全国各地中考数学试卷分类汇编:平面直角坐标系与点的坐标
- 格式:docx
- 大小:722.03 KB
- 文档页数:14
江苏13大市数学中考分类汇编:一次函数函数、平面直角坐标系1.(2008江苏盐城25)(本题满分12分)在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元; (总费用=广告赞助费+门票费) 方案二:购买门票方式如图所示. 解答下列问题: (1)方案一中,y 与x 的函数关系式为 ;方案二中,当0160x ≤≤时,y 与x 的函数关系式为 ; 当100x 时,y 与x 的函数关系式为 ;(2)如果购买本场足球赛超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.答案:25.解:(1) 方案一: y=60x+10000 ;当0≤x≤100时,y=100x ; 当x >100时,y=80x+2000 ;(2)因为方案一y 与x 的函数关系式为y=60x+10000,∵x >100,方案二的y 与x 的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x <400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以, 当60x+10000<80x+2000时,即x >400时,选方案一进行购买;(3) 设甲、乙单位购买本次足球赛门票数分别为a 张、b 张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b >100.① 当b≤100时,乙公司购买本次足球赛门票费为100b ,图351400010000150100y (元)x (张)o700,601000010058000,a b a b +=⎧⎨++=⎩ 解得550,150,a b =⎧⎨=⎩不符合题意,舍去; ② 当b >100时,乙公司购买本次足球赛门票费为80b+2000,700,601000080200058000,a b a b +=⎧⎨+++=⎩ 解得500,200,a b =⎧⎨=⎩ 符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.2.(2008江苏扬州1).在平面直角坐标系中,点P (-1,2)的位置在 ( B ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限3.(2008江苏扬州)4.在平面直角坐标系中,将点A (1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A 与点A´的关系是( B )A 、关于x 轴对称B 、关于y 轴对称C 、关于原点对称D 、将点A 向x 轴负方向平移一个单位得点A´4.(2008苏州)函数12y x =+中,自变量x 的取值范围是( C ) A .0x ≠ B .1x ≠ C .2x ≠- D .1x ≠-5.(2008徐州)函数11y x =+中自变量x 的取值范围是 CA. x≥-1B. x≤-1C. x≠-1D. x =-16.(08泰州8)根据右边流程图中的程序,当输入数值x 为2-时,输出数值y 为( B ) A .4B .6C .8D .107.(2008年江苏省无锡市,5T ,2分)函数21y x =-中自变量x 的取值范围是 ;函数24y x =-中自变量x 的取值范围是. 答案5.1x ≠,2x ≥8.(2008苏州)函数1y x =-中,自变量x 的取值范围是 1x ≥ .9.(2008年江苏省无锡市,11T ,2分)已知平面上四点(00)A ,,(100)B ,,(106)C ,,(06)D ,,直线32y mx m =-+将四边形ABCD 分成面积相等的两部分,则m 的值为 .答案11.12输入x 1x ≥152y x =+ 152y x =-+输入y 是否第8题图10.(2008年江苏省南通市,7T ,3分)函数24y x =-中自变量x 的取值范围是_____.x≥2 11.(2008年江苏省南通市,9T ,3分)一次函数(26)5y m x =-+中,y 随x 的增大而减小,则m 的取值范围是________.答案9.m <312.(08南京12)函数1xy x-=中,自变量x 的取值范围是 x ≠0 . 13.(2008江苏省无锡) 已知平面上四点(00)A ,,(100)B ,,(106)C ,,(06)D ,,直线32y mx m =-+将四边形ABCD 分成面积相等的两部分,则m 的值为.答案:1214.(08南京28)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 解:(1)900; ························································································································ 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ······························ 2分 (3)由图象可知,慢车12h 行驶的路程为900km , 所以慢车的速度为90075(km /h)12=; ················································································ 3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ············································ 4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),. 设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得 (第28题)ABC DOy /km90012 x /h4044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ··························· 6分 自变量x 的取值范围是46x ≤≤. ···················································································· 7分 (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ········ 10分 15.(2008徐州)为缓解油价上涨给出租车待业带来的成本压力,某巿自2007年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程 收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.答案:(1)7 1.4 2.1a b c ===,, (2)1 2.10.3y x =- (3)有交点为3197⎛⎫⎪⎝⎭,其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算.16.(08连云港23)(本小题满分12分)“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A B ,两地,由于两市通住A B ,两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:A 地B 地每千顶帐篷 所需车辆数甲市 4 7 乙市3 5 所急需帐篷数(单位:千顶)95请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数. 解:(1)设总厂原来每周制作帐篷x 千顶,分厂原来每周制作帐篷y 千顶. 由题意,得91.6 1.514x y x y +=⎧⎨+=⎩,. ······························································································· 3分解得54x y =⎧⎨=⎩,.所以1.68x =(千顶),1.56y =(千顶).答:在赶制帐篷的一周内,总厂、分厂各生产帐篷8千顶、6千顶. ································ 6分 (2)设从(甲市)总厂调配m 千顶帐篷到灾区的A 地,则总厂调配到灾区B 地的帐篷为(8)m -千顶,(乙市)分厂调配到灾区A B ,两地的帐篷分别为(9)(3)m m --,千顶. 甲、乙两市所需运送帐篷的车辆总数为n 辆. ····································································· 8分 由题意,得47(8)3(9)5(3)(38)n m m m m m =+-+-+-≤≤.即68(38)n m m =-+≤≤. ······························································································ 10分 因为10-<,所以n 随m 的增大而减小. 所以,当8m =时,n 有最小值60.答:从总厂运送到灾区A 地帐篷8千顶,从分厂运送到灾区A B ,两地帐篷分别为1千顶、5千顶时所用车辆最少,最少的车辆为60辆. ····································································· 12分 17.(08泰州28)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y 甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了 小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分) (3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米.请通过计算说明,按图像所表示的走法是否符合约定.(4分)(1)1.9 …………………………………2分 (2)设直线EF 的解析式为y 乙=kx +b ∵点E (1.25 ,0)、点F (7.25,480)均在直线EF 上 ∴⎩⎨⎧=+=+.48025.7,025.1b k b k …………………………………………………………3分解得 ⎩⎨⎧-==.100,80b k ∴直线EF 的解析式是y 乙=80x -100 ………………4分∵点C 在直线EF 上,且点C 的横坐标为6, ∴点C 的纵坐标为80×6-100=380∴点C 的坐标是(6,380)……………………………………………………5分 设直线BD 的解析式为y 甲=mx +n ∵点C (6,380)、点D (7,480)在直线BD 上 ∴⎩⎨⎧=+=+.4807,3806n m n m ……………………………………………………………6分解得 ⎩⎨⎧-==.220,100n m ∴BD 的解析式是y 甲=100x -220 ……………………7分∵B 点在直线BD 上且点B 的横坐标为4.9,代入y 甲得B (4.9,270)∴甲组在排除故障时,距出发地的路程是270千米. ………………………8分 (3)符合约定 …………………………………………………9分 由图像可知:甲、乙两组第一次相遇后在点B 和D 处相距最远. 在点B 处有y 乙-y 甲=80×4.9-100-(100×4.9-220)=22千米<25千米………………10分在点D 处有y 甲-y 乙=100×7-220-(80×7-100)=20千米<25千米…………11分∴按图像所表示的走法符合约定. …………………………………………12分480y (千米)甲 乙D FC ABEO 1.2 3 6 4.9 7 7.2x (小时)第28题图。
