为零,对于任意的x ,y ∈R ,恒有f (x +y )=f (x )+f (y ),则函数f (x )的奇偶性为______.解:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,再令y =-x ,则f (0)=f (x )+f (-x ),所以f (-x )=-f (x ),又f (x )的值不恒为零, 故f (x )是奇函数而非偶函数.【评析】关于函数方程“f (x +y )=f (x )+f (y )”的使用一般有以下两个思路:令x ,y 为某些特殊的值,如本题解法中,令x =y =0得到了f (0)=0.当然,如果令x =y =1则可以得到f (2)=2f (1),等等.令x ,y 具有某种特殊的关系,如本题解法中,令y =-x .得到f (2x )=2f (x ),在某些情况下也可令y =x1,y =x ,等等. 总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f (x )=x 2+bx +c 满足f (1+x )=f (1-x ),求b 的值,并比较f (-1)与f (4)的大小.解:因为f (1+x )=f (1-x ),所以x =1为二次函数图象的对称轴, 所以12=-b,b =-2. 根据对称性,f (-1)=f (3),又函数在[1,+∞)上单调递增, 所以f (3)<f (4),即f (-1)<f (4).例5 已知f (x )为奇函数,当x ≥0时,f (x )=x 2-2x ,(1)求f (-1)的值;(2)当x <0时,求f (x )的解析式.解:(1)因为f (x )为奇函数,所以f (-1)=-f (1)=-(12-2×1)=1.(2)方法一:当x <0时,-x >0.所以,f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x . 方法二:设(x ,y )是f (x )在x <0时图象上一点,则(-x ,-y )一定在f (x )在x >0时的图象上.所以,-y =(-x )2-2(-x ),所以y =-x 2-2x .例6 用函数单调性定义证明,函数y =ax 2+bx +c (a >0)在区间),2(+∞-ab上为增函数.证明:设),2(21+∞-∈abx x 、,且x 1<x 2 f (x 2)-f (x 1)=(ax 22+bx 2+c )-(ax 12+bx 1+c )=a (x 22-x 12)+b (x 2-x 1) =a (x 2+x 1)(x 2-x 1)+b (x 2-x 1)=(x 2-x 1)[a (x 1+x 2)+b ] 因为x 1<x 2,所以x 2-x 1>0,又因为),2(21+∞-∈abx x 、, 所以0)(,2121>++->+b x x a ab x x ,所以f (x 2)-f (x 1)>0, 函数y =ax 2+bx +c (a >0)在区间),2(+∞-ab上为增函数. 例7 已知函数f (x )是定义域为R 的单调增函数. (1)比较f (a 2+2)与f (2a )的大小;(2)若f (a 2)>f (a +6),求实数a 的取值范围.解:(1)因为a 2+2-2a =(a -1)2+1>0,所以a 2+2>2a , 由已知,f (x )是单调增函数,所以f (a 2+2)>f (2a ).(2)因为f (x )是单调增函数,且f (a 2)>f (a +6),所以a 2>a +6, 解得a >3或a <-2.【评析】回顾单调增函数的定义,在x 1,x 2为区间任意两个值的前提下,有三个重要的问题:∆x =x 2-x 1的符号;∆y =f (x 2)-f (x 1)的符号;函数y =f (x )在区间上是增还是减.由定义可知:对于任取的x 1,x 2,若x 2>x 1,且f (x 2)>f (x 1),则函数y =f (x )在区间上是增函数;不仅如此,若x 2>x 1,且函数y =f (x )在区间上是增函数,则f (x 2)>f (x 1); 若f (x 2)>f (x 1),且函数y =f (x )在区间上是增函数,则x 2>x 1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数. (1)试比较f (-2)与-f (3)的大小;(2)若mn <0,且m +n <0,求证:f (m )+f (n )>0. 解:(1)因为f (x )是奇函数,所以-f (3)=f (-3),又f (x )在区间(-∞,0)上是减函数,所以f (-3)>f (-2),即-f (3)>f (-2). (2)因为mn <0,所以m ,n 异号,不妨设m >0,n <0, 因为m +n <0,所以n <-m ,因为n ,-m ∈(-∞,0),n <-m ,f (x )在区间(-∞,0)上是减函数, 所以f (n )>f (-m ),因为f (x )是奇函数,所以f (-m )=-f (m ), 所以f (n )>-f (m ),即f (m )+f (n )>0.例9 函数f (x )是周期为2的周期函数,且f (x )=x 2,x ∈[-1,1]. (1)求f (7.5)的值;(2)求f (x )在区间[2n -1,2n +1]上的解析式.解:(1)因为函数f (x )是周期为2的周期函数,所以f (x +2k )=f (x ),k ∈Z . 所以f (7.5)=f (-0.5+8)=f (-0.5)=41. (2)设x ∈[2n -1,2n +1],则x -2n ∈[-1,1]. 所以f (x )=f (x -2n )=(x -2n )2,x ∈[2n -1,2n +1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( ) (A)y =x 2-4x(B)y =|x |(C)xy 1(D)y =x 2+2x2.下列判断正确的是( )(A)定义在R 上的函数f (x ),若f (-1)=f (1),且f (-2)=f (2),则f (x )是偶函数 (B)定义在R 上的函数f (x )满足f (2)>f (1),则f (x )在R 上不是减函数(C)定义在R 上的函数f (x )在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f (x )在R 上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f (x )是R 上的奇函数,并且是周期为3的周期函数,又知f (1)=2.则f (2)=( ) (A)-2(B)2(C)1(D)-14.设f (x )是R 上的任意函数,则下列叙述正确的是( ) (A)f (x )f (-x )是奇函数(B)f (x )|f (-x )|是奇函数 (C)f (x )-f (-x )是偶函数 (D)f (x )+f (-x )是偶函数二、填空题5.若函数f (x )=4x 2-mx +5在区间[-2,+∞)是增函数,则m 的取值范围是______;f (1)的取值范围是______.6.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0,+∞)时,f (x )=______.7.设函数xa x x x f ))(1()(++=为奇函数,则实数a =______.8.已知函数f (x )=x 2-cos x ,对于]2π,2π[-上的任意x 1,x 2,有如下条件:①x 1>x 2; ②;2221x x > ③|x 1|>x 2. 其中能使f (x 1)>f (x 2)恒成立的条件序号是______ 三、解答题9.已知函数f (x )是单调减函数. (1)若a >0,比较)3(aa f +与f (3)的大小; (2)若f (|a -1|)>f (3),求实数a 的取值范围.10.已知函数).,0()(2R ∈=/+=a x xa x x f (1)判断函数f (x )的奇偶性;(2)当a =1时,证明函数f (x )在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0) (1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb 2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-ab ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下.(3)当a >0时,]2,(a b --∞是减区间,),2[+∞-a b是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间.(4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x (a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y =log a x 与指数函数y =a x 互为反函数. (1)定义域为(0,+∞);值域为R .(2)a >1时,对数函数为增函数;0<a <1时,对数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1. 5.幂函数y =x α(α∈R )幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数; (3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地接近y 轴,当x 趋于+∞时,图象在x 轴上方无限地接近x 轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x ∈(0,+∞)时,x α>0,所以所有的幂函数y =x α(α∈R )在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根.负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a n n |,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aa nm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b =N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a a a a a log log log ;log log )(log -=+=; M M a a log log αα=;bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题. 