一元一次方程解工程问题
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。
前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块比小的一块大一倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。
用一元一次方程解决实际问题——工程问题学习目标1.能利用线性示意图、表格、扇形示意图等手段分析实际问题中的等量关系列方程;2.经历和体验运用方程解决实际问题的过程,提高分析问题、解决问题的能力;3.培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的经验,激发学生的学习热情.学习重、难点借助线性示意图、表格、扇形示意图等手段分析实际问题中的等量关系.学习过程一、问题导向1、观看大国基建的视频,感悟每一项工程都是由不同团队合作完成的。
2、将一批资料录入电脑,甲单独做需18h完成,乙单独做需12h完成.现在先由甲单独做8h,剩下的部分由甲、乙合做完成,甲、乙两人合做了多少时间?1.问题中的已知量、未知量分别是什么?2.怎样理清其中的数量关系?(1)若把全部工作量看作1,设甲、乙两人合做的时间是x小时,则可以列出表格:全部工作量甲单独做的工作量甲、乙合做的工作量1问题中的相等关系是:,根据等量关系,可列出方程:.(2)若把全部工作量看作1,设甲、乙两人合做的时间是x小时,还可以列出这样的表格吗?全部工作量甲做的工作量乙做的工作量1问题中的相等关系是:,根据等量关系,可列出方程:.(3)若把全部工作量看作1,我们还能用扇形示意图来表示其中的数量关系吗?总结:利用表格或圆形示意图来分析工程类的问题,常见数量关系:工作总量=工作效率×工作时间.分析时,常需抓住其中的一个量——工作总量(或时间或效率)来找出相等关系.二、自主学习例1、将一批会计报表输入电脑,甲单独做需20h 完成,乙单独做需12h 完成,现在先由甲单独做4h,剩下的部分由甲、乙合做完成,甲、乙两人合做了多长时间?解:设两人合作了x 小时由题意得11212014201=⎪⎭⎫ ⎝⎛++⨯x 解得x=6答:甲乙两人合作了6个小时。
例2、整理一批图书,由一个人做要40h 完成.现在计划由一部分人先做4h,再增加2人和他们一起做8h 完成这项工作.假设这些人的工作效率相同,那么应先安排多少人工作? 解:设应先安排x 人工作由题意得140)2(8404=++x x 解得x=2答:应先安排2人工作三、成果展示1、一个水池装有一根进水管和一根排水管,单开进水管10分钟可住满水池,单开排水管20分钟可将满池水排完,若池中无水,两管同时打开,则几分钟可注满水池?2、一项工程,甲单独做要10天,乙单独做要15天,丙单独做20天,三人合作期间,甲因故请假,工程6天完工,请问甲请了几天假?3、甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为( )A .6B .8C .10D .114、加工1500个零件,甲单独做需要 12 小时,乙单独做需要 15 小时,若甲、乙两人合作 x 小时可以完成,依题意可列方程为( ) A. 1500151121=⎪⎭⎫ ⎝⎛+x B.1500151500121500=⎪⎭⎫ ⎝⎛+x C. 1500151500121=⎪⎭⎫ ⎝⎛+x D.1151500121500=⎪⎭⎫ ⎝⎛+x5. 某项工作,甲单独做要a天完成,乙单独做要b天完成.现在甲单独做2天后,剩下工作由乙单独做,则乙单独完成剩下的工作所需的天数是( )A.2ab-B.1(1)2b-C.2ba-D.⎪⎭⎫⎝⎛-ab216. 一项工程,甲单独做需15天完成,乙单独做需 10 天完成,由甲、乙合作完成需要多少天?四、拓展延伸1、某项工作,甲、乙两人单独完成分别需要 3 小时、5小时,则两人合作此项工作的 80% 需要几小时?2、一项工作,甲单独做12天完成,乙单独做8天完成.现在先由甲、乙合做3天,剩下的部分由乙单独完成,剩下的部分还需几天完成?3、将一批会计报表输入电脑,甲单独做20小时完成,乙单独做12小时完成.现在先由甲、乙合做4小时,再由甲单独做4小时,剩下的部分再由甲、乙合做,剩下的部分还需几小时完成?4、用甲、乙、丙三部抽水机从矿井里抽水,单独用一部抽水机抽尽,用甲需要24小时,用乙需30小时,用丙需40小时,现甲、丙同抽了6小时后,把乙机加入,问从开始到结束,一共用多少小时才能把井里的水抽完?5、某地为了打造风光带,将一段长为360 米的河道整治任务分配给甲、乙两个工程队,他们先后接力完成,共用时20天.已知甲工程队每天整治24 米,乙工程队每天整治16 米,求甲、乙两个工程队分别整治了多长的河道?五、教学反思通过本节课的学习,学生不仅掌握了如何利用扇形图解决实际问题,更是对于工程问题有了更深的了解,体会到了数学问题来源于生活,并能用之于生活。