专题06平面直角坐标系与几何结合的点坐标问题选题介绍本题型在河南省近五年的中招试卷中考了3次,分别为2021年第9题,2020年第9题,2018年第9题。
该题一般为选择题型,分值3分,平面直角坐标系与几何相结合的题型每年中招试题中均有涉及,规律型问题(2022年真题第9题、2019年真题第10题,专题均已归纳总结)、尺规作图相结合问题。
本题属于几何题型,侧重于对题意的几何理解,难度系数中等,得分率偏高。
本专题主要归纳总结几何中的平移、旋转、折叠中设计到的求点坐标问题。
根据已有的图像与文字提供的信息,按照以下思维过程解题:①对平面直角系相关知识点充分了解,判定所求点位置坐标;②运用平移、旋转、折叠等相关性质求解对应量;③利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标。
真题展现2021年河南中招填空题第9题9.(3分)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)2020年河南中招填空题第9题9.(3分)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)2019年河南中招填空题第9题9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.2018年河南中招填空题第9题9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D ,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为()A .(﹣1,2)B .(,2)C .(3﹣,2)D .(﹣2,2)模拟演练1.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.62.如图,将ABC 绕点(0,2)C -旋转180︒得到DEC ,设点D 的坐标为(,)a b ,则点A 的坐标为()A.(,)a b --B.(,2)a b ---C.(,2)a b --D.(,2)a b --3.如图,在平面直角坐标系xOy 中,等边AOB 的顶点O 在原点上,OA 在x 轴上,4OA =,C 为AB 边的中点,将等边AOB 向右平移,当点C 落在直线MN :4y x =-+上时,点C 的对应点'C 的坐标为()A.(B.(1+C.D.(4-4.如图,在平面直角坐标系中,已知()20A -,,()04B ,,点C 与坐标原点O 关于直线AB 对称.将ABC 沿x 轴向右平移,当线段AB 扫过的面积为20时,此时点C 的对应点1C 的坐标为()A.7855⎛⎫ ⎪⎝⎭,B.9855⎛⎫ ⎪⎝⎭,C.1855⎛⎫- ⎪⎝⎭,D.1655⎛⎫- ⎪⎝⎭,5.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为()0,2,点B 的坐标为()4,0,点E 为对角线的交点,点F 与点E 关于y 轴对称,则点F 的坐标为()A.()2,3-B.()3,3-C.()3,2-D.()3,3-6.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,CO CD =,=90OCD ∠︒,若()10B ,,则点C 的坐标为()A.()1,2-B.()2,1-C.D.()1,1-7.如图,在△AOB 中,顶点O 与原点重合,90∠=︒ABO ,AB OB =,()2,4A -,点C 为边OA 上一点,且4OA OC =.将△AOB 向右平移,当点C 的对应点C '恰好落在直线4y x =-+上时,点B 的对应点B '的坐标为()A.()2,1B.1,12⎛⎫ ⎪⎝⎭C.()4,2D.1,22⎛⎫ ⎪⎝⎭8.在平面直角坐标系中,已知两点()75A ,,()43B ,,先将线段AB 向右平移1个单位,再向上平移1个单位,然后以原点O 为位似中心,将其缩小为原来的12,得到线段CD ,则点A 的对应点C 的坐标为()A.()4,3 B.()4,3或()4,3-- C.()4,3-- D.()3,2或()3,2--9.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC =2,∠ABC =30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2B.(﹣4,﹣) C.(﹣2,﹣ D.(﹣2,﹣210.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)。
平面直角坐标系与点的坐标一.选择题1. (2019·贵州安顺·3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点对称点在第四象限,故选:D.2.(2019•海南省•3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【点评】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.3.(2019•浙江丽水•3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处【考点】用方向角+距离表示地理位置.【分析】根据方向角的定义即可得到结论.【解答】解:由图可得,目标A在南偏东75°方向5km处故选D.【点评】此题主要考查了方向角,正确理解方向角的意义是解题关键.4..(2019湖南常德3分)点(﹣1,2)关于原点的对称点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)【分析】坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).故选:B.【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.5.(2019•山东青岛•3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.二.填空题1.(2019•四川省广安市•3分)点M(x﹣1,﹣3)在第四象限,则x的取值范围是x>1.【分析】根据第四象限的点的横坐标是正数列出不等式求解即可.【解答】解:∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0解得x>1,即x的取值范围是x>1.故答案为x>1.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2. (2019•甘肃庆阳•4分)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点(﹣1,1).【分析】直接利用“帅”位于点(0,﹣2),可得原点的位置,进而得出“兵”的坐标.【解答】解:如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.3. (2019•黑龙江省绥化市•33x的取值范围是.答案:x≠4考点:分式的意义。
平面直角坐标系与点的坐标一、选择题1.(2013贵州安顺,3,3分)将点A(-2,-3)向右平移3个单位长度得到点B,则点B 所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】:D.【解析】A(-2,-3)向右平移3个单位长度得到点B,则点B为(1,-3), (1,-3)在第四象限.【方法指导】本题考查了图形的平移变换及各象限内点的坐标特点.先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.【易错警示】注意平移中点的变化规律.2.(2013山东德州,12,3分)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P 的坐标为A、(1,4)B、(5,0)C、(6,4)D、(8,3)【答案】D【解析】如下图,动点P(0,3)沿所示的方向运动,满足反弹时反射角等于入射角,到①时,点P(3,0);到②时,点P(7,4);到③时,点P(8,3);到④时,点P(5,0);到⑤时,点P(1,4);到⑥时,点P(3,0),此时回到出发点,继续.......,出现每5次一循环碰到矩形的边.因为2013=402×5+3(2013÷5=402 … 3).所以点P第2013次碰到矩形的边时,点P 的坐标为(8,3).故选D.【方法指导】本题考查了图形变换(轴对称)与平面直角坐标系规律探索.以平面直角坐标系为背景,融合轴对称应用的点坐标规律的规律探索题,解题关键从操作中前面几个点的坐标位置变化,猜想、归纳出一般变化规律. 3.(2013山东日照,6,3分)如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】 C【解析】由点P(2x+6,x-4)在平面直角坐标系的第四象限内,所以43-,04,062<<⎩⎨⎧<->+x x x 解得,在数轴上表示为C 。
