不等式习题
- 格式:docx
- 大小:346.22 KB
- 文档页数:12
不等式及其性质练习题一、填空题1. 若 a > b,则 a + 3 与 b 2 的大小关系是______。
2. 若 x 5 < 0,则 x 的取值范围是______。
3. 若 |x| > 5,则 x 的取值范围是______。
4. 若 a < b < 0,则a² 与b² 的大小关系是______。
5. 若 |x 1| = |x + 3|,则 x 的值为______。
二、选择题1. 下列不等式中,正确的是()A. a² > b²B. a + b > aC. (a + b)²= a² + b²D. |a| = a2. 若 a > b,则下列不等式中正确的是()A. a b > 0B. a < bC. a² < b²D. a/b < 13. 若x² 5x + 6 < 0,则 x 的取值范围是()A. x < 2 或 x > 3B. 2 < x < 3C. x < 2 且 x > 3D. x ≠ 2 且x ≠ 3三、解答题1. 已知 a > b,证明:a² > ab。
2. 设 x 为实数,证明:若x² 3x + 2 > 0,则 x < 1 或 x > 2。
3. 已知 |x 1| + |x + 2| = 5,求 x 的值。
4. 若 a、b、c 为实数,且 a < b < c,证明:a + c < 2b。
5. 设 a、b 为正数,证明:若 a/b < 1/2,则 2a < b。
四、应用题1. 某商店举行优惠活动,满 100 元减 20 元,满 200 元减 50 元,满 300 元减 80 元。
小明购物满 300 元,实际支付了 220 元,求小明原价购物金额。
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
不等式复习题一.填空题(共40小题)1.不等式5x>2x﹣6的解集是.2.不等式2x﹣5<7﹣x的解集是.3.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.4.不等式3x﹣5<7的非负整数解有.5.不等式2x<4x﹣6的最小整数解为.6.不等式6x﹣4<3x+5的最大整数解是.7.不等式2x﹣7<5﹣2x的非负整数解的个数为个.8.2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是场.9.不等式组:的解集是.10.写出不等式组的解集为.11.不等式组的解集是.12.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.13.不等式组的解集是.14.关于x的不等式组的解集为1<x<4,则a的值为.15.不等式组的解集为.16.满足不等式组的解是.17.不等式组的最大整数解为.18.已知,关于x的不等式组的整数解共有两个,那么a的取值范围是.19.不等式组的最小整数解是.20.若x是整数,且满足不等式组,则x=.21.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.22.已知x﹣y=3.①若y<1,则x的取值范围是;②若x+y=m,且,则m的取值范围是.23.如果不等式2x﹣m≥0的负整数解是﹣1,﹣2,则m的取值范围是.24.满足不等式﹣x+1≥0的非负整数解是.25.已知不等式组无解,则a的取值范围是.26.已知点P(2﹣m,m)在第四象限,则m的取值范围是.27.关于x的不等式组有三个整数解,则a的取值范围是.28.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.29.关于x的方程3(x+2)=k+2的解是正数,则k的取值范围是.30.如果不等式ax+b>0的解集是x>2,则不等式bx﹣a<0的解集是.31.若不等式6(x+a)≥3+4x的解集是x≥4,则a的值为.32.已知a<5,不等式ax≥5x+a﹣5的解集是.33.不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解为.34.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.35.若干学生分住宿舍,每间住4人余20人;每间住8人有一间不空也不满,则学生有人.36.当a、b满足条件a>b>0时,+=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是.37.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.38.不等式组有3个整数解,则m的取值范围是.39.已知关于x的不等式组仅有三个整数解,则a的取值范围是.40.不等式组有3个整数解,则m的取值范围是.参考答案与解析一.填空题(共40小题)1.(2017•延边州模拟)不等式5x>2x﹣6的解集是x>﹣2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,5x﹣2x>﹣6,合并同类项得,3x>﹣6,把x的系数化为1得,x>﹣2.故答案为:x>﹣2.【点评】本题考查的是解一元一次不等式,熟知去分母;去括号;移项;合并同类项;化系数为1是解一元一次不等式的基本步骤是解答此题的关键.2.(2017•繁昌县模拟)不等式2x﹣5<7﹣x的解集是x<4.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,2x+x<7+5,合并同类项得,3x<12,把x的系数化为1得,x<4.故答案为:x<4.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.3.(2017•仁寿县模拟)如果不等式3x﹣m≤0的正整数解是1,2,3,那么m 的范围是9≤m<12.【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式3x﹣m≤0得到:x≤,∵正整数解为1,2,3,∴3≤<4,解得9≤m<12.故答案为:9≤m<12.【点评】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.4.(2017•府谷县模拟)不等式3x﹣5<7的非负整数解有0,1,2,3.【分析】此题根据不等式的性质,在不等式的两边加上5除以3,即可求得不等式的解集,继而求得其非负整数解.注意此题系数化一时,除以的是正数,不等号的方向不改变;【解答】解:移项得:3x<7+5系数化一得:x<4∴不等式3x﹣5<7的非负整数解有0,1,2,3.【点评】此题考查了一元一次不等式的解法.解题时要注意:系数化一时,系数是正数,不等号的方向不变;系数是负数时,不等号的方向改变.还要注意按题目要求解题.5.(2017•南雄市校级模拟)不等式2x<4x﹣6的最小整数解为4.【分析】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.【解答】解:∵2x<4x﹣6,∴2x﹣4x<﹣6,∴﹣2x<﹣6,∴x>3,∴不等式2x<4x﹣6的最小整数解为4,故答案为:4.【点评】本题考查了一元一次不等式的整数解和解一元一次不等式,关键是求出不等式的解集.6.(2017•祁阳县二模)不等式6x﹣4<3x+5的最大整数解是x=2.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得不等式的解集,从而得出整数解.【解答】解:∵6x﹣3x<5+4,x<3,则不等式的最大整数解为x=2,故答案为:x=2【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(2017•呼和浩特模拟)不等式2x﹣7<5﹣2x的非负整数解的个数为3个.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得不等式的解集,从而得出答案.【解答】解:∵2x+2x<5+7,∴4x<12,∴x<3,则不等式的非负整数解有0、1、2这3个,故答案为:3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.(2017•东安县模拟)2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是8场.【分析】设该校足球队获胜的场次是x场,根据比赛规则和比赛结果列出不等式并解答.【解答】解:设该校足球队获胜的场次是x场,依题意得:3x+(11﹣x﹣1)≥25,3x+10﹣x≥25,2x≥15,因为x是正整数,所以x最小值是8,即该校足球队获胜的场次最少是8场.故答案是:8.