【例题分析】例1 化简下列各式: (1)31522732-⨯;(2)031π2)27102(412-+-;(3)21)972()71()027.0(231+----;(4)log 2[log 3(log 464)];(5)4015018lg 5lg 2lg g g --+.解:(1)⋅=⨯=⨯=⨯---3432)3()2(2732123135253152 (2)⋅=-+=-+=-+--41243232)2764()49(π2)27102()412(3121315.0(3)443549310)925(49)103()972()71()027.0(21313321231-=+-=+-=+-----(4)log 2[log 3(log 464)]=log 2[log 3(log 443)]=log 2[log 33]=log 21=0.(5) .145lg 45lg4050lg 852lg40150lg 8lg 5lg 2lg ==⨯=--+g 【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值为8,试确定f (x )的解析式.解:解法一设f (x )=ax 2+bx +c (a ≠0),依题意⎪⎩⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧=--=+--=++,7,4,4,,8441,1242c b a ab ac c b a c b a 解之得解之得所以所求二次函数为f (x )=-4x 2+4x +7.解法二f (x )=a (x -h )2+k (a ≠0),为f (2)=-1,f (-1)=-1,所以抛物线的对称轴为212)1(2=-+=x , 又f (x )的最大值为8,所以8)21()(2+-=x a x f .因为(-1,-1)点在抛物线上,所以8)211(12+--=-a ,解得a =-4. 所以所求二次函数为7448)21(4)(22++-=+--=x x x x f .例3 (1)如果二次函数f (x )=x 2+(a +2)x +5在区间(2,+∞)上是增函数,则a 的取值范围是______.(2)二次函数y =ax 2-4x +a -3的最大值恒为负,则a 的取值范围是______. (3)函数f (x )=x 2+bx +c 对于任意t ∈R 均有f (2+t )=f (2-t ),则f (1),f (2),f (4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数, 画简图可知此抛物线对称轴22+-=a x 或与直线x =2重合,或位于直线x =2的左侧, 于是有222≤+-a ,解之得6-≥a . (2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a <0,且判别式∆<0”,即⎩⎨⎧<--<0)3(416,0a a a ,解得a ∈(-∞,-1).(3)因为对于任意t ∈R 均有f (2+t )=f (2-t ),所以抛物线对称轴为x =2,又抛物线开口向上,做出函数图象简图可得f (2)<f (1)<f (4).例4 已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,求实数m 的范围.解:当m =0时,f (x )=-3x +1,其图象与x 轴的交点为)0,31(,符合题意; 当m <0时,注意到f (0)=1,又抛物线开口向下,所以抛物线与x 轴的两个交点必在原点两侧.所以m <0符合题意;当m >0时,注意到f (0)=1,又抛物线开口向上,所以抛物线与x 轴的两个交点必在原点同侧(如果存在),所以若满足题意,则⎩⎨⎧>-=-≥--=∆,0232,04)3(2mm a b m m 解得0<m ≤1.综上,m ∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a ≠0时,函数y =ax +b 与y =b ax 的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f (0)=1”,例5中“作直线y =1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y =1”.例6 已知幂函数)()(22123Z ∈=-+k xx f k k .(1)若f (x )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式; (2)若f (x )在(0,+∞)上是减函数,求k 的取值范围. 解:(1)因为f (x )在(0,+∞)上是增函数,所以021232>-+k k ,解得-1<k <3, 因为k ∈Z ,所以k =0,1,2,又因为f (x )为偶函数,所以k =1,f (x )=x 2. (2)因为f (x )在(0,+∞)上是减函数,所以021232<-+k k , 解得k <-1,或k >3(k ∈Z ). 例7 比较下列各小题中各数的大小 (1)21log ,0,6.0log 6.02;(2)lg2与lg(x 2-x +3);(3)0.50.2与0.20.5; (4)332与;(5)21log ,32,)21(3131;(6)a m +a -m 与a n +a -n (a >0,a ≠1,m >n >0)【分析】(1)函数y =log 2x 在区间(0,+∞)上是增函数,所以log 20.6<log 21=0, 函数y =log 0.6x 在区间(0,+∞)上是减函数,所以01log 21log 6.06.0=> 所以216.0log 06.0log 2<<. (2)由于2411)21(322>+-=+-x x x ,所以lg2<lg(x 2-x +3). (3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为9)3(,8)2(636==.根据不等式的性质有.323<(5)因为;32)21(,)728()21(,27821313131>>>即所以 比较32与log 32,只需比较3233log 与log 32,因为y =log 3x 是增函数,所以只需比较323与2的大小,因为3332289)3(=>=,所以2332>,所以2log 323>, 综上,.2log 32)21(331>>(6))1)((1)(--=+-+++--n m n m nm n n m m a a a aa a a a ,当a >1时,因为m >n >0,a m >a n ,a m +n >1,所以a m +a-m>a n +a -n ;当0<a <1时,因为m >n >0,a m <a n ,a m +n <1,所以a m +a -m >a n +a -n . 综上,a m +a -m >a n +a -n .例8 已知a >2,b >2,比较a +b ,ab 的大小. 【分析】方法一(作商比较法)b a ab b a 11+=+,又a >2,b >2,所以211,211<<b a ,所以1<+abba ,所以a +b <ab . 方法二(作差比较法))]2()2([21)]2()2[(21)222(21a b b a ab b ab a ab b a ab b a -+-=-+-=-+=-+, 因为a >2,b >2,所以2-a <0,2-b <0,所以a +b -ab <0,即a +b <ab . 方法三(构造函数)令y =f (a )=a +b -ab =(1-b )a +b ,将y 看作是关于a 的一次函数, 因为1-b <0,所以此函数为减函数,又a ∈(2,+∞),y 最大<f (2)=(1-b )×2+b =2-b <0,所以a +b -ab <0,即a +b <ab . 【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9 若log 2(x -1)<2,则x 的取值范围是______. 解:log 2(x -1)<2,即log 2(x -1)<log 24,根据函数y =log 2x 的单调性,可得x -1<4,所以x <5, 结合x -1>0,所以x 的取值范围是1<x <5.例10 已知A ,B 为函数y =log 8x 的图象上两点,分别过A ,B 作y 轴的平行线与函数y =log 2x 的图象交于C ,D 两点.。
2020年高考数学(文理通用版)二轮复习系统热门考点快速解题(1-23讲)第7讲 玩转通项 搞定数列[速解技法——学一招] 几种常见的数列类型及通项的求法(1)递推公式为a n +1=a n +f (n )解法:把原递推公式转化为a n +1-a n =f (n ),利用累加法(逐差相加法)求解. (2)递推公式为a n +1=f (n )a n解法:把原递推公式转化为a n +1a n =f (n ),利用累乘法(逐商相乘法)求解.(3)递推公式为a n +1=pa n +q解法:通过待定系数法,将原问题转化为特殊数列{a n +k }的形式求解. (4)递推公式为a n +1=pa n +f (n )解法:利用待定系数法,构造数列{b n },消去f (n )带来的差异. [例1] 已知数列{a n }满足a 1=23,a n +1=n n +1a n ,求a n .[解] 由条件知a n +1a n =nn +1,分别令n =1,2,3,…,(n -1),代入上式得(n -1)个等式累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n . 又∵a 1=23,∴a n =23n .[例2] 已知数列{a n }的首项a 1=1,a n +1=a n2a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前10项和.[解] 因为a n +1=a n2a n +1,所以1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n=2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列,所以1a n =2n -1,所以a n =12n -1,而1a n a n +1=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以1a 1a 2+1a 2a 3+…+1a 10a 11=12⎝⎛1-13+13-15+…+⎭⎫119-121=12⎝⎛⎭⎫1-121=1021. [经典好题——练一手]1.已知数列{a n }的首项a 1=2,且a n +1=a n +n +1,则数列{a n }的通项公式a n =( ) A .nn -2B .n n +2C .nn +2-1 D .n n +2+1解析:选D 因为a n +1=a n +n +1, 所以a n +1-a n =n +1,分别把n =1,2,3,…,n -1代入上式,得到(n -1)个等式, a n -a n -1=(n -1)+1, a n -1-a n -2=(n -2)+1, a n -2-a n -3=(n -3)+1, …a 2-a 1=1+1.