专题04 平面直角坐标系与函数1.(2019•株洲)在平面直角坐标系中,点A(2,–3)位于哪个象限?A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点A坐标为(2,–3),则它位于第四象限,故选D.【名师点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决本题的关键,四个象限的符号特征分别是:第一象限(+,+);第二象限(–,+);第三象限(–,–);第四象限(+,–).2.(2019•甘肃)已知点P(m+2,2m–4)在x轴上,则点P的坐标是A.(4,0)B.(0,4)C.(–4,0)D.(0,–4)【答案】A【解析】∵点P(m+2,2m–4)在x轴上,∴2m–4=0,解得m=2,∴m+2=4,则点P的坐标是:(4,0).故选A.【名师点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.3.(2019•台湾)如图的坐标平面上有原点O与A、B、C、D四点.若有一直线l通过点(–3,4)且与y 轴垂直,则l也会通过下列哪一点?A.A B.BC.C D.D【答案】D【解析】如图所示:有一直线L通过点(–3,4)且与y轴垂直,故L也会通过D点.故选D.【名师点睛】此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.4.(2019•安顺)函数y的自变量x的取值范围是A.x<2 B.x≤2C.x>2 D.x≥2【答案】D【解析】根据题意得:2x–4≥0,解得x≥2.故选D.【名师点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.(2019•河池)如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP 的长度y与运动时间x之间的函数关系大致是A.B.C.D.【答案】B【解析】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【名师点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.6.(2019•孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是A.B.C.D.【答案】A【解析】∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【名师点睛】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.7.(2019•随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是A.B.C.D.【答案】B【解析】由于乌龟比兔子早出发,而且早到终点;故B选项正确;故选B.【名师点睛】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.8.(2019•武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是A.B.C.D.【答案】A【解析】∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选A.【名师点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.(2019•黄冈)已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min【答案】C【解析】从图中可知:体育场离林茂家2.5km,故选项A正确;体育场离文具店的距离是:2.5–1.5=1(km),故选项B正确;从体育场到文具店林茂所用的时间是45–30=15(分钟),∴林茂体育场出发到文具店的平均速度为1000200153=(m/min),故选项C错误;林茂从文具店回家的平均速度是1500609065=-(m/min),故选项D正确;故选C.【名师点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.10.(2019•眉山)函数y=1x-中自变量x的取值范围是A.x≥–2且x≠1B.x≥–2 C.x≠1D.–2≤x<1 【答案】A【解析】根据二次根式有意义,分式有意义得:x+2≥0且x–1≠0,解得:x≥–2且x≠1.故选A.【名师点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.11.(2019•岳阳)函数y中,自变量x的取值范围是A.x≠0B.x>–2 C.x>0 D.x≥–2且x≠0【答案】D【解析】根据题意得:20xx+≥≠⎧⎨⎩,解得x≥–2且x≠0.故选D.【名师点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2019•天水)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是A.B.C.D.【答案】D【解析】y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A选项不正确;D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选D.【名师点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.13.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为A.B.C.D.【答案】C【解析】∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=12AC,DE=12BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a.如图1,当移动的距离小于a时,S=正方形的面积–△EE′H的面积=a2–12t2;当移动的距离大于a时,如图2,S=S△AC′H=12(2a–t)2=12t2–2at+2a2,∴S关于t的函数图象大致为C选项,故选C.【名师点睛】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.14.(2019•菏泽)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为x s,△APQ的面积为y cm2,则下列图象中能大致表示y与x的函数关系的是A.B.C.D.【答案】A【解析】①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=12AQ•AP=12x2;②当2≤x≤4时,y=S△AP′Q′=S正方形ABCD–S△CP′Q′–S△ABQ′–S△AP′D=2×2–12(4–x)2–12×2×(x–2)–12×2×(x–2)=–12x2+2x,所以y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选A.【名师点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.15.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是A.B.C.D.【答案】D【解析】由题意当0≤x≤3时,y=3,当3<x<5时,y=12×3×(5–x)=–32x+152.故选D.【名师点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论思考问题,属于中考常考题型.16.(2019•武威)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为A.3 B.4 C.5 D.6【答案】B【解析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴1 2AB•12BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7–AB,代入AB•BC=12,得AB2–7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选B.【名师点睛】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.17.(2019•济宁)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标__________.【答案】(1,–2)(答案不唯一)【解析】∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),∴x>0,y<0,∴当x=1时,1≤y+4,解得–3≤y<0,∴y可以为:–2,故写一个符合上述条件的点P的坐标可以为:(1,–2)(答案不唯一).故答案为:(1,–2)(答案不唯一).【名师点睛】此题主要考查了点的坐标,正确把握横纵坐标的符号特征是解题关键.18.(2019•武威)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,–2),“马”位于点(4,–2),则“兵”位于点__________.【答案】(–1,1)【解析】如图所示:可得原点位置,则“兵”位于(–1,1).故答案为:(–1,1).【名师点睛】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.。
平面直角坐标系与点的坐标一.选择题1.(2018•山东东营市•3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2018•山东聊城市•3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC 边上的A1处,则点C的对应点C1的坐标为()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3. (2018•乌鲁木齐•4分)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是明确题意,利用旋转的知识解答.4.(2018•金华、丽水•3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为,即横坐标为9,∴点P(9,10),故答案为:C。
(•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).考点:坐标与图形变化-平移.分析:根据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可解的答案.解答:解:∵点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′,∴A′的坐标是(﹣1+3,2﹣4),即:(2,﹣2).故答案为:(2,﹣2).点评:此题主要考查了点的平移规律,正确掌握规律是解题的关键.(•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(﹣2,﹣3)B.(﹣2,6)C.(1,3)D.(﹣2,1)考点:坐标与图形变化-平移.分析:根据平移时,点的坐标变化规律“左减右加”进行计算即可.解答:解:根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1,故点A′的坐标是(1,3).故选C.点评: 此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.(•绵阳)如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是 。