【点评】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.9.(2017•绍兴模拟)不等式组:的解集是x>5.【分析】分别解两个不等式得到x>1和x>5,然后根据同大取大确定不等式组的解集.【解答】解:,解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.10.(2017•东昌府区一模)写出不等式组的解集为﹣1≤x<3.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集【解答】解:不等式①的解集为x<3,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣1≤x<3.故答案为:﹣1≤x<3.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.(2017•辽宁模拟)不等式组的解集是﹣1<x≤3.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤3.则不等式组的解集是:﹣1<x≤3.故答案是:﹣1<x≤3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.(2017•南城县校级模拟)已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为﹣.【分析】根据不等式组的解集即可得出关于a、b而愿意方程组,解方程组即可得出a、b值,将其代入方程ax+b=0中,解出方程即可得出结论.【解答】解:∵不等式组的解集是2<x<3,∴,解得:,∴方程ax+b=0为2x+1=0,解得:x=﹣.故答案为:﹣.【点评】本题考查了解一元一次不等式以及一元一次方程的解,解题的关键是求出a、b值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.13.(2017•阿城区一模)不等式组的解集是﹣2<x≤2.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x≤2.则不等式组的解集是:﹣2<x≤2.故答案是:﹣2<x≤2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(2017•阜宁县一模)关于x的不等式组的解集为1<x<4,则a的值为5.【分析】分贝求出不等式组中两个不等式的解集,根据题意得到关于a的方程,解之可得.【解答】解:解不等式2x+1>3,得:x>1,解不等式a﹣x>1,得:x<a﹣1,∵不等式组的解集为1<x<4,∴a﹣1=4,即a=5,故答案为:5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2017•长春一模)不等式组的解集为1<x≤3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1,解不等式2x≤6,得:x≤3,则不等式组的解集为1<x≤3,故答案为:1<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2017•南雄市校级模拟)满足不等式组的解是2<x≤6.【分析】首先解每个不等式,然后求得两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解①得x>2,解②得x≤6.则方程组的解集是2<x≤6.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.(2017•杭州一模)不等式组的最大整数解为4.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案.【解答】解:解不等式①可得:x>﹣,解不等式②可得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最大整数解为4,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(2017•阳谷县一模)已知,关于x的不等式组的整数解共有两个,那么a的取值范围是﹣1≤a<0.【分析】首先解不等式组,利用a表示出不等式组的解集,然后根据不等式组有3个整数解,即可确定整数解,进而求得a的范围.【解答】解:,解①得x>a,解②得x<2.则不等式组的解集是a<x<2.∵不等式组的整数解共有2个,∴整数解是1,0.则﹣1≤a<0.故答案是:﹣1≤a<0.【点评】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(2017•阜康市一模)不等式组的最小整数解是0.【分析】先解不等式组,求出解集,再找出最小的整数解即可.【解答】解:,解①得x>﹣1,解②得x≤3,不等式组的解集为﹣1<x≤3,不等式组的最小整数解为0,故答案为0.【点评】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(2017•邢台县模拟)若x是整数,且满足不等式组,则x=3.【分析】分别解两个不等式得到x>2和x<,从而得到不等式组的解为2<x <,然后找出此范围内的整数即可.【解答】解:,解①得x>2,解②得x<,所以不等式组的解为2<x<,所以整数x的值为3.故答案为3.【点评】本题考查了一元一次方程组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.21.(2017•临沂模拟)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是④.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:①[0)=1,故本项错误;②[x)﹣x>0,但是取不到0,故本项错误;③[x)﹣x≤1,即最大值为1,故本项错误;④存在实数x,使[x)﹣x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.表示大于x的最小整数是解答本题的关键,难度一般.22.(2017春•南安市期中)已知x﹣y=3.①若y<1,则x的取值范围是x<4;②若x+y=m,且,则m的取值范围是1<m<5.【分析】①先用x表示y,再根据y<1,得到关于x的不等式,解不等式求得x 的取值范围即可;②先把m当作已知数,解方程组求得x,y,再根据得到关于m的不等式组求得m的取值范围.【解答】解:①x﹣y=3,﹣y=﹣x+3,y=x﹣3,x﹣3<1,x<4;②依题意有,解得,∵,∴,解得1<m<5.故答案为:x<4;1<m<5.【点评】考查了不等式的性质,解方程(组),解不等式(组),解题关键是得到不等式(组).23.(2017春•宝丰县期中)如果不等式2x﹣m≥0的负整数解是﹣1,﹣2,则m 的取值范围是﹣6<m≤﹣4.【分析】首先解不等式,然后根据不等式有负整数解是﹣1,﹣2即可得到一个关于m的不等式,即可求得m的范围.【解答】解:解不等式得:x≥,∵负整数解是﹣1,﹣2,∴﹣3<≤﹣2.∴﹣6<m≤﹣4.【点评】本题考查了一元一次不等式的整数解,正确确定关于m的不等式是关键.24.(2017春•仁寿县期中)满足不等式﹣x+1≥0的非负整数解是0,1,2.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数解即可.【解答】解:解不等式得:x≤2,故不等式2x﹣1<3的非负整数解为0,1,2.故答案为:0,1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.25.(2017春•明光市期中)已知不等式组无解,则a的取值范围是a≥.【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集即可.【解答】解:∵解不等式①得:x>1,又∵不等式组无解,∴1≥2﹣2a,解得:a≥,故答案为:a≥.【点评】本题考查了解一元一次不等式(组)的应用,解此题的关键是能得出关于a的不等式.26.(2017春•澧县期中)已知点P(2﹣m,m)在第四象限,则m的取值范围是m<0.【分析】根据第四象限内的点的横坐标大于0,而纵坐标小于0即可列不等式求解.【解答】解:根据题意得,解得m<0.故答案是:m<0.【点评】本题考查了点的坐标以及一元一次不等式组的解法,正确理解第四象限内的点的横、纵坐标的符合是关键.27.