又a 1=2=1+1,故将上述n 个式子相加得a n =[(n -1)+(n -2)+(n -3)+…+2+1]+n +1=[n +(n -1)+(n -2)+…+2+1]+1=nn +2+1.2.已知数列{a n }满足a 1=1,a n =12a n -1+1(n ≥2),则数列{a n }的通项公式a n =________.解析:由a n =12a n -1+1(n ≥2),得a n -2=12(a n -1-2),而a 1-2=1-2=-1,∴数列{a n -2}是首项为-1,公比为12的等比数列.∴a n -2=-⎝⎛⎭⎫12n -1,∴a n =2-⎝⎛⎭⎫12n -1. 答案:2-⎝⎛⎭⎫12n -13.设{a n }是首项为1的正项数列,且a 2n -a 2n -1-na n -na n -1=0(n ∈N *,n ≥2),则数列的通项公式a n =________.解析:由题设得(a n +a n -1)(a n -a n -1-n )=0, 由a n >0,a n -1>0知a n +a n -1>0,于是a n -a n -1=n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n n +2.答案:n n +24.在数列{a n }中,已知a 1=-1,a n +1=2a n +4·3n -1,求通项公式a n . 解:原递推式可化为a n +1+λ·3n =2(a n +λ·3n -1),比较系数得λ=-4, 即a n +1-4·3n =2(a n -4·3n -1),则数列{a n -4·3n -1}是首项为a 1-4·31-1=-5,公比为2的等比数列, 故a n -4·3n -1=-5·2n -1, 即a n =4·3n -1-5·2n -1.[常用结论——记一番] 等差(比)数列的重要结论(1)数列{a n }是等差数列⇔数列{c a n }是等比数列;数列{a n }是等比数列,则数列{log a |a n |}是等差数列.(2){a n },{b n }是等差数列,S n ,T n 分别为它们的前n 项和,若b m ≠0,则a m b m =S 2m -1T 2m -1.(3)首项为正(或为负)递减(或递增)的等差数列前n 项和最大(或最小)问题转化为解不等式⎩⎪⎨⎪⎧a n ≥0,a n +1≤0⎝ ⎛⎭⎪⎪⎫或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,也可化为二次型函数S n=An 2+Bn 来分析,注意n ∈N *.(4)等差(比)数列中,S m ,S 2m -S m ,S 3m -S 2m ,…(各项均不为0)仍是等差(比)数列.。
专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.设M (x 0,y 0)为抛物线C :y 2=8x 上一点,F 为抛物线C 的焦点,若以F 为圆心,|FM |为半径的圆和抛物线C 的准线相交,则x 0的取值范围是( ) A .(2,+∞) B .(4,+∞) C .(0,2) D .(0,4)答案:A解析:由题意知,|FM |>4,又由抛物线定义知, |FM |=x 0+p2=x 0+2,∴x 0+2>4,∴x 0>2.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B .x 29-y 227=1 C.x 2108-y 236=1 D .x 227-y 29=1 答案:B解析:因为抛物线y 2=24x 的准线方程为x =-6,则由题意知,点F (-6,0)是双曲线的左焦点,所以a 2+b 2=c 2=36.又双曲线的一条渐近线方程是y =3x ,所以ba =3,解得a 2=9,b 2=27.所以双曲线的方程为x 29-y 227=1.3.探照灯反射镜的轴截面是抛物线y 2=2px (x >0)的一部分,光源位于抛物线的焦点处,已知灯口圆的直径为60 cm ,灯深40 cm ,则抛物线的焦点坐标是( ) A.⎝ ⎛⎭⎪⎫452,0 B .⎝ ⎛⎭⎪⎫454,0C.⎝ ⎛⎭⎪⎫458,0 D .⎝ ⎛⎭⎪⎫4516,0答案:C解析:本题考查抛物线的性质.依题意,点(40,30)位于抛物线y 2=2px 上,于是有302=2p ×40,p =454,焦点坐标是⎝ ⎛⎭⎪⎫458,0.4.(2019·昌平区二模)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为( )A.125 B .340 C .18 D .35答案:B解析:设椭圆的长半轴长为a ,半焦距为c ,月球半径为R ,则a +c =400+1 738,a -c =1 738+100,解得a =1 988,c =150,所以e =1501 988≈340.5.已知抛物线y 2=4x 的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,且此双曲线的一条渐近线方程为y =2x ,则双曲线的焦距为( ) A. 5 B .2 5 C . 3 D .2 3答案:B解析:∵抛物线y 2=4x 的准线x =-1过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,∴a =1,∴双曲线的渐近线方程为y =±ba x =±bx .∵双曲线的一条渐近线方程为y =2x ,∴b =2,∴c =a 2+b 2=5,∴双曲线的焦距为2 5.6.已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( ) A .25-1 B .25-2 C.17-1 D .17-2答案:C解析:由抛物线定义可知,点P 到准线的距离可转化为到焦点F 的距离,即求|PQ |+|PF |的最小值.因为|PQ |≥|PC |-1,所以|PQ |+|PF |≥|PC |-1+|PF |≥|FC |-1=17-1.7.已知两定点A (-1,0),B (1,0),若直线l 上存在点M ,使得|MA |+|MB |=3,则称直线l 为“M 型直线”.给出下列直线:①x =2;②y =x +3;③y =-2x -1;④y =1;⑤y =2x +3.其中是“M 型直线”的条数为( ) A .1 B .2 C .3 D .4 答案:C解析:因为|MB |+|MA |=3,所以点M 在椭圆上.由题可知在椭圆中,c =1,a =32,b =52,所以M 型直线只需和椭圆x 294+y 254=1有交点即可,故①错误,④正确;直线y =x +3在坐标轴上的截距均大于椭圆的短半轴和长半轴长,所以②错误;直线y =-2x -1,y =2x +3在x 轴上截距在椭圆内或椭圆上,故③⑤正确. 8.经过椭圆x 24+y 23=1的右焦点任意作弦AB ,过点A 作直线x =4的垂线AM ,垂足为M ,则直线BM 必经过定点( ) A .(2,0) B .⎝ ⎛⎭⎪⎫52,0C .(3,0)D .⎝ ⎛⎭⎪⎫72,0答案:B解析:依题意,选取过椭圆x 24+y 23=1的右焦点且垂直于x 轴的弦AB ,则A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32,所以过点A 作直线x =4的垂线,垂足为M ⎝ ⎛⎭⎪⎫4,32,所以直线BM 的方程为y =x -52,由于所给选项均为x 轴上的点,而直线BM 与x 轴的交点为⎝ ⎛⎭⎪⎫52,0.9.过双曲线y 2a 2-x 2b 2=1(a >0,b >0)的上顶点A 作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若CA →=2AB →,则双曲线的离心率是( ) A. 5 B .54 C.10 D .103答案:D解析:上顶点为A (0,a ),直线方程为y =x +a ,渐近线方程为y =±a b x ,联立解得直线与渐近线交点坐标为B ⎝⎛ -aba +b ,⎭⎪⎫a 2a +b ,C ⎝ ⎛⎭⎪⎫ab a -b ,a 2a -b .则CA →=⎝ ⎛ -ab a -b ,⎭⎪⎫-ab a -b ,AB →=⎝ ⎛⎭⎪⎫-ab a +b ,-ab a +b .因为CA →=2AB →,所以a =3b ,所以离心率e =103.10.(2019春·遵义期中)已知抛物线y 2=4x 的焦点F 和A (2,1),点P 为抛物线上的动点,则|P A |+|PF |取到最小值时点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫14,1 B .⎝ ⎛⎭⎪⎫12,2C.()2,22 D .(1,2)答案:A解析:过点P 作PB 垂直于准线,过A 作AH 垂直于准线.|P A |+|PF |=|P A |+|PB |≥AH ,|P A |+|PF |取到最小值时,点P 与点A 的纵坐标相同,可设点P 为(x 0,1). 则12=4x 0,解得x 0=14,所以点P ⎝ ⎛⎭⎪⎫14,1.11.已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1→·EF 2→的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8答案:B解析:由题意知F 1(-1,0),F 2(1,0),设E (x ,y ).则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),所以EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x =0时,EF 1→·EF 2→有最小值7;当x =±3时,EF 1→·EF 2→有最大值8.12.(2019·滨州二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,59 B .⎝ ⎛⎦⎥⎤0,32C.⎝ ⎛⎦⎥⎤0,53D .⎝ ⎛⎦⎥⎤13,32答案:C解析:设椭圆的左焦点为F ′.根据椭圆的对称性可得,|AF ′|=|BF |,|BF ′|=|AF |,∴|AF ′|+|AF |=|BF |+|AF |=6=2a ,解得a =3.∵点P到直线l的距离不小于65,∴3b42+(-3)2≥65,解得b≥2,又b<a,∴2≤b<3.∴23≤ba<1.∴离心率e=ca=1-b2a2∈⎝⎛⎦⎥⎤0,53.二、填空题13.已知点F为抛物线y2=-8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|P A|+|PO|的最小值是__________.答案:213解析:因为点A在抛物线上且|AF|=4,所以A(-2,4)或A(-2,-4).