(•遂宁)将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A . (﹣3,2)B . (﹣1,2)C . (1,2)D . (1,﹣2)考点:坐标与图形变化-平移;关于x 轴、y 轴对称的点的坐标. 分析: 先利用平移中点的变化规律求出点A′的坐标,再根据关于y 轴对称的点的坐标特征即可求解.解答: 解:∵将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y 轴对称的点的坐标是(1,2).故选C .点评: 本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y 轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减. (•沈阳)在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________. (•晋江)如图7,在方格纸中(小正方形的边长为1),ABC ∆的三个顶点均为格点,将ABC ∆沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画.出平移后的'''C B A ∆,并直接写.出点'A 、'B 、'C 的坐标; (2)求出在整个平移过程中,ABC ∆扫过的面积.解:(1)平移后的'C B A ''∆如图所示;…………………2分15题图点'A 、'B 、'C 的坐标分别为)5,1(-、)0,4(-、)0,1(-;…………………………………………………………5分(2)由平移的性质可知,四边形B B AA ''是平行四边形, ∴ABC ∆扫过的面积ABC B B AA S S ∆+=''四边形 AC BC AC B B ⋅+⋅=21' 265532155=⨯⨯+⨯=. (•漳州)如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC 向右平移5个单位长度后的Rt△A 1B 1C 1;(2)再将Rt△A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt△A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).(•厦门)在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 DA .(0,0),(1,4).B .(0,0),(3,4).C .(-2,0),(1,4).D .(-2,0),(-1,4). (•常州)已知点P (3,2),则点P 关于y 轴的对称点P 1的坐标是 (﹣3,2) ,点P 关于原点O 的对称点P 2的坐标是 (﹣3,﹣2) .考点:关于原点对称的点的坐标;关于x 轴、y 轴对称的点的坐标.分析: 根据关于y 轴对称的点的横坐标互为相反数,纵坐标相同; 关于原点对称的点的横坐标与纵坐标都互为相反数解答.解答: 解:点P (3,2)关于y 轴的对称点P 1的坐标是(﹣3,2),点P 关于原点O 的对称点P 2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).点本题考查了关于原点对称点点的坐标,关于y 轴对称的点的坐标,熟记对称点的坐y O x B C A (图7)第20题图评:标特征是解题的关键.(•淮安)点A(﹣3,0)关于y轴的对称点的坐标是(3,0).考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案.解答:解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为:(3,0).点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.(•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点坐标是解题关键.(•南通)在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为▲.(•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.考点:作图-旋转变换;作图-轴对称变换.3718684分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A 点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.解答:解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).点评:本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.(•遵义)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=﹣3,1﹣b=﹣1,再解方程可得a、b的值,进而算出a b的值.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴a+b=﹣3,1﹣b=﹣1,解得:b=2,a=﹣5,a b=25,故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.(泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A .(1.4,﹣1)B .(1.5,2)C .(1.6,1)D .(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC 的平移方向以及平移距离,即可得出P 1坐标,进而利用中心对称图形的性质得出P 2点的坐标.解答:解:∵A 点坐标为:(2,4),A 1(﹣2,1),∴点P (2.4,2)平移后的对应点P 1为:(﹣1.6,﹣1),∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∴P 2点的坐标为:(1.6,1).故选:C .点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键. (• 台州)设点M (1,2)关于原点的对称点为M ′,则M ′的坐标为(•温州)如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ’B ’C ’(A 和A ’,B 和B ’,C 和C ’分别是对应顶点),直线b x y +=经过点A ,C ’,则点C ’的坐标是__________(•珠海)点(3,2)关于x 轴的对称点为( )A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.(•牡丹江)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)考点:坐标与图形变化-旋转.分析:需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.解答:解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(0,﹣2);综上所述,点A1的坐标为(,﹣1)或(﹣2,0);故选B.点评:本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.(•牡丹江)如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 3米.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:在Rt△BDC中,根据∠BDC=45°,求出DC=BC=3米,在Rt△ADC中,根据∠ADC=60°即可求出AC的高度.解答:解:在Rt△BDC中,∵∠BDC=45°,∴DC=BC=3米,在Rt△ADC中,∵∠ADC=60°,∴AC=DCtan60°=3×=3(米).故答案为:3.点评:本题考查了解直角三角形的应用,解题的关键是根据仰角构造直角三角形,解直角三角形,难度一般.(•铜仁)点P(2, -1)关于x轴对称的点P′的坐标是 .(•红河)在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)。
2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数一.点的坐标(共1小题)1.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)二.规律型:点的坐标(共1小题)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)三.坐标确定位置(共1小题)3.(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m,n须满足的条件是.四.坐标与图形性质(共1小题)4.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.五.函数自变量的取值范围(共1小题)5.(2020•菏泽)函数y=√x−2x−5的自变量x的取值范围是()A.x≠5B.x>2且x≠5C.x≥2D.x≥2且x≠5六.函数值(共1小题)6.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.七.函数的图象(共1小题)7.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.八.动点问题的函数图象(共2小题)8.(2020•东营)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13 9.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48九.函数的表示方法(共1小题)10.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…一十.一次函数的性质(共1小题)11.(2019•临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>−bk时,y>0一十一.一次函数图象与系数的关系(共1小题)12.(2020•东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).一十二.一次函数图象上点的坐标特征(共3小题)13.(2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+814.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.15.(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n 个正方形对角线长的和是.一十三.一次函数与一元一次方程(共1小题)16.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y =ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15一十四.一次函数与一元一次不等式(共2小题)17.