(2017春•成都期中)关于x的不等式组有三个整数解,则a的取值范围是﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:∵解不等式①得:x>2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.28.(2017春•萧山区月考)若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【解答】解:解3m﹣2x<5,得x>.由不等式的解集,得=3.解得m=.故答案为:.【点评】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.29.(2017春•雁塔区校级月考)关于x的方程3(x+2)=k+2的解是正数,则k 的取值范围是k>4.【分析】由题意将方程3(x+2)=k+2去括号移项解出x,再根据x的方程3(x+2)=k+2的解是正数,求出k值.【解答】解:由方程3(x+2)=k+2去括号移项得,3x=k﹣4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,k>4.【点评】此题将方程与不等式联系起来,主要考查不等式的性质,但首先要学会解出方程的解,此题比较简单.30.(2017春•西湖区校级月考)如果不等式ax+b>0的解集是x>2,则不等式bx﹣a<0的解集是x>﹣.【分析】不等式ax+b>0的解集是x>2,判断出a>0且﹣=2、b<0,得到=﹣;再解出不等式bx﹣a<0的解集即可.【解答】解:∵不等式ax+b>0的解集是x>2,∴x>﹣,则a>0且﹣=2、b<0,∴=﹣∵bx﹣a<0,∴bx<a,∴x>,∴x>﹣,故答案为x>﹣.【点评】本题考查了不等式的解集,熟悉不等式的性质是解题的关键.31.(2017春•金水区校级月考)若不等式6(x+a)≥3+4x的解集是x≥4,则a 的值为﹣.【分析】先解不等式6(x+a)≥3+4x得到x≥,再根据题意得到=4,【解答】解:去括号得6x+6a≥3+4x,移项得6x﹣4x≥3﹣6a,合并得2x≥3﹣6a,系数化为1得x≥,而不等式6(x+a)≥3+4x的解集是x≥4,所以=4,解得a=﹣.故答案为﹣.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.32.(2017春•市北区校级月考)已知a<5,不等式ax≥5x+a﹣5的解集是x ≤1.【分析】移项、合并后两边除以a﹣5即可得.【解答】解:∵ax﹣5x≥a﹣5,∴(a﹣5)x≥a﹣5,∵a<5,∴a﹣5<0,∴x≤1,故答案为:x≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.33.(2017春•章丘市校级月考)不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解为﹣2.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式5(x﹣2)+8<6(x﹣1)+7,整理得,x>﹣3,其最小整数解是﹣2;∴不等式的最小整数解是﹣2.故答案为:﹣2.【点评】此题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.34.(2017春•广饶县月考)某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.35.(2017春•雁塔区校级月考)若干学生分住宿舍,每间住4人余20人;每间住8人有一间不空也不满,则学生有44人.【分析】设宿舍有x间,则总人数就有(4x+20)人,根据每间住8人有一间不空也不满可列出不等式组,求出x的值,即可得出答案.【解答】解:设宿舍有x间,则,解得5<x<7,则x=6.学生有:4×6+20=44(人).故答案为:44.【点评】本题考查了一元一次不等式组的应用,关键是根据最后一间不空也不满列出不等式组,注意x只能取整数.36.(2016•娄底)当a、b满足条件a>b>0时,+=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是3<m<8.【分析】根据题意就不等式组,解出解集即可.【解答】解:∵+=1表示焦点在x轴上的椭圆,a>b>0,∵+=1表示焦点在x轴上的椭圆,∴,解得3<m<8,∴m的取值范围是3<m<8,故答案为:3<m<8.【点评】本题考查了解一元一次不等式,能准确的列出不等式组是解题的关键.37.(2016•新疆)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.38.(2016•黑龙江)不等式组有3个整数解,则m的取值范围是2<m≤3.【分析】首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.【解答】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.39.(2016•凉山州)已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣≤a<0.【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<1,由关于x的不等式组仅有三个整数解,得﹣3≤3a﹣2<﹣2,解得﹣≤a<0,故答案为:﹣≤a<0.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.40.(2016•黑龙江)不等式组有3个整数解,则m的取值范围是﹣2<m≤﹣1.【分析】根据x<2且不等式组有3个整数解,知整数解为1、0、﹣1,结合x ≥m可得m的范围.【解答】解:∵x<2且不等式组有3个整数解,∴其整数解为1、0、﹣1,则﹣2<m≤﹣1,故答案为:﹣2<m≤﹣1.【点评】本题主要考查不等式组的整数解,熟练掌握不等式组解集的定义是解题的关键.。
不等式的题目及答案【篇一:不等式练习题及答案】x2-x≤0},n={x|1},则m∩n=( b )xa.? b.{1} c.{x|0x≤1}d.{x|x≥1}2x-1a2.不等式组?有解,则实数a的取值范围是( a )x-42a?a.(-1,3)b.(-∞,-1)∪(3,+∞) c.(-3,1)d.(-∞,-3)∪(1,+∞)3.已知a1、a2∈(0,1).记m=a1a2,n=a1+a2-1,则m与n 的大小关系是( b ) a.mnb.mn c.m=nd.不确定66665.若不等式ax2+bx+c0的解集是(-4,1),则不等式b(x2-1)+a(x+3)+c0的解集为( a )44a.(,1)b.(-∞,1)∪()c.(-1,4)d.(-∞,-2)∪(1,+∞)33125a.0 b.-2 c.-d.-327.若不等式x2+ax-20在区间[1,5]上有解,则a的取值范围是( a )f(5)0 232323a.() b.[-,1] c.(1,+∞)d.(-∞,-55510.若不等式-42x-34与不等式x2+px+q0的解集相同,则=________.q711.设函数f(x)=ax+b(0≤x≤1),则“a+2b0”是“f(x)0在[0,1]上恒成立”的____“必要但不充分____条件.(填“充分但不必要”,“必要但不充分”,“充要”或“既不充分也不必要”)12、已知?1?x?y?1,1?x?y?3,求3x?y的取值范围。
3x?y?1*(x?y)?2*(x?y) ?1,7?13、已知a?b?c,且a?b?c?0,求c/a的取值范围。
bc,a2cabc0,a0,c/a1/2 ab,2acabc0,c2a,a0,c/a2综上所述c/a的取值范围是??2,?1/2?14、正数x,y满足x?2y?1,求1/x?1/y的最小值。
3?2215、设实数x,y满足x?(y?1)?1,当x?y?c?0时,求c的取值范围。