工程类问题一元一次方程
一元一次方程是指只含有一个未知数的一次方程,通常具有形如ax + b = 0的形式,其中a和b是已知的常数,x是未知数。
解一元一次方程的方法有多种,包括倒代入法、加减消元法、两边乘除法等。
在工程类问题中,一元一次方程经常用于建立各种物理模型和工程实际问题的数学描述。
在工程中,一元一次方程可以用来描述各种线性关系,例如电路中的电压和电流关系、力学中的物体运动关系等。
通过解一元一次方程,可以求解出未知数的值,从而得到问题的具体解决方案。
此外,一元一次方程也常常用于工程中的优化问题,通过建立方程来描述问题,然后求解方程来得到最优解。
另外,工程中的一元一次方程也经常涉及到单位换算和比例关系。
通过建立一元一次方程,可以很方便地进行不同单位之间的换算,或者根据已知的比例关系来求解未知量。
总之,一元一次方程在工程类问题中具有广泛的应用,可以用来描述各种线性关系、优化问题以及单位换算和比例关系等,是工程师处理实际问题时经常会遇到的数学工具之一。
一元一次方程工程问题分类
一元一次方程是代数中最简单的线性方程,通常形式为ax+b=0,其中a和b是已知常数,x是变量。
在工程问题中,一元一次方程可以用来描述各种与线性关系相关的问题。
以下是一元一次方程工程问题的一些常见分类:
1.成本和收益问题:
•成本问题:企业生产某种产品的成本是固定成本和每单位生产的变动成本的总和。
通过一元一次方程,可以建立
成本与生产数量之间的关系。
•收益问题:企业销售产品或提供服务的收益可以通过一元一次方程与销售数量之间的关系来描述。
2.时间和距离问题:
•速度问题:当物体匀速运动时,速度和时间之间的关系可以通过一元一次方程表示。
•距离问题:物体在匀速运动中的距离与时间的关系可以通过一元一次方程建模。
3.混合问题:
•液体混合问题:两种液体以不同的比例混合,混合物中某个成分的比例可以通过一元一次方程来表示。
•材料混合问题:不同原材料的混合,可以通过一元一次方程来表示混合物中某个成分的含量。
4.工程测量问题:
•长度和面积问题:工程中测量长度、面积的问题可以通过一元一次方程来描述,例如两个线段的长度之和为定值。
•容积问题:容器中液体的体积与容器的尺寸之间的关系可以使用一元一次方程表示。
5.资源分配问题:
•资源比例问题:将有限的资源分配到不同的部门或项目,可以通过一元一次方程来表示各部门或项目的资源比例。
这些问题只是一元一次方程在工程领域中的应用的一小部分。
在实际应用中,工程师和科学家经常需要根据具体问题建立一元一次方程,以分析和解决实际工程中遇到的各种线性关系问题。
工程问题的解题思路一元一次方程在实际的工程问题中,我们经常会遇到需要解决一元一次方程的情况。
一元一次方程是一种常见的数学工具,用来描述工程问题中的线性关系。
解题思路的正确运用可以帮助我们有效地解决各种工程问题。
本文将介绍一元一次方程的基本概念,解题方法以及在工程问题中的应用。
一、一元一次方程的基本概念一元一次方程是指只包含一个未知数,并且这个未知数的最高次数为一的方程。
一元一次方程的一般形式为:ax + b = 0,其中a和b为已知数,a≠0。
在工程问题中,未知数通常表示我们需要求解的物理量,而已知数则是已知的条件或者数据。
二、一元一次方程的解题方法1. 消元法消元法是一种常用的解一元一次方程的方法。
当方程中含有多个未知数时,我们可以通过变换等式两侧或者联立多个方程进行消元,将方程转化为只有一个未知数的一元一次方程。
2. 因式分解法如果方程可以经过因式分解得到两个或多个因式,且其中一个因式可以整除另一个因式,那么我们可以根据因式关系来求解方程。
这种方法常用于较为简单的一元一次方程。
3. 代入法代入法是通过已知条件将方程中的一个变量表达式代入到另一个变量表达式中,从而减少方程中的未知数的个数。
通过代入已知的数值,我们可以求解方程中的未知数。