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.18.(2019•滨州)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.一十五.两条直线相交或平行问题(共2小题)19.(2019•东营)如图,在平面直角坐标系中,函数y=√33x和y=−√3x的图象分别为直线l1,l2,过l1上的点A1(1,√33)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.20.(2020•滨州)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△P AB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.一十六.一次函数的应用(共11小题)21.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢22.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 23.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.24.(2020•东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.25.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A ,B 两种型号的口罩9000只,共获利润5000元,其中A ,B 两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A 型口罩的1.2倍. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B 型口罩的进货量不超过A 型口罩的1.5倍,设购进A 型口罩m 只,这10000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?26.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?27.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.28.(2020•德州)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?29.(2019•临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x 表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.30.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.31.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数参考答案与试题解析一.点的坐标(共1小题)1.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.二.规律型:点的坐标(共1小题)2.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.三.坐标确定位置(共1小题)3.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.四.坐标与图形性质(共1小题)4.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.五.函数自变量的取值范围(共1小题)5.【解答】解:由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.六.函数值(共1小题)6.【解答】解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.七.函数的图象(共1小题)7.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.八.动点问题的函数图象(共2小题)8.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP ⊥AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =√132−122=5.所以AB =2AP =10.故选:C .9.【解答】解:由图2知,AB =BC =10,当BP ⊥AC 时,y 的值最小,即△ABC 中,AC 边上的高为8(即此时BP =8),当y =8时,PC =√BC 2−BP 2=√102−82=6,△ABC 的面积=12×AC ×BP =12×8×12=48, 故选:D .九.函数的表示方法(共1小题)10.【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c ,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴{a +b +c =4a −b +c =0c =3,解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3.当x =3时,代入y =﹣x 2+2x +3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y =﹣x 2+2x +3.一十.一次函数的性质(共1小题)11.【解答】解:∵y =kx +b (k <0,b >0),∴图象经过第一、二、四象限,A 正确;∵k <0,∴y 随x 的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=−b k,当x>−bk时,y<0;D不正确;故选:D.一十一.一次函数图象与系数的关系(共1小题)12.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,{−1=k+b3=−k+b,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.一十二.一次函数图象上点的坐标特征(共3小题)13.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.14.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.15.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=√2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:√2×(2n﹣1),故答案为:√2(2n﹣1),一十三.一次函数与一元一次方程(共1小题)16.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.一十四.一次函数与一元一次不等式(共2小题)17.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x +2≤ax +c 的解为x ≤1;故答案为x ≤1;18.【解答】解:∵正比例函数y =13x 也经过点A ,∴kx +b <13x 的解集为x >3,故答案为:x >3.一十五.两条直线相交或平行问题(共2小题)19.【解答】解:由题意可得,A 1(1,√33),A 2(1,−√3),A 3(﹣3,−√3),A 4(﹣3,3√3),A 5(9,3√3),A 6(9,﹣9√3),…,可得A 2n +1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A 2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.20.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.一十六.一次函数的应用(共11小题)21.【解答】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .22.【解答】解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4,∴y 2=﹣4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160, ∴此刻的时间为9:20.故选:B .23.【解答】解:设当x >120时,l 2对应的函数解析式为y =kx +b ,{120k +b =480160k +b =720,得{k =6b =−240, 即当x >120时,l 2对应的函数解析式为y =6x ﹣240,当x =150时,y =6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m 3),故小雨家去年用水量为150m 3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210.24.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.25.【解答】解:设销售A 型口罩x 只,销售B 型口罩y 只,根据题意得:{x +y =90002000x ×1.2=3000y,解得{x =4000y =5000, 经检验,x =4000,y =5000是原方程组的解,∴每只A 型口罩的销售利润为:20004000=0.5(元),每只B 型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A 型口罩和B 型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W =0.5m +0.6(10000﹣m )=﹣0.1m +6000,10000﹣m ≤1.5m ,解得m ≥4000,∵﹣0.1<0,∴W 随m 的增大而减小,∵m 为正整数,∴当m =4000时,W 取最大值,则﹣0.1×4000+6000=5600,即药店购进A 型口罩4000只、B 型口罩6000只,才能使销售总利润最大,最大利润为5600元.26.【解答】解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍. ∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .27.