不等式与不等式组1.“a 与3的差是非负数”用不等式表示为 A .30a -> B .30a -< C .30a -≥D .30a -≤2.下列各式中,属于一元一次不等式的是 A .320x ->B .25>-C .321x y ->+D .135y y+<3.如果a b >,那么下列各式中正确的是 A .33a b -<- B .33a b < C .a b ->-D .33a b -<-4.明明准备用自己节省的零花钱充值共享单车“摩拜”,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是 A .3045300x -≥ B .3045300x +≥ C .3045300x -≤D .3045300x +≤5.不等式215x -≤的解集在数轴上表示为ABCD一、不等式的概念、性质及解集表示 1.不等式一般地,用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式.能使不课前检测知识梳理等式成立的未知数的值,叫做不等式的解.2.不等式的基本性质温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.3.不等式的解集及表示法(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.二、一元一次不等式及其解法1.一元一次不等式不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.2.解一元一次不等式的一般步骤解一元一次不等式的一般步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).三、一元一次不等式组及其解法1.一元一次不等式组一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组.2.一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.3.一元一次不等式组的解法先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解. 4.几种常见的不等式组的解集设a b <,a ,b 是常数,关于x 的不等式组的解集的四种情况如下表所示(等号取不到时在数轴上用空心圆点表示):不等式组 (其中a b <)数轴表示解集口诀x ax b ≥⎧⎨≥⎩ x b ≥ 同大取大x ax b ≤⎧⎨≤⎩ x a ≤ 同小取小x ax b ≥⎧⎨≤⎩ a x b ≤≤ 大小、小大中间找x ax b ≤⎧⎨≥⎩无解 大大、小小取不了考情总结:一元一次不等式(组)的解法及其解集表示的考查形式如下: (1)一元一次不等式(组)的解法及其解集在数轴上的表示; (2)利用一次函数图象解一元一次不等式; (3)求一元一次不等式组的最小整数解; (4)求一元一次不等式组的所有整数解的和. 四、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案. 考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.考向一 不等式的定义及性质考点突破(1)含有不等号的式子叫做不等式.(2)不等式两边同乘以或除以一个相同的负数,不等号要改变方向,在运用中,往往会因为忘记改变不等号方向而导致错误.典例1 数学表达式:①57-<;②360y ->;③6a =;④2x x -;⑤2a ≠;⑥7652y y ->+中,是不等式的有 A .2个 B .3个 C .4个D .5个典例2 四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们的体重大小关系是A .P >R >S >QB .Q >S >P >RC .S >P >Q >RD .S >P >R >Q1.“数x 不小于2”是指 A .2x ≤ B .2x ≥ C .2x <D .2x >2.利用不等式的基本性质求下列不等式的解集,并说出变形的依据:(1)若20122013x +>,则x __________;(2)若123x >-,则x __________;(3)若123x ->-,则x __________;(4)若17x->-,则x __________.考向二 一元一次不等式的解集及数轴表示(1)一元一次不等式的求解步骤:去分母→去括号→移项→合并同类项→系数化为1.(2)进行“去分母”和“系数化为1”时,要根据不等号两边同乘以(或除以)的数的正负,决定是否改变不等号的方向,若不能确定该数的正负,则要分正、负两种情况讨论.典例3 不等式2723x x--≤的解集为________________.典例4 某不等式的解集在数轴上表示如下图所示,则该不等式的解集是A .2x ≥B .2x >-C .2x ≥-D .2x ≤-3.不等式215x ->-的解集为 A .2x > B .1x > C .2x >-D .2x <4.不等式3223x x +<+的解集在数轴上表示正确的是 A . B .C .D .考向三 一元一次不等式组的解集及数轴表示不等式解集的确定有两种方法:(1)数轴法:在数轴上把各个不等式解集表示出来,寻找公共部分并用不等式表示出来; (2)口诀法:“大大取大小小取小,大小小大中间找,大大小小取不了.”典例5 不等式组10251x x -≤⎧⎨-<⎩的解集为A .2x <-B .1x ≤-C .1x ≤D .3x <典例6 一元一次不等式组201103x x -≤⎧⎪⎨+>⎪⎩的解集在数轴上表示出来,正确的是A .B .C .D .【名师点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.不等式组31x x ><⎧⎨⎩的解集是A .3x >B .1x <C .13x <<D .无解6.将不等式组1010x x +≥->⎧⎨⎩的解集在数轴上表示,下列表示中正确的是A .B .C .D .考向四 一元一次不等式(组)的整数解问题此类问题的实质是解不等式(组),通过不等式(组)的解集,然后写出符合题意的整数解即可.典例7 若实数3是不等式220x a --<的一个解,则a 可取的最小正整数为 A .2 B .3 C .4D .5【名师点睛】本题主要考查不等式的整数解,熟练掌握不等式解的定义及解不等式的能力是解题的关键.典例8 不等式组101102x x -≥⎧⎪⎨-<⎪⎩的最小整数解是A .1B .2C .3D .47.不等式3(2)4x x -≤+的非负整数解有_______________个.8.不等式组301 32x x --≥⎧⎪⎨>-⎪⎩的所有整数解之和为_______________.考向五 求参数的值或取值范围求解此类题目的难点是根据不等式(组)的解的情况得到关于参数的等式或不等式,然后求解即可.典例9 若关于x 的不等式组2x a x >⎧⎨<⎩的解集是212a x -<<,则a =A .1B .2C .12D .2-典例10 已知不等式组3(2)1213x x a x x --<⎧⎪+⎨>-⎪⎩仅有2个整数解,那么a 的取值范围是A .2a ≥B .4a <C .24a ≤<D .24a <≤【名师点睛】本题考查了一元一次不等式组的整数解.已知解集(整数解)求字母的取值或取值范围的一般思路:先把题目中除了未知数以外的字母当做常数看待,解不等式组,然后再根据题目中对结果的限制条件得到有关字母的式子,求解即可.学科@网9.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为A .23m >-B .23m ≤C .23m >D .23m ≤-10.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有2个,则m 的取值范围为______________.考向六 一元一次不等式(组)的应用求解此类题目的难点是建立“不等式(组)模型”,通过求解不等式(组)的解集并与实际相结合即可.典例11 某市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数为 A .至少20户 B .至多20户 C .至少21户D .至多21户典例12 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则剩余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.11.某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2 h,乙机器人工作4 h,一共可以分拣700件包裹;若甲机器人工作3 h,乙机器人工作2 h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?12.在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有的购买方案,并指出哪种方案所需资金最少?最少资金是多少万元?1.(3分)不等式组的解集为( )A .﹣2<x <4B .x <4或x≥﹣2C .﹣2≤x <4D .﹣2<x≤42.(3分)若不等式组有解,则实数a 的取值范围是( )A .a <﹣36B .a≤﹣36C .a >﹣36D .a≥﹣36 3.3分)不等式组的整数解的个数为( )A .1B .2C .3D .44.(3分)当x 满足时,方程x 2﹣2x ﹣5=0的根是( ) A .1±B .