三、一元一次方程在工程问题中的应用1. 比例问题在工程问题中,常常涉及到比例关系。
通过建立相应的比例关系,我们可以将工程问题转化为一元一次方程,并通过求解方程来得到所需的结果。
2. 调和平均问题调和平均是工程问题中一种常见的求均值的方法。
当我们需要求解一组数据的调和平均值时,可以将调和平均的定义转化为一元一次方程,并通过求解方程来得到所需的结果。
3. 增减问题增减问题在工程中也十分常见。
通过建立增减关系的一元一次方程,我们可以求解变化量、增长率、变化趋势等问题。
四、工程问题解题思路的总结在解决工程问题中的一元一次方程时,我们需要注意以下几点:1. 仔细分析问题,明确给出的已知条件和要求的未知数。
一元一次方程工程问题典型例题一元一次方程是初中阶段数学中的基础知识,也是实际生活中常见的数学工具之一。
在工程问题中,一元一次方程的应用更是广泛,从简单的线性关系到复杂的工程计算,都离不开一元一次方程的运用。
下面我们就来看几个典型的一元一次方程工程问题例题。
例题一:水池灌溉问题某个农场的水池里有3000立方米的水,水泵每小时可以抽出200立方米的水。
如果每小时用40立方米的水灌溉田地,问多长时间,水池里的水会被抽空?解析:设时间为t小时,根据题意可以列出一元一次方程:3000 - 200t = 40t化简得:3000 = 240tt = 3000 / 240t = 12.5答案是12.5小时,水池里的水会被抽空。
例题二:汽车行驶问题某辆汽车以每小时60公里的速度行驶,已行驶2小时后,又以每小时75公里的速度行驶,问多长时间行程达到315公里?解析:设时间为t小时,根据题意可以列出一元一次方程:60 * 2 + 75t = 315化简得:120 + 75t = 31575t = 315 - 12075t = 195t = 195 / 75t = 2.6答案是2.6小时,行程达到315公里。
例题三:混合物问题有两种价值分别为20元/公斤和15元/公斤的两种茶叶共混合了40公斤,使得混合后的茶叶总价值为16.5元/公斤,问两种茶叶各混合了多少公斤?解析:设第一种茶叶混合了x公斤,第二种混合了(40-x)公斤,根据题意可以列出一元一次方程:20x + 15(40-x) = 16.5 * 40化简得:20x + 600 - 15x = 6605x = 60x = 12答案是第一种茶叶混合了12公斤,第二种茶叶混合了28公斤。
通过以上三个典型的一元一次方程工程问题例题,我们可以看到在实际生活中,一元一次方程的应用是非常广泛的。
通过掌握一元一次方程的解题方法,我们可以更好地解决工程和日常生活中的各种实际问题。
希望大家能够在学习中牢固掌握这一知识,为以后的应用打下坚实的基础。
3.4(12)--工程问题一.【知识要点】1.工程问题中的三个量及其关系为:工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=12.经常在题目中未给出工作总量时,设工作总量为单位1.二.【经典例题】1.在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长6500米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?2. 填空:(1)一件工作,10天完成,工作效率是_____________。
(2)一本书,25天看完,每天看全书的_____________。
(3)一件工作,甲独做20小时完成,m小时完成的工作量是_____________。
(4)一件工作,甲独作5天完成,乙独作7天完成,二人合作_____________天完成。
(5)如果a个工人完成一项工作需要c天,那么(a+b)个工人完成此项工作需天。
3.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?4.有一个蓄水池,装有甲、乙两个进水管和一个排水管,单独开甲管12小时可把空池注满,单独开乙管16小时可把空池注满,单独开排水管15小时可把满池的水放完,现甲乙两管同时开6小时后关闭乙管,打开排水管,问再过几个小时可把水注满呢?5.一工程原计划要270个工人若干天完成。
现只有200个工人,由于工作效率提高了50%,结果比原计划提前10天完成。
求原计划工作的天数?6.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时,完成这项工作。