【解答】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意列方程,得: 6300.9x −6001.2x =10,解这个方程,得x =20,经检验,x =20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A 种树苗每棵的价格为:20×0.9=18(元),B 种树苗每棵的价格为:20×1.2=24(元),设购进A 种树苗t 棵,这批树苗的费用为w 元,则:w =18t +24(5500﹣t )=﹣6t +132000,∵w 是t 的一次函数,k =﹣6<0,∴w 随t 的增大而减小,又∵t ≤3500,∴当t =3500棵时,w 最小,此时,B 种树苗有:5500﹣3500=2000(棵),w =﹣6×3500+132000=111000,答:购进A 种树苗3500棵,B 种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.28.【解答】解:(1)设超市B 型画笔单价为a 元,则A 型画笔单价为(a ﹣2)元. 根据题意得,60a−2=100a ,解得a =5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y={4.5x(1≤x≤20)4x+10(x>20)(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.29.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得{b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.30.【解答】解:(1)由图可得,小王的速度为:30÷3=10km /h ,小李的速度为:(30﹣10×1)÷1=20km /h ,答:小王和小李的速度分别是10km /h 、20km /h ;(2)小李从乙地到甲地用的时间为:30÷20=1.5h ,当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).31.【解答】解:(1)∵0.1元/min =6元/h ,∴由题意可得,y 1={30(0≤x ≤25)6x −120(x >25), y 2={50(0≤x ≤50)6x −250(x >50), y 3=100(x ≥0);(2)作出函数图象如图:结合图象可得:若选择方式A 最省钱,则月通话时间x 的取值范围为:0≤x <853, 若选择方式B 最省钱,则月通话时间x 的取值范围为:853<x <1753, 若选择方式C 最省钱,则月通话时间x 的取值范围为:x >1753. 故答案为:0≤x <853,853<x <1753,x >1753. (3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长, ∴结合图象可得:小张选择的是方式A ,小王选择的是方式B ,将y =80分别代入y 2={50(0≤x ≤50)6x −250(x >50),可得 6x ﹣250=80,解得:x =55,∴小王该月的通话时间为55小时.。
专题08.平面直角坐标系与一次函数一、单选题1.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m/s3.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A .小明家距图书馆3kmB .小明在图书馆阅读时间为2hC .小明在图书馆阅读书报和往返总时间不足4hD .小明去图书馆的速度比回家时的速度快 4.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .65.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个6.(2021·江苏苏州市·中考真题)已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.(2021·四川乐山市·中考真题)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A .12y x =B .y x =C .32y x =D .2y x =8.(2021·江苏扬州市·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B.C .2+D 9.(2021·重庆中考真题)甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A .5s 时,两架无人机都上升了40mB .10s 时,两架无人机的高度差为20mC .乙无人机上升的速度为8m /sD .10s 时,甲无人机距离地面的高度是60m10.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度,所得直线的表达式为( ) A .52y x =- B .52y x =+ C .()52y x =+ D .()52y x =-11.(2021·安徽中考真题)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm12.(2021·四川凉山州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定13.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 14.(2020·贵州毕节市·中考真题)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .()5,4B .()4,5C .()4,5-D .()5,4-15.(2020·浙江嘉兴市·中考真题)一次函数y=-2x -1的图象大致是( )A .B .C .D .16.(2020·四川广安市·中考真题)一次函数7y x =--的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限17.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( ) A . B . C . D .18.(2020·四川中考真题)已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣3219.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .220.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .621.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B在直线(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A.2B.2C.2 D.222.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)23.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<24.(2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y < 25.(2020·四川内江市·中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤<B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠ 26.(2020·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)a ba b a b a b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .27.(2020·湖南湘潭市·中考真题)如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >28.(2020·湖北黄石市·中考真题)函数13y x =+-x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠ D .2x >,且3x ≠29.(2020·湖北武汉市·中考真题)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A .32 B .34 C .36 D .3830.(2020·湖北宜昌市·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列31.(2020·四川凉山彝族自治州·中考真题)点()2,3A 关于x 轴对称的点的坐标是( )A .()2,3--B .()2,3-C .()2,3D .()2,3-32.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)33.(2019·浙江中考真题)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75º方向处B .在5km 处C .在南偏东15º方向5km 处D .在南偏东75º方向5km 处34.(2019·江苏苏州市·中考真题)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >35.(2019·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .22nB .22n -C .22n -D .22n -36.(2019·四川眉山市·中考真题)如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题37.(2021·四川成都市·中考真题)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.38.(2021·上海中考真题)已知6()f x x=,那么f =__________.39.(2021·湖南怀化市·中考真题)在函数 y = 中,自变量x 的取值范围是___________. 40.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.41.(2021·四川眉山市·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.42.(2021·上海中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.43.(2021·上海中考真题)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.44.(2021·江苏苏州市·中考真题)若21x y +=,且01y <<,则x 的取值范围为______.45.(2021·四川自贡市·中考真题)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.46.(2020·黑龙江大庆市·中考真题)点(2,3)关于y 轴对称的点的坐标为_____.47.(2020·四川广安市·中考真题)一次函数y=2x +b 的图象过点(0,2),将函数y=2x +b 的图象向上平移5个单位长度,所得函数的解析式为________.48.