由对称性不妨设A(-2,4),原点关于抛物线的准线x=2的对称点为B(4,0),则(|P A|+|PO|)min=(|P A|+|PB|)min=|AB|=(4+2)2+(0-4)2=213.14.(2019·昌平区二模)已知双曲线C1:x2-y23=1,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为1,则抛物线C2的方程为________.答案:x2=8y解析:双曲线C1:x2-y23=1的渐近线为y=±3x,抛物线的焦点坐标为⎝⎛⎭⎪⎫0,p2,抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为1,则p21+3=1,解得p=4,抛物线C 2的方程为x2=8y .15.过原点的直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右两支分别相交于A ,B 两点,F (-3,0)是双曲线C 的左焦点,若|F A |+|FB |=4,F A →·FB →=0,则双曲线C 的方程是__________. 答案:x 22-y 2=1解析:如图,设双曲线的右焦点为F 2(3,0),连接F 2A ,F 2B ,由双曲线的对称性和F A →·FB →=0知四边形AFBF 2为矩形,由|F A |+|FB |=4得|F A |+|AF 2|=4.又因为|F A |-|AF 2|=-2a ,所以|F A |=2-a ,|F 2A |=2+a .由|F 2A |2+|F A |2=(2+a )2+(2-a )2=(23)2,得a 2=2,b 2=1,所以双曲线的方程为x 22-y 2=1.16.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上,且直线P A 2的斜率的取值范围是[-2,-1],那么直线P A 1的斜率的取值范围是________. 答案:⎣⎢⎡⎦⎥⎤38,34解析:由题意知A 1(-2,0),A 2(2,0),设P (x 0,y 0).则x 204+y 203=1,y 20=34(4-x 20).kP A 1=y 0x 0+2,kP A 2=y 0x 0-2. ∵kP A 1·kP A 2=y 20x 20-4=34(4-x 20)x 20-4=-34,∴kP A 1=3-4kP A 2.∵-2≤kP A 2≤-1,∴38≤kP A 1≤34.专题限时训练 (大题规范练)(建议用时:60分钟)1.(2019·湖北一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且经过点(2,1).(1)求椭圆C 的方程;(2)过点P (0,2)作直线交椭圆C 于A ,B 两点,若点B 关于y 轴的对称点为B ′,证明直线AB ′过定点.解析:(1)由题意可知a =2c ,∴b =c .方程为x 22c 2+y 2c 2=1, 把点(2,1)代入方程,解得c = 2. ∴椭圆C 的方程为:x 24+y 22=1.(2)证明:当AB 不垂直于x 轴时,设直线AB 的方程为y =kx +2(k ≠0)代入x 2+2y 2=4,得(2k 2+1)x 2+8kx +4=0,由Δ>0,得k 2>12,设A (x 1,y 1),B (x 2,y 2),则B ′(-x 2,y 2),x 1+x 2=-8k 2k 2+1,x 1x 2=42k 2+1.∵k AB ′=y 1-y 2x 1+x 2.∴直线AB ′的方程为y -y 1=y 1-y 2x 1+x 2(x -x 1).令x =0,得y =y 1+y 1-y 2x 1+x 2(-x 1)=x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+2)+x 2(kx 1+2)x 1+x 2=2kx 1x 2+2(x 1+x 2)x 1+x 2=2kx 1x 2x 1+x 2+2=2k2k2+1×4-8k2k2+1+2=-1+2=1∴直线AB′过定点(0,1).当AB垂直于x轴时,AB′即为y轴,过(0,1).∴直线AB′过定点(0,1).2.(2019春·信州区校级月考)如图所示已知拋物线C:y2=2px(p>0)的焦点为F,准线为l,过点M(1,0)的直线交拋物线C于A(x1,y1),B(x2,y2)两点,且3OF→=FM→.(1)求拋物线方程;(2)若点B在准线l上的投影为E,D是C上一点,且AD→·EF→=0,求△ABD面积的最小值及此时直线AD的方程.解析:(1)依题意F⎝⎛⎭⎪⎫p2,0,3OF→=FM→,可得3|OF|=|FM|,即3×p2=1-p2,可得p=12,所以拋物线方程y2=x.(2)拋物线y2=x的焦点F⎝ ⎛⎭⎪⎫14,0,准线方程为x=-14,设D (x 0,y 0),B (t 2,t ),则E ⎝ ⎛⎭⎪⎫-14,t ,联立直线AB :y =k (x -1)和y 2=x ,可得k 2x 2-(2k 2+1)x +k 2=0, 又由x 1x 2=1.可得A ⎝ ⎛⎭⎪⎫1t 2,-1t ,因为k EF =-2t ,AD ⊥EF ,所以k AD =12t . 故直线AD :y +1t =12t =⎝ ⎛⎭⎪⎫x -1t 2.由⎩⎨⎧y 2=x ,x -2ty -2-1t 2=0,得y 2-2ty -2-1t 2=0,所以y 1+y 0=2t ,y 1y 0=-2-1t 2.所以|AD |=1+4t 2|y 1-y 0|=1+4t 2(y 1+y 0)2-4y 1y 0=21+4t 2t 2+1t 2+2,设点B 到直线AD 的距离为d ,则d =⎪⎪⎪⎪⎪⎪t 2-2t 2-2-1t 21+4t 2=⎪⎪⎪⎪⎪⎪t 2+1t 2+21+4t 2.所以S △ABD =12|AD |·d =⎝ ⎛⎭⎪⎫t 2+1t 2+23≥(2+2)3=8,当且仅当t 4=1,即t =±1,t =1时,直线AD 的方程为x -2y -3=0. t =-1时,直线AD 的方程为x +2y -3=0.3.(2019·福建五校第二次联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,上顶点M 到直线3x +y +4=0的距离为3. (1)求椭圆C 的方程;(2)设直线l 过点(4,-2),且与椭圆C 相交于A ,B 两点,l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值.解析:(1)由题意可得,⎩⎪⎨⎪⎧ e =c a =32,|b +4|2=3,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =4,b =2. 所以椭圆C 的方程为x 216+y 24=1.(2)易知直线l 的斜率恒小于0,设直线l 的方程为y +2=k (x -4),k <0且k ≠-1,A (x 1,y 1),B (x 2,y 2).联立得⎩⎨⎧ y +2=k (x -4),x 216+y 24=1,得(1+4k 2)x 2-16k (2k +1)x +64k (k +1)=0,则x 1+x 2=16k (2k +1)1+4k 2,x 1x 2=64k (k +1)1+4k 2. 因为k MA +k MB =y 1-2x 1+y 2-2x 2=(kx 1-4k -4)x 2+(kx 2-4k -4)x 1x 1x 2, 所以k MA +k MB =2k -(4k +4)×x 1+x 2x 1x 2=2k -4(k +1)×16k (2k +1)64k (k +1)=2k -(2k +1)=-1.所以直线MA 的斜率与直线MB 的斜率之和为定值-1.4.已知抛物线y 2=42x 的焦点为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A ,B ,经过椭圆左焦点的直线l 与椭圆交于C ,D (异于A ,B )两点.(1)求椭圆的标准方程;(2)求四边形ADBC的面积的最大值;(3)若M(x1,y1),N(x2,y2)是椭圆上的两动点,且满足x1x2+2y1y2=0,动点P满足OP→=OM→+2ON→(其中O为坐标原点),是否存在两定点F1,F2使得|PF1|+|PF2|为定值,若存在,求出该定值;若不存在,说明理由.解析:(1)由题设知,因为抛物线y2=42x的焦点为(2,0),所以椭圆中的c=2,又由椭圆的长轴长为4,得a=2,∴b2=a2-c2=2,∴椭圆的标准方程为x24+y22=1.(2)∵直线斜率不为零,∴设直线l方程为x=my- 2.代入椭圆方程得(m2+2)y2-22my-2=0.设C(x1,y1),D(x2,y2),A(-2,0),B(2,0).则有⎩⎪⎨⎪⎧y1+y2=22mm2+2,y1y2=-2m2+2,Δ=(22m)2+8(m2+2)=16m2+16>0.S ADBC=S△ABC+S△ABD=12|AB||y1|+12|AB||y2|=12|AB|·|y1-y2|=12×4×(y1+y2)2-4y1y2=2⎝⎛⎭⎪⎫22mm2+22+4×2m2+2=8m2+1m2+2=8m 2+1+1m 2+1≤4. ⎝ ⎛⎭⎪⎫当且仅当m 2+1=1m 2+1,即m =0时等号成立 所以四边形ADBC 的面积的最大值为4.(3)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),由OP →=OM →+2ON →,可得⎩⎪⎨⎪⎧x =x 1+2x 2,y =y 1+2y 2.① 又因为x 1x 2+2y 1y 2=0.②且M ,N 是椭圆上的点,∴x 21+2y 21=4,x 22+2y 22=4,由①②可得,x 2+2y 2=(x 1+2x 2)2+2(y 1+2y 2)2=(x 21+2y 21)+4(x 22+2y 22)=20. ∴x 2+2y 2=20,即点P 的轨迹方程为x 220+y 210=1. 由椭圆的定义知,存在两定点F 1,F 2使得|PF 1|+|PF 2|=4 5.。