﹣1 C .1﹣D .1+5.3分)当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A .m >1B .m <1C .m >4D .m <46.不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( )A .1k >B .1k < C.1k ≥ D .1k ≤7.某经销商销售一批电子手表,第一个月以600元/块的价格售出60块,从第二个月起降价,以550元/块的价格将这批电子手表全部售出,销售总额超过了58.万元,这批手表至少有 A .100块 B .101块 C .103块D .105块8.若不等式1ax x a +>+的解集是1x <,则a 必须满足的条件是A .1a <B .1a <-达标测评C .1a >-D .1a >9.已知不等式组3010x x ->⎧⎨+≥⎩,其解集在数轴上表示正确的是A .B .C .D .10.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高 A .40%B .33.4%C .33.3%D .30%11.已知关于x 的不等式组023x b x -≤⎧⎨-≥⎩的整数解有4个,则b 的取值范围是A .78b ≤<B .78b ≤≤C .89b ≤<D .89b ≤≤12.如图表示下列四个不等式组中其中一个的解集,这个不等式组是A .23x x ≥⎧⎨>-⎩B .23x x ≤<-⎧⎨⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤>-⎧⎨⎩13.适合不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的全部整数解的和是A .1-B .0C .1D .21.(2017•株洲)已知实数a ,b 满足11a b +>+,则下列选项错误的为 A .a b >B .22a b +>+C .a b -<-D .23a b >2.(2017•眉山)不等式122x ->的解集是 A .14x <-B .1x <-C .14x >-D .1x >-3.(2017•六盘水)不等式963≥+x 的解集在数轴上表示正确的是ABCD4.(2017•遵义)不等式6438x x -≥-的非负整数解有 A .2个 B .3个 C .4个D .5个5.(2017•西宁)不等式组2131x x -+<⎧⎨≤⎩的解集在数轴上表示正确的是A .B .C .D .6.(2017•绥化)不等式组1313x x -≤⎧⎨+>⎩的解集是实战演练A .4x ≤B .24x <≤C .24x ≤≤D .2x >7.(2017•广西四市)一元一次不等式组⎩⎨⎧≤+>+31022x x 的解集在数轴上表示为A .B .C .D .8.(2017•德州)不等式组2931213x x x +≥⎧⎪+⎨>-⎪⎩的解集为A .3x ≥B .34x -≤<C .32x -≤<D .4x >9.(2017•自贡)不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是10.(2017•百色)关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是 A .3 B .2 C .1D .23。
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
初二数学不等式解法练习题不等式是数学中常见的一种关系式,它描述了两个数或者两个表达式之间的大小关系。
在初二数学中,不等式的解法是一个重要的知识点,它涉及到数轴、符号法等多种方法。
本文将为大家提供一些不等式解法的练习题,帮助大家巩固相关知识和提高解题能力。
练习题一:求解不等式1. 求解不等式 2x + 3 > 5x - 1。
2. 求解不等式 4(x - 3) ≤ 2x + 1。
3. 求解不等式 3(x + 4) - 2(2x - 1) ≥ 5。
练习题二:解不等式组1. 解不等式组 {2x + 1 > 3, x - 2 ≤ 4}。
2. 解不等式组 {3x - 5 > x + 7, 2x + 3 ≥ 7x - 2}。
练习题三:绘制不等式图像根据以下不等式,绘制数轴上的区间表示:1. x ≥ -32. 2x + 1 < 53. x - 3 ≤ 2练习题四:实际问题中的应用1. 现有一个数x,它的四倍加5大于11,求解不等式 4x + 5 > 11 的解集。
2. 一家超市举办特价促销活动,书籍原价大于100元的按原价的8折出售,小于等于100元的按原价的6折出售。
设某本书的原价为x元,求解不等式 0.8x + 0.6x < 80 的解集。
解题过程和详细答案请见下文。
练习题一:1. 2x + 3 > 5x - 1移项得 3 + 1 > 5x - 2x化简得 4 > 3x两边除以3得 4/3 > x解集为 x < 4/3。
2. 4(x - 3) ≤ 2x + 1分配得 4x - 12 ≤ 2x + 1移项得 4x - 2x ≤ 1 + 12化简得2x ≤ 13两边除以2得x ≤ 6.5解集为x ≤ 6.5。
3. 3(x + 4) - 2(2x - 1) ≥ 5分配得 3x + 12 - 4x + 2 ≥ 5合并同类项得 -x + 14 ≥ 5移项得 -x ≥ 5 - 14化简得 -x ≥ -9注意:当不等号两边同时乘以-1时,需要翻转不等号方向。
不等式解决问题练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 13. 解不等式:5x + 8 > 34. 解不等式:7 3x < 45. 解不等式:2x 6 ≥ 4二、一元一次不等式组1. 解不等式组:\[\begin{cases}x 2 > 0 \\3x + 1 < 4\end{cases}\]2. 解不等式组:\[\begin{cases}2x 3 < 5 \\4x + 7 > 11\end{cases}\]3. 解不等式组:\[\begin{cases}5x + 4 > 2x 1 \\3x 2 ≤ 8\end{cases}\]三、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 4x 6 < 03. 解不等式:x^2 + 3x 4 ≥ 04. 解不等式:x^2 + 2x + 3 ≤ 05. 解不等式:4x^2 12x + 9 > 0四、分式不等式1. 解不等式:\(\frac{1}{x2} > 0\)2. 解不等式:\(\frac{2}{x+3} < 1\)3. 解不等式:\(\frac{3}{x1} + \frac{1}{x+2} ≥ 0\)4. 解不等式:\(\frac{4}{x+1} \frac{2}{x3} ≤ 2\)5. 解不等式:\(\frac{5}{x^2 4x + 3} > 0\)五、绝对值不等式1. 解不等式:|x 4| < 32. 解不等式:|2x + 1| ≥ 53. 解不等式:|3x 7| > 24. 解不等式:|4 x| ≤ 65. 解不等式:|5x + 3| < 8六、综合应用题1. 某企业生产一种产品,每件产品的成本为50元,售价为80元。
若该企业每月固定开支为2000元,要使企业不亏损,每月至少需要销售多少件产品?2. 一辆汽车以60km/h的速度行驶,行驶过程中,速度每增加10km/h,油耗增加1L/100km。
完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。
A。
最大值为 5,最小值为 1B。
最大值为 5,最小值为 $\frac{11}{2}$C。
最大值为 1,最小值为 $\frac{11}{2}$D。
最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。
A。
3B。
$\frac{7}{2}$C。
4D。
$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。
A。
$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。
$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。
$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。
$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。
A。
$(-1,+\infty)$B。
$(-\infty,-1)\cup (1,+\infty)$C。
$(-\infty,-1)\cup (1,+\infty)$D。