(2020·贵州黔南布依族苗族自治州·中考真题)如图,在平面直角坐标系中,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为___.49.(2020·贵州黔南布依族苗族自治州·中考真题)函数1y x =-的图象一定不经过第_________象限. 50.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.51.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).52.(2020·湖南益阳市·中考真题)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.53.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.54.(2020·辽宁营口市·中考真题)如图,∠MON =60°,点A 1在射线ON 上,且OA 1=1,过点A 1作A 1B 1⊥ON 交射线OM 于点B 1,在射线ON 上截取A 1A 2,使得A 1A 2=A 1B 1;过点A 2作A 2B 2⊥ON 交射线OM 于点B 2,在射线ON 上截取A 2A 3,使得A 2A 3=A 2B 2;…;按照此规律进行下去,则A 2020B 2020长为_____.55.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.56.(2020·黑龙江鹤岗市·中考真题)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.57.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.58.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.59.(2020·四川广安市·中考真题)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.60.(2019·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为()5,0,点B 在x 轴的上方,OAB ∆的面积为152,则OAB ∆内部(不含边界)的整点的个数为_____.61.(2019·江苏中考真题)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为_______.62.(2019·山东济宁市·中考真题)已知点(,)P x y 位于第二象限,并且4y x +≤,,x y 为整数,写出一个符合上述条件的点P 的坐标:______.63.(2019·湖北鄂州市·中考真题)在平面直角坐标系中,点()00,P x y 到直线0Ax By C ++=的距离公式为:d =,则点()3,3P -到直线2533y x =-+的距离为_____.三、解答题64.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.65.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?66.(2021·湖北宜昌市·中考真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款_______元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?67.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.68.(2021·湖南衡阳市·中考真题)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为cm x ,单层部分的长度为cm y .经测量,得到下表中数据.(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为cm L ,求L 的取值范围.69.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系. 请根据相关信息,解答下列问题:(Ⅰ)填表(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ; ③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.70.(2021·浙江丽水市·中考真题)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?71.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:A ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?72.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?73.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y(单位:x )的函数关系.元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?74.(2020·辽宁大连市·中考真题)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.75.(2020·江苏南通市·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.76.(2020·吉林长春市·中考真题)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.77.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.78.(2019·江西中考真题)如图,在平面直角坐标系中,点A B ,的坐标分别为(,,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC 所在直线的解析式.79.(2019·重庆中考真题)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.80.(2019·江苏淮安市·中考真题)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式; (3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.。
平面直角坐标系与点的坐标一、选择题1.(2013贵州安顺,3,3分)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】:D.【解析】A(-2,-3)向右平移3个单位长度得到点B,则点B为(1,-3), (1,-3)在第四象限.【方法指导】本题考查了图形的平移变换及各象限内点的坐标特点.先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.【易错警示】注意平移中点的变化规律.2.(2013山东德州,12,3分)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P 的坐标为A、(1,4)B、(5,0)C、(6,4)D、(8,3)【答案】D【解析】如下图,动点P(0,3)沿所示的方向运动,满足反弹时反射角等于入射角,到①时,点P(3,0);到②时,点P(7,4);到③时,点P(8,3);到④时,点P(5,0);到⑤时,点P(1,4);到⑥时,点P(3,0),此时回到出发点,继续.......,出现每5次一循环碰到矩形的边.因为2013=402×5+3(2013÷5=402 … 3).所以点P第2013次碰到矩形的边时,点P 的坐标为(8,3).故选D.【方法指导】本题考查了图形变换(轴对称)与平面直角坐标系规律探索.以平面直角坐标系为背景,融合轴对称应用的点坐标规律的规律探索题,解题关键从操作中前面几个点的坐标位置变化,猜想、归纳出一般变化规律.3.(2013山东日照,6,3分)如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】 C【解析】由点P(2x+6,x-4)在平面直角坐标系的第四象限内,所以,在数轴上表示为C 。
【方法指导】本题考查点在平面直角坐标系中的特点,从而找到关于x 的不等式组,再把这个不等组的解集在数轴上表示。
在数轴上表示解集时,就注意什么时候是实点,什么时候是圆圈。
4.(2013广东湛江,6,4分)在平面直角坐标系中,点A(2,-3)在( )象限A .一B .二C .三D .四【答案】D.【解析】由于点A 的横坐标是正数,纵坐标是负数,因此这个点在第四象限。
【方法指导】本题考查了平面直角坐标系中点的分布。
对于点(a 、b )来说,点位置与坐标的特征的关系:点的位置 坐标特征 象限内点点P 在第一象限 a >0,b >0 点P 在第二象限 a <0,b >0 点P 在第三象限 a <0,b <0 点P 在第一象限 a >0,b <0 坐标轴上点 点P 在x 轴正半轴上 a >0,b =0 点P 在x 轴负半轴上 a <0,b =0 点P 在y 轴正半轴上 a >0,b =0 点P 在y 轴负半轴上 a >0,b =0 点P 在一、三象限角平分线上a =b 点P 在二、四象限角平分线上 a +b =05.(2013湖北荆门,10,3分)在平面直角坐标系中,线段OP 的两个端点坐标分别为O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( )A .(3,4)B .(-4,3)C .(-3,4)D .(4,-3)【答案】C【解析】如图1,过点P 作P A ⊥x 轴于点A ,设点A 旋转后的对应点为A ′,则P ′A ′=P A =3,OA ′=OA =4,∴点P ′的坐标为(-3,4).故选C .【方法指导】在平面直角坐标系中,点(a ,b )绕坐标原点O 逆时针旋转90°后,所得对应点的坐标为(-b ,a );点(a ,b )绕坐标原点O 顺时针旋转90°后,所得对应点的坐标为(b ,-a ).6.(2013深圳,7,3分)在平面直角坐标系中,点(20,)P a -与点(,13)Q b 关于原点对称,则的值为A .33B .33-C .7-D .7【答案】D 【解析】点(,)x y 关于原点对称的点是,故20,13b a ==-,则7a b +=,故D 是43-,04,062<<⎩⎨⎧<->+x x x 解得a b +(,)x y --xx O PA P ′ A ′ 图1正确的【方法指导】考查了坐标平面内点的对称性及有理数的运算。
若两个点关于原点对称,则它们的横、纵坐标分别互为相反数,这一特征是解题的关键。
