大数据最新技术及在行业应用介绍2018
- 格式:ppt
- 大小:16.89 MB
- 文档页数:37
大数据技术在零售行业的应用与创新研究一、引言近年来,大数据技术的快速发展给各个行业带来了革命性的变革,零售行业也不例外。
本文将探讨大数据技术在零售行业中的应用,并研究其带来的创新机遇。
二、大数据技术的概念及特点大数据技术是指通过对大规模数据的收集、存储、处理和分析,从中寻找隐藏的规律和价值,并为业务决策提供支持。
大数据技术具有数据量大、数据种类多、处理速度快的特点,可以帮助企业从海量数据中挖掘有价值的信息。
三、大数据技术在零售行业中的应用1. 消费者行为分析通过对顾客购买记录、浏览行为等数据的分析,零售商可以了解顾客喜好、购买习惯等信息,从而精准地为顾客提供个性化的商品推荐和服务。
2. 市场预测利用大数据技术,零售商可以对市场进行准确的预测,包括产品需求、销售趋势等,从而及时调整产品策略、库存管理等,降低经营风险。
3. 供应链管理大数据技术可以帮助零售商实现供应链的智能化管理,包括货物流转、库存管理、配送等方面的优化,提高运作效率和降低成本。
4. 营销策略优化通过大数据分析,零售商可以了解不同营销策略的效果,针对不同的顾客群体制定个性化的促销活动,提高市场反应度和客户黏性。
5. 店铺布局优化通过对消费者行为和店铺布局的数据分析,零售商可以优化店铺的陈列和布局,提升消费者的购物体验,进而提高销售额。
四、大数据技术在零售行业中的创新机遇1. 数据驱动的决策大数据技术可以为零售商提供准确、及时的数据支持,帮助他们做出基于数据的决策,降低决策风险,并推动企业发展。
2. 创新商业模式通过大数据技术,零售商可以基于顾客需求量身定制商品,提供个性化的购物体验,从而打造创新的商业模式。
3. 动态定价策略借助大数据技术,零售商可以根据实时市场需求和竞争情况进行动态定价,提高市场竞争力。
五、大数据技术在零售行业中的挑战和问题1. 数据隐私和安全在使用大数据技术的过程中,零售商需要处理大量的个人信息数据,如何保护顾客的隐私和数据安全是一个亟待解决的问题。
第1篇一、引言随着信息技术的飞速发展,大数据已成为当今社会的一个重要特征。
大数据分析作为一种新兴的技术手段,被广泛应用于各个领域,如金融、医疗、教育、交通等。
本报告旨在对大数据分析进行综合评估,分析其优势、挑战以及未来发展趋势,为相关企业和机构提供决策参考。
二、大数据分析的定义与特点1. 定义大数据分析是指利用先进的数据处理技术和算法,对海量数据进行挖掘、分析和解读,从而发现有价值的信息和知识的过程。
2. 特点(1)数据量大:大数据分析处理的数据规模巨大,通常达到PB级别。
(2)数据多样性:数据类型丰富,包括结构化数据、半结构化数据和非结构化数据。
(3)数据价值密度低:在大量数据中,有价值的信息往往占比很小。
(4)实时性:大数据分析需要实时处理数据,以满足快速决策的需求。
三、大数据分析的优势1. 提高决策效率通过对海量数据的分析,企业可以快速发现市场趋势、客户需求,从而提高决策效率。
2. 降低运营成本大数据分析可以帮助企业优化资源配置,降低运营成本。
3. 提升客户满意度通过分析客户数据,企业可以更好地了解客户需求,提供个性化的服务,提升客户满意度。
4. 创新商业模式大数据分析可以为企业带来新的商业模式,如精准营销、智能推荐等。
四、大数据分析的挑战1. 数据质量数据质量是大数据分析的基础,数据不准确、不完整、不一致等问题都会影响分析结果。
2. 技术挑战大数据分析需要处理海量数据,对计算能力、存储能力、算法等方面提出了很高的要求。
3. 法律法规大数据分析涉及到个人隐私、数据安全等问题,需要遵守相关法律法规。
4. 人才短缺大数据分析需要专业人才,但目前市场上相关人才较为短缺。
五、大数据分析的应用案例1. 金融领域金融机构利用大数据分析进行风险评估、欺诈检测、客户关系管理等。
2. 医疗领域医疗机构利用大数据分析进行疾病预测、药物研发、健康管理等。
3. 交通领域交通管理部门利用大数据分析进行交通流量预测、路况监测、智能调度等。
中国大数据产业发展概况大数据技术的广泛应用,加速了数据资源的汇集整合与开放共享,形成了以数据流为牵引的社会分工协作新体系,促进了传统产业的转型升级,催生了一批新业态和新模式,助力“数字中国”战略落地。
“十三五”时期,我国大数据产业取得了突破性的发展。
大数据产业规模持续稳步提升,产业价值不断释放;大数据相关政策陆续出台,产业发展环境日益优化;新型数据中心、5G等大数据相关基础设施部署进程加快;大数据企业快速成长,培育和发展了一批有竞争力的创新型企业;大数据要素潜能逐渐释放,政府、企业、消费者数字化意识明显增强;大数据与各产业广泛融合,工业大数据、健康医疗大数据、金融大数据等日渐成熟,支撑各产业优化升级;政府数据大量开放共享,有效提升政府服务能力,推动数字政府建设。