$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。
A。
2B。
$\frac{2}{3}$C。
4D。
$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。
A。
18B。
基本不等式练习题一、选择题1.下列各式,能用基本不等式直接求得最值的是( C )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x )2.函数y =3x 2+6x 2+1的最小值是( D )A .32-3B .-3C .6 2D .62-3解析: y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是( A )A .200B .100C .50D .20解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立. 4.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-yx)=-2.其中正确的推导过程为( D )A .①②B .②③C .③④D .①④ 解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件, ∴4a +a ≥24a·a =4是错误的; ④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a >0,b >0,则1a +1b+2ab 的最小值是( C )A .2B .2 2C .4D .5解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.当且仅当⎩⎨⎧a =b ab =1时,等号成立,即a =b =1时,不等式取得最小值4.6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( C )A .最大值64B .最大值164C .最小值64D .最小值164解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.7.若xy >0,则对 x y +yx说法正确的是( B )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定8.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( A )A .400B .100C .40D .20 9.在下列各函数中,最小值等于2的函数是( D ) A .y =x +1xB .y =cosx +1cosx ⎝ ⎛⎭⎪⎫0<x<π2C .y =x2+3x2+2D .24-+=x xee y [解析] x<0时,y =x +1x ≤-2,故A 错;∵0<x<π2,∴0<cosx<1,∴y =cosx +1cosx ≥2中等号不成立,故B 错;∵x2+2≥2,∴y =x2+2+1x2+2≥2中等号也取不到,故C 错∴选D.10.已知正项等比数列{an}满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得nm a a =4 a 1,则1m+4n 的最小值为( A ) A.32B.53C.256D .不存在[解析] 由已知an>0,a7=a6+2a5,设{an}的公比为q ,则a6q =a6+2a6q ,∴q2-q -2=0,∵q>0,∴q =2,∵aman =4a1,∴a12·qm+n -2=16a12,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =16⎣⎢⎡⎦⎥⎤5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32, 等号在n m =4mn,即n =2m =4时成立.11. “a=14”是“对任意的正数x ,均有x +ax ≥1”的( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[解析] ∵a =14,x>0时,x +ax ≥2x·a x =1,等号在x =12时成立, 又a =4时,x +a x =x +4x≥2x·4x =4也满足x +ax≥1,故选A. 12.设a ,b ∈R ,则“a+b =1”是“4ab≤1”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件[解析] a ,b 中有一个不是正数时,若a +b =1,显然有4ab≤1成立,a ,b 都是正数时,由1=a +b≥2ab 得4ab≤1成立,故a +b =1⇒4ab≤1,但当4ab≤1成立时,未必有a +b =1,如a =-5,b =1满足4ab≤1,但-5+1≠1,故选A.13.若a>0,b>0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5[解析] ∵12为a 、b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab, ∵ab ≤a +b 2,∴ab≤a +b 24=14.∴原式≥1+4.∴α+β的最小值为5.故选D.二、填空题1.函数y =x +1x +1(x ≥0)的最小值为____1____.2.若x >0,y >0,且x +4y =1,则xy 有最___大_____值,其值为___116_____.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.3.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为___3_____.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案:34.已知x ≥2,则当x =_2___时,x +4x有最小值__4__.5.已知t>0,则函数y =t2-4t +1t 的最小值为__-2_____.[解析] y =t2-4t +1t =t +1t -4因为t>0,y =t +1t-4≥2t·1t -4=-2.,等号在t =1t,即t =1时成立.6.已知正数a ,b ,c 满足:a +2b +c =1则1a +1b +1c 的最小值为 [答案] [解析]1a +1b +1c =a +2b +c a +a +2b +c b +a +2b +c c =⎝ ⎛⎭⎪⎫2b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +2b c +4≥22+2+22+4=6+42,等号在2b a =a b ,c a =a c ,c b =2b c 同时成立时成立,即a =c =2b =1-22时等号成立.7.已知x>0,y>0,lg2x +lg8y =lg2,则xy 的最大值是____112____.[解析] ∵lg2x +lg8y =lg2,∴2x·8y =2,即2x +3y =2,∴x +3y =1,∴xy =13x·(3y)≤13·⎝⎛⎭⎫x +3y 22=112,等号在x =3y ,即x =12,y =16时成立. 三、解答题1.已知f (x )=12x+4x .(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.解:(1)∵x >0,∴12x ,4x >0. ∴12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·(-4x )=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.2.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y =x 2+8x -1(x >1)的最值.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2 (x +1)·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2(x -1)·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1c-1)≥8.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c ,以上三个不等式两边分别相乘得 (1a -1)(1b -1)(1c-1)≥8. 当且仅当a =b =c 时取等号.4.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x+60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。