专题限时训练建议用时:45分钟一、选择题1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0>0C.对任意x∈R,2x≤0D.对任意x∈R,2x>0答案:D解析:本题主要考查全称命题与特称命题.由题意知,原命题的否定为“对任意x ∈R,2x>0”.2.下列命题中的假命题是()A.∀x∈R,e x>0B.∀x∈R,x2≥0C.∃x0∈R,sin x0=2D.∃x0∈R,2x0>x20答案:C解析:本题考查命题真假的判定.∀x∈R,sin x≤1<2,所以C选项是假命题.3.(2019·中卫一模)命题“若a2+b2=0,则a=0且b=0”的逆否命题是() A.若a2+b2≠0,则a≠0且b≠0”B.若a2+b2≠0,则a≠0或b≠0”C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0答案:D解析:命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”.4.已知p:x≤1;q:x2-x>0,则p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:本题考查充要条件的判定.依题意,¬q:x2-x≤0,即0≤x≤1;由x≤1不能得知0≤x≤1;反过来,由0≤x≤1可得x≤1.因此,p是¬q成立的必要不充分条件.5.(2019·绵阳模拟)已知命题p:∃x0∈R,使得lgcos x0>0;命题q:∀x<0,3x>0,则下列命题为真命题的是()A.p∧q B.p∨¬qC.¬p∧¬q D.p∨q答案:D解析:命题p:∃x0∈R,使得lgcos x0>0,∵-1≤cos x≤1,∴lgcos x≤0,∴命题p为假命题,命题q:∀x<0,3x>0,是真命题,∴p∧q为假命题,p∨¬q为假命题,¬p∧¬q为假命题,p∨q为真命题.6.若“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是()A.(-∞,0]∪[1,+∞)B.(-1,0)C.[-1,0]D.(-∞,-1)∪(0,+∞)答案:C解析:(x-a)[x-(a+2)]≤0⇒a≤x≤a+2,由集合的包含关系知⎩⎪⎨⎪⎧a ≤0,a +2≥1⇒a ∈[-1,0]. 7.已知命题p :∀x >0,x +4x ≥4;命题q :∃x 0∈(0,+∞),2x 0=12.则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧¬q 是真命题D .¬p ∧q 是真命题 答案:C解析:因为当x >0时,x +4x ≥2x ·4x =4,当且仅当x =2时等号成立,所以p 是真命题,当x 0>0时,2x 0>1,所以q 是假命题,所以p ∧¬q 是真命题,¬p ∧q 是假命题.8.若x ,y ∈R ,则x >y 的一个充分不必要条件是( )A .|x |>|y |B .x 2>y 2 C.x >yD .x 3>y 3答案:C解析:本题考查充要条件的判断.由|x |>|y |,x 2>y 2未必能推出x >y ,排除A,B ;由x >y 可推出x >y ,反之,未必成立,而x 3>y 3是x >y 的充要条件.9.“a ≤-2”是“函数f (x )=|x -a |在[-1,+∞)上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:结合图象可知函数f (x )=|x -a |在[a ,+∞)上单调递增,易知当a ≤-2时,函数f (x )=|x -a |在[-1,+∞)上单调递增,但反之不一定成立.10.(2019·南昌二模)已知函数f (x )=ax 2+x +a ,命题p :∃x 0∈R ,f (x 0)=0,若p 为假命题,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12B.⎝ ⎛⎭⎪⎫-12,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞ 答案:C解析:因为p 为假命题,所以¬p 为真命题,即∀x ∈R ,f (x )≠0,故Δ=1-4a 2<0,解得a >12或a <-12.11.下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件;③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0”.A .1B .2C .3D .4答案:B解析:易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a ·b <0时向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0且a 与b 不反向”,故④不正确.12.(2019·珠海二模)“-1≤x +y ≤1且-1≤x -y ≤1”是“x 2+y 2≤1”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件答案:A解析:作出不等式组对应的平面区域如图.则“-1≤x+y≤1且-1≤x-y≤1对应的区域在单位圆内,则“-1≤x+y≤1且-1≤x-y≤1”是“x2+y2≤1”的充分不必要条件.二、填空题13.已知命题p:∃x∈R,sin x>a,若¬p是真命题,则实数a的取值范围为__________.答案:a≥1解析:依题意得,∀x∈R,sin x≤a恒成立,于是有a≥1.14.(2019春·思明区校级月考)命题p:|x|>1;命题q:x<m,若¬p是¬q的充分不必要条件,则实数m的取值范围为__________.答案:(-∞,-1]解析:由|x|>1得x>1或x<-1,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,即m≤1,即实数m的取值范围是(-∞,-1].15.(2019春·西湖区校级月考)命题p:若直线与抛物线有且只有一个公共点,则直线与抛物线相切.命题p是__________(真,假)命题,命题p的否命题是__________(真,假)命题.答案:假真解析:当直线和抛物线的对称轴平行时,满足只有一个交点,但此时直线和抛物线是相交关系,即命题p是假命题.命题p的逆命题为:若直线与抛物线相切,则直线与抛物线有且只有一个公共点,正确.命题的否命题和逆命题互为逆否命题,则命题的否命题为真命题.16.已知命题p:∃x0∈R,mx20+2≤0;命题q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是________.答案:[1,+∞)解析:因为p∨q是假命题,所以命题p和q都是假命题.由命题p:∃x0∈R,mx20+2≤0为假命题知,¬p:∀x∈R,mx2+2>0为真命题,所以m≥0.①由命题q:∀x∈R,x2-2mx+1>0为假命题知,¬q:∃x0∈R,x20-2mx0+1≤0为真命题,所以Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.。
考前强化练7 解答题组合练C1.(2019河北枣强中学高三模拟,文17)已知函数f (x )=√32sin 2x-cos 2x-12.(1)求f (x )的最小正周期;(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c=√3,f (C )=0,若sin B=2sin A ,求a ,b 的值.2.已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S S22SS -1(n ≥2).(1)求证:数列{1S S}是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+ (1)S n <32.3.(2019辽宁葫芦岛高三二模,理18)如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD.四边形ADEF 为正方形,四边形ABCD为梯形,且AD∥BC,△ABD是边长为1的等边三角形,M为线段BD中点,BC=3.(1)求证:AF⊥BD;(2)求直线MF与平面CDE所成角的正弦值;的值;若不存在,请说明理由. (3)线段BD上是否存在点N,使得直线CE∥平面AFN?若存在,求SSSS4.(2019山东淄博部分学校高三三模,理19)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF 为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,连直线MF,由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.5.已知椭圆C:S2S2+S2S2=1(a>b>0)的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点D(1,32)在椭圆C上,直线l:y=kx+m与椭圆C相交于A,P两点,与x轴、y轴分别相交于点N和M,且|PM|=|MN|,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别作x轴的垂线,垂足分别为A1,B1.(1)求椭圆C的方程.(2)是否存在直线l,使得点N平分线段A1B1?若存在,求出直线l的方程,若不存在,请说明理由.6.(2019四川泸州高三二模,文20)已知抛物线C:y2=2px(p>0)的焦点为F,点P(1,a)在此抛物线上,|PF|=2,不过原点的直线l与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.(1)求抛物线C的方程;(2)证明:直线l恒过定点;(3)若线段AB中点的纵坐标为2,求此时直线l和圆M的方程.参考答案考前强化练7 解答题组合练C1.解(1)f (x )=√32sin2x-cos 2x-12=√32sin2x-1+cos2S2−12=√32sin2x-12cos2x-1=sin 2x-π6-1.所以函数f (x )的最小正周期为π.(2)由f (C )=0,得sin 2C-π6=1.因为0<C<π,所以-π6<2C-π6<11π6,所以2C-π6=π2,C=π3.又sin B=2sin A ,由正弦定理得SS =2.①由余弦定理,得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab=3. ②由①②解得a=1,b=2.2.解(1)当n ≥2时,S n -S n-1=2S S22SS -1,S n-1-S n =2S n S n-1,1S S−1S S -1=2,从而{1S S}构成以1为首项,2为公差的等差数列.(2)由(1)可知,1S S=1S 1+(n-1)×2=2n-1,∴S n =12S -1,∴当n ≥2时,1S S n =1S (2S -1)<1S (2S -2)=121S -1−1S , 从而S 1+12S 2+13S 3+…+1S S n <1+121-12+12−13+…+1S -1−1S =32−12S <32. 3.(1)证明因为ADEF 为正方形, 所以AF ⊥AD.又因为平面ADEF ⊥平面ABCD ,且平面ADEF ∩平面ABCD=AD , 所以AF ⊥平面ABCD. 所以AF ⊥BD.(2)解取AD 中点O ,EF 中点K ,连接OB ,OK.在△ABD 中,OB ⊥OD ,在正方形ADEF 中,OK ⊥OD , 又平面ADEF ⊥平面ABCD ,故OB ⊥平面ADEF ,进而OB ⊥OK ,即OB ,OD ,OK 两两垂直,分别以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系(如图).