7. (2013湖南邵阳,8,3分)图(二)是我市几个旅游景点的大致位置示意图.如果用(0,0)表示新宁崀山的位置,用(1,5)表示隆回花瑶的位置,那么城步南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)【答案】:C.【解析】:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.【方法指导】:本题考查了利用坐标确定位置,是基础题,建立平面直角坐标系是解题的关键.8 (湖南株洲,9,3分)在平面直角坐标系中,点P(1,2)位于第象限.【答案】:一【解析】:因为点A(2,-3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限.【方法指导】:解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.9.(2013广东珠海,3,3分)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.10.(2013广西钦州,12,3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2B.3C.4D.5考点:点到直线的距离;坐标确定位置;平行线之间的距离.专题:新定义.分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解答:解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∵“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.11.(2013贵州安顺,3,3分)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为为(1,﹣3),故点在第四象限.故选D.点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(2013湖北孝感,9,3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)考点:位似变换;坐标与图形性质.专题:作图题.分析:根据题意画出相应的图形,找出点E的对应点E′的坐标即可.解答:解:根据题意得:则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).故选D.点评:此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.13.(2013湖北宜昌,15,3分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与∵ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)考点:相似三角形的性质;坐标与图形性质.分析:根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.解答:解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选B.点本题考查了相似三角形的判定,难度中等.牢记判定定理是解题的关键.评:14. .([2013湖南邵阳,8,3分]图(二)是我市几个旅游景点的大致位置示意图.如果用(0,0)表示新宁崀山的位置,用(1,5)表示隆回花瑶的位置,那么城步南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)知识考点:坐标的地理位置确定.审题要津:建立平面直角坐标系来解决此题.满分解答:解:已知新宁崀山的位置为(0,0),隆回花瑶的位置为(1,5),所以以新宁崀山的位置(0,0)为坐标原点建立平面直角坐标系即可得到城步南山的位置(-2,-1).故选C.名师点评:解决此题的关键是建立平面直角坐标系.15.(2013·泰安,11,3分)在如图所示的单位正方形网格中,∵ABC经过平移后得到∵A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,∵ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(-2,1),∵点P (2.4,2)平移后的对应点P 1为:(-1.6,-1),∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∵P 2点的坐标为:(1.6,1).故选:C .点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.16.(2013•东营,6,3分)若定义:(,)(,)f a b a b =-, ,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )A .(2,3)-B .(2,3)-C .(2,3)D . 答案:B解析:由题意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故选B .17.(2013·济宁,8,3分)如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当∵ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE =BE ,进而得出B ′O =C ′O ,即可得出∵ABC 的周长最小时C 点坐标.(,)(,)g m n m n =-(2,3)--解答:解:作B 点关于y 轴对称点B ′点,连接AB ′,交y 轴于点C ′,此时∵ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∵B ′点坐标为:(-3,0),AE =4,则BE =4,即BE =AE ,∵C ′O ∵AE ,∵B ′O =C ′O =3,∵点C ′的坐标是(0,3),此时∵ABC 的周长最小.故选:D .点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C 点位置是解题关键.18.(2013四川乐山,6,3分)如图,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是,则sin α的值是【 】A .45B . 54C .35D .19.(2013四川遂宁,7,4分)将点A (3,2)沿x 轴向左平移4个单位长度得到点A ′,点A ′关于y 轴对称的点的坐标是( )4353A . (﹣3,2)B . (﹣1,2)C . (1,2)D . (1,﹣2)考点:坐标与图形变化-平移;关于x 轴、y 轴对称的点的坐标.分析: 先利用平移中点的变化规律求出点A ′的坐标,再根据关于y 轴对称的点的坐标特征即可求解.解答: 解:∵将点A (3,2)沿x 轴向左平移4个单位长度得到点A ′,∵点A ′的坐标为(﹣1,2),∵点A ′关于y 轴对称的点的坐标是(1,2).故选C .点评: 本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y 轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减. .二、填空题1.(2013江苏苏州,17,3分)如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A ,C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且OQ =OC ,连接CQ 并延长CQ 交边AB 于点P ,则点P 的坐标为( , ).【答案】(2,4-).OB ,再求出BQ ,然后求出△BPQ 和△OCQ 相似,根据相似三角形对应边成比例列式求出BP 的长,再求出AP ,即可得到点P 的坐标.解:∵四边形OABC 是边长为2的正方形,∴OA =OC =2,OB∵QO =OC ,∴BQ =OB -OQ -2.∵正方形OABC 的边AB ∥OC ,∴△BPQ ∽△OCQ .∴BP OC =,即2BP 解得BP -2.BQ OQ∴AP =AB -BP =2-(-2)=4-.∴点P 的坐标为(2,4-).所以应填2,4-.【方法指导】倍的性质,以及坐标与图形的性质,比较简单,利用相似三角形的对应边成比例求出BP 的长是解题的关键.【易错警示】本题是综合题,掌握所用知识不全面而出错.2. (2013四川雅安,17,3分)在平面直角坐标系中,已知点A (-5,0),B (5,0),点C 在坐标轴上,且AC +BC =6,写出满足条件的所有点C 的坐标________.【答案】 (02,),(0,-2),(-3,0),(3,0) (写对2个各得1分,写对3个得2分)【解析】需要分类讨论:∴当点C 位于x 轴上时,根据线段间的和差关系即可求得点C 的坐标;∴当点C 位于y 轴上时,根据勾股定理求点C 的坐标.【方法指导】本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C 在y 轴上时,也可以根据两点间的距离公式来求点C 的坐标.3.(2013兰州,19,4分)如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对∵OAB 连续作旋转变换,依次得到∵1、∵2、∵3、∵4…,则∵2013的直角顶点的坐标为 .考点:规律型:点的坐标.专题:规律型.分析:根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.解答:解:∵点A (﹣3,0)、B (0,4),∵AB ==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∵∵2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∵∵2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).点评:本题是对点的坐标变化规律的考查了,难度不大,仔细观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.4.(2013贵州安顺,17,4分)如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ′,则点B ′的坐标为 .考点:坐标与图形变化-旋转.分析:画出旋转后的图形位置,根据图形求解.解答:解:AB 旋转后位置如图所示.B ′(4,2).点评:本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A ,旋转方向逆时针,旋转角度90°,通过画图得B ′坐标.5.(2013陕西,13,3分)请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分.A .在平面直角坐标第中,线段AB 的两个端点的坐标分别为)3,1(),1,2(B A ,将线段AB经过平移后得到线段//B A ,若点A 的对应点为)2,3(/A ,则点B 的对应点的坐标是 .考点:点的平移与坐标之间的关系。