不等式专题注意: (1)a >b ⇔1a <1b成立吗?(2)a >b ⇒a n >b n(n ∈N ,且n >1)对吗?提示:(1)不成立,当a ,b 同号时成立,异号时不成立. (2)不对,若n 为奇数,成立,若n 为偶数,则不一定成立 .比较大小的常用方法(1)作差法一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.作商法一般步骤是:①作商;②变形;③判断商与1的大小;④结论注意所比较的两个数的符号特值法若是选择题、填空题可以用特值法比较大小;若是解答题,可以用特值法探究思路.一元二次不等式与相应的二次函数及一元二次方程的关系如下表bx一元二次不等式的解法(1)对于常系数一元二次不等式,可以用因式分解法或判别式法求解.(2)对于含参数的不等式,首先需将二次项系数化为正数,若二次项系数不能确定,则需讨论它的符号,然后判断相应的方程有无实根,最后讨论根的大小,即可求出不等式的解集.一.选择、填空题1 设D 是不等式组21023041x y x y x y +≤⎧⎪+≥⎪⎨≤≤⎪⎪≥⎩表示的平面区域,则D 中的点(,)P x y 到直线10x y +=距离的最大值是_______.2 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤+-≥+-08010502y x y x y x ,则目标函数y x z 43-=的最大值和最小值分别为(A )3,11- (B )11,3-- (C )11,3- (D )11,3 3.(2013安徽高考)下列选项中,p 是q 的必要不充分条件的是 ( ) (A )p:a c +>b+d , q:>b 且c >d(B )p:a >1,b>1 q:()(01)xf x a b a a =->≠,且的图像不过第二象限 (C )p: x=1, q:2x x = (D )p:a >1, q: ()log (01)a f x x a a =>≠,且在(0,)+∞上为增函数4 .(2013安徽高考)“”是“且”的 ( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件5.(2013上海高考)当时10≤≤x ,不等式kxx≥2sinπ成立,则实数k 的取值范围是_______________ .(图形结合)6 (2013湖北高考)已知关于的不等式11ax x -+<0的解集是1(,1)(,)2-∞--+∞.则a =7、(2012广东高考)设,若,则下列不等式中正确的是( )(赋值法较方便) A .B .C .D .8、(2012山东高考)不等式的解集是( )A .B .C .D .9、(2012福建高考)设集合A={x|1x x -<0},B={x|0<x <3},那么“m A ∈”是“m B ∈”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10、(2012北京高考)不等式112x x ->+的解集是__________.(不能将x+2直接乘到右边,因为不知道x+2大于0还是小于0)11.(2011全国Ⅱ)不等式:412--x x >0的解集为( )(A)( -2, 1)(B) ( 2, +∞) (C) ( -2, 1)∪ ( 2, +∞)(D) ( -∞, -2)∪ ( 1, +∞)12.(2011全国Ⅱ)不等式203x x ->+的解集是( ) A .(32)-,B .(2)+∞,C .(3)(2)-∞-+∞,, D .(2)(3)-∞-+∞,,13.(2011湖南高考)不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,,B .[12]-,C .(1)[2)-∞-+∞,, D .(12]-,14.(2011山东高考)当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是( ) .15.(2013安徽高考)若不等式组3434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是( )(A )73 (B ) 37 (C )43 (D ) 3416.(2013安徽高考)不等式组所表示的平面区域的面积等于( )(做这类题应该先画图,再计算)A. B. C. D.17.(2013海南宁夏高考)设x,y满足241,22x yx y z x yx y+≥⎧⎪-≥-=+⎨⎪-≤⎩则()(A)有最小值2,最大值3 (B)有最小值2,无最大值(C)有最大值3,无最小值(D)既无最小值,也无最大值18.(2013天津卷高考)设变量x,y满足约束条件:3123x yx yx y+≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y的最小值为()(A)6 (B)7 (C)8 (D)2319.(2013湖北高考)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元20. (2013四川高考)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是()A. 12万元B. 20万元C. 25万元D. 27万元21.(2013山东高考)某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A 类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元.22. (2013陕西高考)若x,y满足约束条件1122x yx yx y+≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y=+仅在点(1,0)处取得最小值,则a的取值范围是()(A) (1-,2 )(B) (4-,2 )(C) (4,0]-(D) (2,4)-23.(2013浙江高考)若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是 .24.(2013北京高考)若实数,x y 满足20,4,5,x y x y +-≥⎧⎪≤⎨⎪≤⎩,则s x y =+的最大值为 .25.(2013陕西高考)设x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z x y =+的最小值是 ,最大值是26.(2013上海高考)已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数z=x-2y 的最小值是___________.27.(2012山东高考)设二元一次不等式组所表示的平面区域为M ,使函数y =ax(a >0,a≠1)的图象过区域M, a 的取值范 围是( )(A )[1,3] (B)[2,] (C)[2,9] (D)[,9]28.(2011全国Ⅰ) 下面给出的四个点中,到直线10x y -+=的距离为,且位于1010x y x y +-<⎧⎨-+>⎩, 表示的平面区域内的点是( )A .(11), B .(11)-,C .(11)--,D .(11)-,29.(2011北京高考)若不等式组220x y x y y x y a-0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则的取值范围是( )A.43a ≥B.01a <≤C.413a ≤≤D.01a <≤或43a ≥30.(2011山东高考)设是不等式组表示的平面区域,则中的点到直线距离的最大值是_______.31.(2011福建高考) 已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________. 