于是,B√32,0,0,D 0,12,0,C√32,3,0,E 0,12,1,M√34,14,0,F 0,-12,1,所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-√34,-34,1,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-√32,-52,0,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1). 设平面CDE 的一个法向量为n =(x ,y ,z ),则{SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S =0,SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S =0,即{-√32·S -52·S =0,S =0,令x=-5,则y=√3,则n =(-5,√3,0). 设直线MF 与平面CDE 所成角为θ,sin θ=|cos <SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,n >|=|SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S ||SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||S |=√314. (3)解要使直线CE ∥平面AFN ,只需AN ∥CD ,设SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =SSS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,λ∈[0,1],设N (x n ,y n ,z n ),则x n -√32,y n ,z n =λ-√32,12,0,得x n =√32−√32S ,y n =12S ,z n =0,N √32−√32S ,12S ,0,所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√32−√32S ,12S +12,0.又SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-√32,-52,0,由SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,得√32-√32S -√32=12S +12-52,解得λ=23∈[0,1].所以线段BD上存在点N,使得直线CE∥平面AFN,且SSSS =23.4.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线EA上,如图所示.因为AO∥BF,M为AB的中点,所以△OAM≌△FBM.所以OM=MF,AO=BF.所以点O在EA的延长线上,且AO=2.连接DF,交EC于点N,因为四边形CDEF为矩形,所以N是EC的中点.连接MN,因为MN为△DOF的中位线,所以MN∥OD.又因为MN⊂平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,所以EF⊥平面ADE,所以平面ABFE⊥平面ODE,取AE的中点H为坐标原点,建立如图所示的空间直角坐标系,所以E(-1,0,0),D(0,0,√3),C(0,4,√3),F(-1,4,0),所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,√3),SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,4,√3), 设M (1,t ,0)(0≤t ≤4),则SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,t ,0). 设平面EMC 的法向量m =(x ,y ,z ),则{S ·SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0S ·SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0⇒{2S +SS =0,S +4S +√3S =0,取y=-2,则x=t ,z=√3,所以m =t ,-2,8-S √3.DE 与平面EMC 所成的角为60°,所以2√S 2+4+(8-S )23=√32. 所以√3√=√32. 所以t 2-4t+3=0,解得t=1或t=3.所以存在点M ,使得直线DE 与平面EMC 所成的角为60°.取ED 的中点Q ,则SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 为平面CEF 的法向量,因为Q -12,0,√32,所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =32,0,-√32,m =t ,-2,8-S √3,设二面角M-EC-F 的大小为θ,所以|cos θ|=|SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·S ||SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|S |=√3×√S 2+4+(8-S )23=√.因为当t=2时,cos θ=0,平面EMC ⊥平面CDEF ,所以当t=1时,θ为钝角,所以cos θ=-14.当t=3时,θ为锐角,所以cos θ=14.5.解(1)由题意得{S =√3S ,1S2+94S2=1,S 2=S 2+S 2,解得a 2=4,b 2=3,故椭圆C 的方程为S 24+S 23=1.(2)假设存在这样的直线l :y=kx+m ,∴M (0,m ),N (-SS ,0), ∵|PM|=|MN|,∴P (SS ,2S ),Q (SS ,-2S ), ∴直线QM 的方程为y=-3kx+m.设A (x 1,y 1),由{S =SS +S ,S 24+S 23=1,得(3+4k 2)x 2+8kmx+4(m 2-3)=0,∴x 1+S S =-8SS3+4S 2,∴x 1=-3S (1+4S 2)S (3+4S 2).设B (x 2,y 2),由{S =-3SS +S ,S 24+S 23=1,得(3+36k 2)x 2-24kmx+4(m 2-3)=0,∴x 2+S S =8SS1+12S 2,∴x 2=-S (1+4S 2)S (1+12S 2). ∵点N 平分线段A 1B 1,∴x 1+x 2=-2SS ,∴-3S (1+4S 2)S (3+4S 2)−S (1+4S 2)S (1+12S 2)=-2SS ,∴k=±12,∴P (±2m ,2m ),∴4S 24+4S 23=1,解得m=±√217, ∵|m|=√217<b=√3,∴Δ>0,符合题意,∴直线l 的方程为y=±12x±√217. 6.(1)解抛物线C :y 2=2px (p>0),其准线方程为x=-S2,∵点P (1,a )在此抛物线上,|PF|=2,∴点P 到准线的距离等于|PF|,即1+S2=2,得p=2, ∴所求抛物线方程为y 2=4x.(2)证明①当直线l 斜率存在时,设直线l 的方程为y=kx+m ,易知k ≠0,m ≠0.联立方程组得{S 2=4S ,S =SS +S ,从而可得方程k 2x 2+(2km-4)x+m 2=0,由题意可知Δ=(2km-4)2-4k 2m 2>0,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=4-2SSS 2,x 1x 2=S 2S 2,所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=4SS . 因为以AB 为直径的圆M 过坐标原点, 所以SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·SS ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,即x 1x 2+y 1y 2=0,所以S 2S 2+4SS=0,所以m=-4k.所以直线l 的方程为y=kx-4k ,即y=k (x-4),所以直线l 恒过定点(4,0).②当直线l 的斜率不存在时,易求得点A ,B 坐标分别为(4,4),(4,-4),直线l 也过点(4,0).综合①②可知,直线l 恒过定点(4,0).(3)解由题意可知直线l 斜率存在,设线段AB 中点坐标为(x 0,2),由(2)中所得x 1+x 2=4-2SSS 2,x 1x 2=S 2S2,则y 1+y 2=k (x 1-4)+k (x 2-4)=k (x 1+x 2)-8k=4S ,所以{2+4S 2S 2=S 0,2S=2,解得{S =1,S 0=6,所以直线l 的方程为y=x-4.因为线段AB 中点坐标为(6,2),即为圆M 的圆心坐标. 设圆M :(x-6)2+(y-2)2=r 2.将点(0,0)代入,得r 2=40, 所以圆M 的方程为(x-6)2+(y-2)2=40.。
专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.若∀x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=sin x 1x 1,y 2=sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 答案:B解析:设y =sin x x ,则y ′=(sin x )′·x -sin x ·(x )′x 2=x cos x -sin x x 2.因为在⎝ ⎛⎭⎪⎫0,π2上x <tan x ,所以x cos x -sin x <0,所以y ′<0,所以y =sin x x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以y 1>y 2.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,2) C.⎣⎢⎡⎭⎪⎫1,32 D .⎣⎢⎡⎭⎪⎫32,2答案:C解析:f ′(x )=4x -1x =(2x -1)(2x +1)x .∵x >0,∴由f ′(x )=0得x =12.令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎨⎧k -1≥0,k -1<12<k +1⇒1≤k <32.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,1)答案:D解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增, 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.4.