假设这些人的工作效率相同,具体应该先安排多少人工作8小时?7.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.12(x+10)=13x+60C. D.8.(2020年绵阳期末第11题)某市一项重点工程,甲公司单独完成需3年,乙公司单独完成需6年,现在两公司合作完成整项工程后,该市共付工程款360万元,如果按两公司分别完成工作量的多少分配,则甲公司比乙公司多分得()A.120万元B.180万元C.200万元D.240万元三.【题库】【A】1.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。
一元一次方程应用题工程问题经典例题一元一次方程应用题工程问题经典例题在做工程问题这类的应用题时,我们的解题思路是:一般情况下把工作总量看成单位1。
用到的基本公式是:工作时间×工作效率=工作总量(单位1)。
例1:某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成,分析:要求两人合作的工作时间,只需用公式即可找到等量关系。
合作的工作总量即:合作的工作时间=合作的工作效率1我们把工作总量当成单位1。
根据已知我们可得:小李的工作效率=,小王的6 1工作效率= 8解:设两人合作需要X小时完成。
1 x,11+6824解得X= 724答:两人合作需要小时完成。
7(附:这道题,我们也可以直接用普通的计算方法,而不必设未知数求解。
) 举一反三:例2:一项工作甲工程队单独施工需要30天才能完成,乙队单独需要20天才能完成。
现在由甲队单独工作5天之后,剩下的工作再由两队合作完成,问他们需要合作多少天,1分析:此题比上题稍微复杂一点,但我们仍是先表示出甲的工作效率=,乙的301工作效率=。
根据题知,此题的等量关系为:甲完成的工作量+乙完成的工作20量=工作总量。
解:设他们合作需要X天。
111,5×+()X=1 302030解得X=10答:两队合作需要10天完成。
变式:例3:一项工程,甲独做需8天完成,乙独做需12天完成,甲乙合作了4天后,甲被调出,乙继续做,完成任务时一共用了6天。
问甲被调出几天, 分析:等量关系:甲乙合作的天数+乙单独做的天数=611 甲的工作效率=,乙的工作效率=。
812解:设甲被调出X天。
111,()×4+X=1 81212解得X=2答:甲被调出2天。
【学习目标】
1.初步学习列一元一次方程解工程问题;
2.了解列方程解实际问题的一般步骤;
【学习重点】利用一元一次方程解决工程问题。
【学习难点】根据实际问题列方程求解。
课前自主学习(查阅教材和相关资料,完成下列内容)
考点一.工程问题
1.工程问题中的三个量及其关系为:工作总量=工作效率工作时间
2.经常在题目中未给出工作总量时,设工作总量为单位。
3.各部分工作量之和工作总量
学练提升
问题一、工程问题中基本量的表示
例1. 1.做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,问:
①甲做1小时完成全部工作量的几分之几?
②乙做1小时完成全部工作量的几分之几?
③甲、乙合做1小时完成全部工作量的几分之几?
④甲做x小时完成全部工作量的几分之几?
⑤甲、乙合做x小时完成全部工作量的几分之几?
⑥甲先做2小时完成全部工作量的几分之几?
乙后做3小时完成全部工作量的几分之几?
甲、乙再合做x小时完成全部工作量的几分之几?
三次共完成全部工作量的几分之几?结果完成了工作,则可列出方程:
【规律总结】
【同步测控】
1.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?
[分析] 甲独作10天完成,说明的他的工作效率是,乙的工作效率是.
等量关系是:甲乙合作的效率合作的时间=1
解:
问题二、工程问题中综合问题
例2.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
[分析]设工程总量为单位,等量关系为:甲完成工作量乙完成工作量=工作总量。
【规律总结】
【同步测控】
1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?
2.食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.。