32、(2013全国Ⅰ)不等式11X X +-<1的解集为( )(俩边平方即可) (A ){x }}01{1x x x 〈〈〉 (B){}01x x 〈〈 (C ){}10x x -〈〈 (D){}0x x 〈33、(2013重庆高考)不等式2313x x a a +--≤-对任意实数恒成立,则实数的取值范围为A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞34、(2013广东高考)不等式112x x +≥+的实数解为 .35、(2013山东高考)不等式0212<---x x 的解集为36、(2013北京高考)若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________.37、(2013福建高考)解不等式∣2x -1∣<∣x∣+12x+y=3y=1x y38、(2012湖南高考)“|1|2x -<”是“3x <”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件39、(2012湖南高考)“|1|2x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件40、(2012四川高考)不等式2||2x x -<的解集为( )(A )(1,2)- (B )(1,1)- (C )(2,1)- (D )(2,2)- 41、(2012天津高考)设集合{||2|3},{|8},S x x T x a x a ST R =->=<<+=,则的取值范围是( )(A) 31a -<<- (B) 31a--剟(C) 3a -…或1a -… (D) 3a <-或1a >- 42、(2011安徽高考)若}{2228xA x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为(A )0(B )1(C )2 (D )343、(2011福建高考)“|x |<2”是“x 2-x -6<0”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件44、(2011辽宁高考)设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则是的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件45、(2011山东高考)当(12)x ∈,时,不等式240x mx ++<恒成立,则的取值范围是 .46、(2011浙江高考)不等式211x x --<的解集是47.(广东省汕头一中2013年高三4月模拟考试数学理试题 )若实数满足则的最小值是( ) A .0B .1CD .948.(2011年高考(广东理))在平面直角坐标系上的区域由不等式组给定,若为上的动点,点的坐标为,则z OM OA =⋅的最大值为 ( )A .B .C .4D .349.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)设变量、满足约束条件:,则的最大值为( )A .10B .8C .6D .450.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)已知实数满足等式,下列五个关系式:① ②③ ④ ⑤ , 其中有可能成立的关系式有 ( ) A .1个 B .2个 C .3个 D .4个51.(广东省东莞市2013届高三第二次模拟数学理试题)已知且则23x y +的最小值为________.(注意这类题的解题方法,基本上用一个方法就可以把全部的题解出来)52.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)已知点(,)P x y 满足01,0 2.x x y ≤≤⎧⎨≤+≤⎩则点(,)Q x y y +构成的图形的面积为___________.53.(广东省惠州市2013届高三10月第二次调研考试数学(理)试题)已知变量满足约束条件若目标函数仅在点处取得最小值, 则实数的取值范围为______________.54.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))不等式x y ,1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤23x y z +=xOy D 02x y x ⎧≤≤⎪≤⎨⎪≤⎩(,)M x y D A 4232x y ⎪⎩⎪⎨⎧-≥≤+≥243x y x xy |3|y x z -=a b 、23a b=0b a <<0a b <<0a b <<0b a <<0a b ==x y ,2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,z y ax =-()5,3a的解集是____.55.(教材习题改编)给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确的命题是( )A .①②B .②③C .③④D .①④56.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是( )(可用特殊值法)A .ad >bcB .ac >bdC .a -c >b -dD .a +c >b +d57.(2013·包头模拟)若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)a d +bc<0;(3)a -c >b -d ;(4)a (d -c )>b (d -c )中能成立的个数是( )A .1B .2C .3D .458.若x >y >z >1,则xyz ,xy ,yz ,xz 从大到小依次为________.59.(教材习题改编)设二次不等式ax 2+bx +1>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13,则ab 的值为( )A .-6B .-5C .6D .560.(教材习题改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围为_______61.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.62.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中的( )63.设f (x )=x 2+bx -3,且f (-2)=f (0),则f (x )≤0的解集为( )A .(-3,1)B .[-3,1]C .[-3,-1]D .(-3,-1]64.若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是( )A .[1,19]B .(1, 19)C .[1,19)D .(1,19]65.不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为________.|3||3|3x x +-->66.(2011· 江西高考理科·T15)(2)(不等式选做题)对于实数x ,y ,若1x -≤1, 2y -≤1,则21x y -+的最大值为 .67.(2012·陕西高考理科·T9)在中,角所对边的长分别为,若,则的最小值为( )(D)68.(2012·浙江高考文科·T9)若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( )(A) (B) (C)5 (D )669.(2012·福建高考理科·T5)下列不等式一定成立的是( )(A)(B)(C)(D )70.(2011山东高考)本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元? 71.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)已知函数.ABC ∆,,A B C ,,a b c 2222a b c +=cos C 1212-24528521lg()lg (0)4x x x +>>1sin 2(,)sin x x k k Z x π+≥≠∈212||()x x x R +≥∈211()1x R x >∈+()()21f x x ,g x x ==-(1)若,使,求实数的取值范围;(2)设,且在上单调递增,求实数的取值范围72.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式已知每日的利润,且当时,.(1)求的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值73.设a >b >c ,求证:1a -b +1b -c +1c -a>0.74 已知不等式mx 2-2x -m +1<0.x R ∃∈()()f x b g x <⋅b ()()()21F x f x mg x m m =-+--()F x []01,m C x 3C x =+S x 35, (06)814, (6)k x x S x x ⎧++<<⎪=-⎨⎪≥⎩L S C =-2x =3L =k(1)若对所有的实数x不等式恒成立,求m的取值范围;75.已知f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.。