在《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,将“加快数字化发展,建设数字中国”作为独立篇章,从打造数字经济新优势到加快数字社会建设步伐,从提高数字政府建设水平再到营造良好数字生态,勾画出了未来五年数字中国建设的新图景,并明确指出大数据是七大数字经济重点产业之一。
另外,“数据”一词在规划纲要中出现了53次,国家进一步对大数据发展做出重要部署。
这表明以大数据为重点的数字产业迎来了新的发展阶段和机遇。
立足“十三五”时期大数据发展成就,展望“十四五”时期大数据发展趋势,白皮书分析了中国大数据产业发展演进、政策体系、园区建设、人才培育等产业发展要素情况,研判了大数据在软硬件产品、基础设施和应用服务等领域热点布局,梳理了大数据产业生态的三个层次,并重点提出了大数据产业发展的七大新趋势。
我们认为:AI技术融合应用成为突破数据治理瓶颈的新方法;数据交易市场将是实现数据定价和数据确权的新实践;“东数西算”工程对区域数据中心未来建设提出新要求;提高服务效能和推动治理流程再造成为政府大数据新应用焦点;“工业大数据+工业互联网”共筑绿色低碳的新工业体系;智能健康管理、云端诊疗、数据安全治理引领健康医疗新机遇;提高工作效能和创新工作方式是智慧党建大数据平台的新价值。
第1篇一、引言随着信息技术的飞速发展,大数据已经成为现代社会不可或缺的一部分。
大数据分析作为一门新兴的交叉学科,涵盖了计算机科学、统计学、数学等多个领域,旨在从海量数据中提取有价值的信息和知识。
本报告将对大数据分析专业进行详细的介绍,包括其发展背景、核心内容、应用领域以及未来发展趋势。
二、大数据分析的发展背景1. 数据爆炸时代21世纪是信息爆炸的时代,人类社会正从信息时代迈向数据时代。
随着物联网、移动互联网、云计算等技术的广泛应用,数据量呈指数级增长。
据统计,全球数据量每两年就会翻一番,预计到2020年,全球数据量将达到40ZB。
2. 传统数据分析方法的局限性传统的数据分析方法主要依赖于统计软件和人工分析,难以应对海量数据的处理和分析。
随着数据量的不断增长,传统方法在处理速度、准确性、效率等方面逐渐暴露出不足。
3. 大数据分析技术的兴起为了解决传统数据分析方法的局限性,大数据分析技术应运而生。
大数据分析利用计算机科学、统计学、数学等领域的知识,通过数据挖掘、机器学习、深度学习等方法,从海量数据中提取有价值的信息和知识。
三、大数据分析的核心内容1. 数据采集与预处理数据采集是大数据分析的基础,包括从各种数据源获取原始数据。
数据预处理是对采集到的数据进行清洗、转换、整合等操作,以提高数据质量和分析效率。
2. 数据存储与管理随着数据量的不断增长,数据存储与管理成为大数据分析的关键问题。
目前,分布式存储系统如Hadoop、Spark等成为主流,能够满足海量数据的存储和计算需求。
3. 数据挖掘与统计分析数据挖掘是从海量数据中发现有价值的信息和知识的过程。
统计分析是对数据进行描述、推断和预测的方法,包括回归分析、聚类分析、关联规则挖掘等。
4. 机器学习与深度学习机器学习和深度学习是大数据分析的核心技术之一。
机器学习通过算法让计算机从数据中学习,自动提取特征和规律。
深度学习则是一种更高级的机器学习方法,能够模拟人脑神经网络,实现更复杂的模式识别和预测。
大数据分析技术及其在医疗领域的应用潘艳军摘要随着大数据时代的来临,互联网和物联网技术的快速发展带来了数据的上传和下载等更多的便利,促使互联网上的数据量出现了急剧增长的状态,在这样的环境下,也就产生出了专门针对大数据的存储、计算、分析以及处理等一些新的问题。
而在医疗领域中,大数据的作用也就显得越来越重要。
因此,基于基因组学和现代生物医学技术的个性化医疗,也就成了未来医学领域发展的主要方向。
但是目前,怎样对大数据进行获取、分类、存储、将其中有价值的信息挖掘出来,以及怎样将其更加有效地应用在医疗领域中也就成了热点话题。
为了对此进行更加深入的研究和分析,文章对大数据及其特征、大数据分析技术以及其在医疗领域中的应用作了如下综述。
关键词大数据;医疗领域;应用;分析中图分类号 G2 文献标识码 A 文章编号 1674-6708(2018)218-0117-02随着科技时代的到来,各个领域中均出现了数据的爆炸式增长,而大数据也成为当今社会被研究的重点话题,并且其数据的分析以及应用也已经成了世界科技界以及各国政府所关注的焦点话题,“大数据时代”真的已经来到了我们的身边。
但是目前所面临的难题依旧是怎样更好的获取、分类、存储、处理和传输这些数据。