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案:D解析:∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞).5.(2019·曲靖二模)已知偶函数f (x )的定义域是(-∞,0)∪(0,+∞),其导函数为f ′(x ),对定义域内的任意x ,都有2f (x )+xf ′(x )>0成立,若f (2)=1,则不等式x 2f (x )<4的解集为( ) A .{x |x ≠0,±2} B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 答案:B解析:令g (x )=x 2f (x )-4,g (2)=0. ∵g (-x )=x 2f (-x )-4=x 2f (x )-4=g (x ),∴g (x )在定义域(-∞,0)∪(0,+∞)上为偶函数.当x >0时,g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]>0成立. ∴函数g (x )在(0,+∞)上为增函数. ∴不等式x 2f (x )<4⇔g (|x |)<g (2). ∴|x |<2,x ≠0.解得x ∈(-2,0)∪(0,2).6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )答案:A解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).7.(2019·甘肃模拟)若点(m ,n )在函数f (x )=13x 3-x (x >0)的图象上,则n -m +22的最小值是( ) A.13 B .23 C.223 D .2 2答案:C解析:∵点(m,n)在函数f(x)=13x3-x(x>0)的图象上,∴n=13m3-m,则n-m+22=13m3-2m+2 2.令g(m)=13m3-2m+22(m>0),则g′(m)=m2-2,可得g(m)在(0,2)递减,在(2,+∞)递增,∴g(m)的最小值是g(2)=223.8.定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.不确定答案:C解析:由(x-1)f′(x)<0可知,当x>1时,f′(x)<0,函数单调递减.当x<1时,f′(x)>0,函数单调递增.因为函数f(x+1)是偶函数,所以f(x+1)=f(1-x),f(x)=f(2-x),即函数f(x)图象的对称轴为x=1.所以,若1≤x1<x2,则f(x1)>f(x2);若x1<1,则x2>2-x1>1,此时有f(x2)<f(2-x1),又f(2-x1)=f(x1),所以f(x1)>f(x2).综上,必有f(x1)>f(x2).9.已知函数f(x)=ax-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是()A.a>2 B.a<3 C.a≤1 D.a≥3 答案:C解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解,令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.10.直线y =a 分别与直线y =2(x +1),曲线y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324 D .32答案:D解析:解方程2(x +1)=a ,得x =a2-1.设方程x +ln x =a 的根为t (t >0),则t +ln t =a , 则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0), 则g ′(t )=12-12t =t -12t (t >0).令g ′(t )=0,得t =1.当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6.同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].12.设函数f (x )=3sin πm x ,若存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2.则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案:C解析:由正弦函数的图象知,f (x )的极值点x 0满足f (x 0)=±3. ∴πx 0m =k π+π2,k ∈Z .∴x 0=⎝ ⎛⎭⎪⎫k +12·m .∴不等式x 20+f 2(x 0)<m 2⇔⎝ ⎛⎭⎪⎫k +122m 2+3<m 2(k ∈Z )⇔m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3(k ∈Z ). 存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2⇔存在整数k 使不等式m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠0且k ≠-1时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不成立.∴k =0或-1时,m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3⇔34m 2>3⇔m >2或m <-2. 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________. 答案:⎝ ⎛⎭⎪⎫-22,0解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.14.(2019春·潍坊期中)已知函数f (x )的定义域为R ,f (-2)=-2,若对∀x ∈R ,f ′(x )<3,则不等式f (x )>3x +4的解集为________. 答案:(-∞,-2)解析:根据题意,设g (x )=f (x )-3x -4,则g ′(x )=f ′(x )-3.由对∀x ∈R ,f ′(x )<3,则g ′(x )<0,即g (x )在R 上为减函数. 又由f (-2)=-2,则g (-2)=f (-2)+6-4=0, 则f (x )>3x +4⇒f (x )-3x -4>0⇒g (x )>g (-2), 即不等式的解集为(-∞,-2).15.(2019·南开区二模)已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)<0,则实数a 的取值范围为________. 答案:⎝ ⎛⎭⎪⎫-32,1解析:∵f (x )=e x -1e x -2sin x ,∴f (-x )=e -x -e x +2sin x =-f (x ), ∵f (x )′=e x +1e x -2cos x ≥2e x ·e -x -2cos x ≥0,∴f (x )在R 上单调递增且为奇函数.由f (2a 2)+f (a -3)<0,可得f (2a 2)<-f (a -3)=f (3-a ), ∴2a 2<-a +3,解得-32<a <1. 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案:⎣⎢⎡⎭⎪⎫94,+∞解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min .又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·河南模拟)已知函数f (x )=x ln x +e. (1)若f (x )≥ax 恒成立,求实数a 的最大值; (2)设函数F (x )=e x -1f (x )-x 2-2x +1,求证:F (x )>0. 解析:(1)函数f (x )=x ln x +e 的定义域为(0,+∞), f (x )≥ax 恒成立⇔a ≤x ln x +e x .令φ(x)=x ln x+ex,则φ′(x)=x-ex2,可得φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)min=φ(e)=2,∴a≤2.故实数a的最大值为2.(2)由(1)可知f(x)≥2x,只需证明2x≥x2+2x-1e x-1.令g(x)=2x-x2+2x-1e x-1,则g′(x)=2-3-x2e x-1=2e x-1+x2-3e x-1.令h(x)=2e x-1+x2-3,h′(x)=2e x-1+2x>0在(0,+∞)恒成立.注意到h(1)=0,所以当x∈(0,1)时,h(x)<0,g′(x)<0,x∈(1,+∞)时,h(x)>0,g′(x)>0,∴g(x)在(0,1)单调递减,在(1,+∞)单调递增,∴g(x)min=g(1)=0.∴2x≥x2+2x-1e x-1.当且仅当x=1时取等号,而f(x)≥2x,当且仅当x=e时取等号,∴F(x)>0.2.(2019·蓉城名校联盟联考)已知函数f(x)=ax2-2(a+1)x+2ln x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在最大整数k,当a≤k时,对任意的x≥2,都有f(x)<e x(x-1)-ax-ln x成立?(其中e为自然对数的底数,e=2.718 28…),若存在,求出k的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2, 所以2a <e 2+4-ln 8<8+4-2=10, 所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2), 则g ′(x )=2ax -(a +2)+3x -x e x . 令h (x )=2ax -(a +2)+3x -x e x .则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0. 即当x ∈[2,+∞)时,g ′(x )<0, 所以g (x )在[2,+∞)上单调递减,所以g(x)=ax2-(a+2)x+3ln x-e x(x-1)≤g(2)=2a-4+3ln 2-e2<8-4+3-e2=7-e2<0.所以a≤4时,不等式①恒成立,所以k的最大值为4.。
专题限时训练
建议用时:45分钟
一、选择题 1.若复数z 满足
z
1-i
=i,其中i 为虚数单位,则z =( ) A .1-i B .1+i C .-1-i D .-1+i
答案:A
解析:设z =a +b i(a ,b ∈R ),则z =a -b i. 由
z
1-i =i,得z =i(1-i)=1+i, 所以a =1,b =-1, 所以z =1-i.
2.(2019·唐山三模)已知复数z 满足(2+i)z =i 2 019,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
答案:C
解析:由(2+i)z =i 2 019,
得z =i 2 0192+i =i 4×504+3
2+i =-i 2+i =-i (2-i )(2+i )(2-i )
=-15-2
5i,
∴z 在复平面上对应的点的坐标为⎝ ⎛⎭⎪⎫-1
5,-25,位于第三象限.
3.(2018·高考全国卷Ⅱ)1+2i
1-2i =( )
A .-45-35i
B .-45+35i
C .-35-45i
D .-35+45i
答案:D
解析:∵1+2i 1-2i
=(1+2i )25=-3+4i
5.
4.若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D .45
答案:D
解析:∵(3-4i)z =|4+3i|,
∴z =|4+3i|
3-4i =42+32
3-4i =5(3+4i )25=35+4
5i.
∴z 的虚部为45.
5.已知(1-i )2
z =1+i(i 为虚数单位),则复数z =( ) A .1+i B .1-i C .-1+i D .-1-i
答案:C 解析:z =
(1-i )21+i
=-2i
1+i =-2i (1-i )
(1+i )(1-i )
=-i(1-i)=-1-i.z =-1+i. 6.设z =1
1+i +i,则|z |=( )
A.12 B .22 C.32 D .2
答案:B
解析:z =11+i
+i =1-i 2+i =12+1
2i,因此|z |=
⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭
⎪⎫122=12=22.
7.(2019·岳麓区校级模拟)若复数z =(1-a i)(a +2i)在复平面内对应的点在第一象
限,其中a ∈R ,i 为虚数单位,则实数a 的取值范围是( ) A .(0,2) B .(2,+∞) C .(-∞,-2) D .(-2,0)
答案:A
解析:∵z =(1-a i)(a +2i)=3a +(2-a 2)i 在复平面内对应的点在第一象限, ∴⎩⎪⎨⎪⎧
3a >0,2-a 2>0,
解得0<a < 2.
∴实数a 取值范围是(0,2). 8.设i 为虚数单位,复数z =(a 3-a )+a
1-a
i(a ∈R )为纯虚数,则a 的值为( ) A .-1 B .1 C .±1 D .0 答案:A
解析:由题意得a 3-a =0,∴a =0或±1,又a ≠0,且a ≠1,∴a =-1.
9.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )
A .方程x 3+ax +b =0没有实根
B .方程x 3+ax +b =0至多有一个实根
C .方程x 3+ax +b =0至多有两个实根
D .方程x 3+ax +b =0恰好有两个实根 答案:A
解析:因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,所以要做的假设是“方程x 3+ax +b =0没有实根”.
10.某珠宝店丢了一件珍贵珠宝,以下四人中只有一个人说了真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( )
A.甲B.乙
C.丙D.丁
答案:A
解析:假如甲说了真话,则乙、丙、丁都说了假话,那么丙不是小偷,丁不是小偷,丁偷了珠宝,显然矛盾,故甲说了假话,即甲是小偷.
11.(2019·宁德期中)2018年4月,中国诗词大会第三季总决赛如期举行,依据规则,本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:
爸爸:冠军是甲或丙;妈妈:冠军一定不是乙和丙;孩子:冠军是丁或戊.比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是()
A.甲B.丁或戊
C.乙D.丙
答案:D
解析:假设爸爸的猜测是对的,则冠军是丙;
假设妈妈的猜测是对的,不合题意;
假设孩子的猜测是对的,则妈妈的猜测也对,不合题意.
12.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2 017(x)=()
A.sin x+cos x B.-sin x-cos x
C.sin x-cos x D.-sin x+cos x
答案:A
解析:f2(x)=f1′(x)=cos x-sin x,f3(x)=f2′(x)=-sin x-cos x,f4(x)=f3′(x)=-cos x+sin x,f5(x)=f4′(x)=sin x+cos x,f6(x)=f5′(x)=cos x-sin x,…,
可知f n(x)是以4为周期的函数,∵2 017=504×4+1,
∴f2 017(x)=f1(x)=sin x+cos x.
二、填空题
13.复数3+i
i 2(i 为虚数单位)的实部等于________. 答案:-3
解析:由题得3+i i 2=3+i
-1
=-3-i,其实部为-3.
14.(2019·海淀区校级三模)某校在科技文化艺术节上举行纸飞机大赛,A ,B ,C ,D ,E 五个团队获得了前五名.发奖前,老师让他们各自选择两个团队,猜一猜其名次: A 团队说:C 第一,B 第二; B 团队说:A 第三,D 第四; C 团队说:E 第四,D 第五; D 团队说:B 第三,C 第五; E 团队说:A 第一,E 第四.
如果实际上每个名次都有人猜对,则获得第五名的是________团队. 答案:D
解析:将对五个团队的猜测整理成下表:
B ,从而第二名没人猜对,不符题意,故第五名为D 团队.
15.一个二元码是由0和1组成的数字串x 1x 2…x n ()n ∈N * ,其中x k ()k =1,2,…,n 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码x 1x 2…x 7
的码元满足如下校验方程组:⎩⎨⎧
x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,
x 1⊕x 3⊕x 5⊕x 7=0,
其中运算⊕ 定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于_____________. 答案:5
解析:由题意得相同数字经过运算后为0,不同数字运算后为1.由x4⊕x5⊕x6⊕x7=1可判断后4个数字出错;由x2⊕x3⊕x6⊕x7=0可判断后2个数字没错,即出错的是第4个或第5个;由x1⊕x3⊕x5⊕x7=1可判断出错的是第5个,综上,第5位发生码元错误.。