在医疗领域,我国正处在一个医学信息爆炸的时代,如医学图像、电力病例记录、基因序列、多中心临床药物试验等各个领域每天都会产生大量的数据,这也对医疗领域在对大数据技术对比应用起到了推进的作用[ 1 ]。
1 大数据及其特征大数据具有以下几个特征,即极大的数据量:来自于互联网、物联网以及电子商务等多個方面的数据;模态极多:其有文本、视频、语音、网页等半结构化和非结构化的数据模态;速度快:其所产生的数据都有着较强的时效性;有着密度较低的高价值信息[ 2 ]。
2 大数据分析技术2.1 机器学习和数据挖掘算法大数据分析的基础就是机器学习,要想从无模式、凌乱、复杂的大数据中挖掘出更多有价值的信息,就需计算机对人类学习的过程进行模拟。
大数据发展概述及关键技术随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会治理、国家管理、人民生活都产生了重大影响。
近年来,我国政府、企业、科研机构都投入了大量的精力开展大数据相关的研究工作,大数据在政策、技术、产业、应用等方面均获得了长足发展。
1、大数据概述大数据是信息化发展的新阶段。
随着信息技术和人类生产生活交汇融合,互联网快速普及,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会治理、国家管理、人民生活都产生了重大影响。
近年来大数据在政策、技术、产业、应用等多个层面都取得了显著进展。
在政策层面,大数据的重要性进一步得到巩固。
党的十九大提出“推动互联网、大数据、人工智能和实体经济深度融合”,深刻分析了我国大数据发展的现状和趋势,对我国实施国家大数据战略提出了更高的要求。
在技术层面,以分析类技术、事务处理技术和流通类技术为代表的大数据技术得到了快速的发展。
以开源为主导、多种技术和架构并存的大数据技术架构体系已经初步形成。
大数据技术的计算性能进一步提升,处理时延不断降低,硬件能力得到充分挖掘,与各种数据库的融合能力继续增强。
在产业层面,我国大数据产业继续保持高速发展。
权威咨询机构Wikibon 的预测表示,大数据在2018 年将深入渗透到各行各业。
在应用层面,大数据在各行业的融合应用继续深化。
大数据企业正在尝到与实体经济融合发展带来的“甜头”。
利用大数据可以对实体经济行业进行市场需求分析、生产流程优化、供应链与物流管理、能源管理、提供智能客户服务等,这不但大大拓展了大数据企业的目标市场,更成为众多大数据企业技术进步的重要推动力。
随着融合深度的增强和市场潜力不断被挖掘,融合发展给大数据企业带来的益处和价值正在日益显现。
在利用大数据提升政府治理能力方面,我国在2017 年出台了《政务信息系统整合共享实施方案》、《政务信息资源目录编制指南(试行)》等多项政策文件推进政府数据汇聚、共享、开放,取得了诸多进展。
大数据在体育业中的应用近年来,大数据技术的快速发展推动了各行各业的数字化转型与智能化升级。
体育产业作为一个具有广泛覆盖面的行业,在数字化转型中也离不开大数据技术的支持。
本文将就大数据在体育业中的应用进行探讨。
一、数据应用在赛事裁判中足球比赛中,裁判的判罚对比赛结果有着至关重要的影响,但是人的主观因素也难以避免。
而高科技的辅助成为了一种不可或缺的补充。
2018年俄罗斯世界杯就采用了国际足联的VAR(视频助理裁判)系统,通过画面回看和多角度的实时分析,协助裁判员做出更加准确的判罚。
考虑到赛场上的实时性,VAR系统的计算、传输和呈现都需要靠大数据技术的加持。
二、数据分析在训练管理中的应用足球赛事胜负的关键,除了运动员的体能素质外,还往往受其技战术水平的影响。
而如何有效提升运动员的技术水平,需要对运动员的个体训练进行精准的分析留下数据参考,让训练精准进行拍点。
目前,各大足球俱乐部都已经采用了专门的数据分析软件,对每一位球员的各项技术数据进行深入剖析,并提炼出每个人的优势和短板。
在针对性训练中,利用数据优势进行突出发挥,短板方面则结合特定训练,逐步提升技术,从而在赛场上获得胜利的可能性。
三、大屏幕数据可视化在赛后总结中的应用大数据在各个层面之间建立了信息共享的桥梁,并将海量数据可视化展示成图表等形式,让数据变得更为直观、易懂。
对于赛事总结来说,常常需要通过可视化的数据展示,对比赛中的情况进行深入分析,评估战术或决定一些改进策略。
数千场赛事、训练数据和运动员信息的分析、呈现和应用,必须借助大数据技术的手段,来使数据分析更加深入。
四、运动健康管理与预测分析健康是运动员的资本,但是过度训练、饮食不当、受伤等问题也会对运动员的身体造成损害。
如何对运动员的身体状态进行有效的监控和管理,做出快速的预判和反馈,帮助运动员更好地保持训练状态,使得每一个时间的训练都是有效率的,同时又不会容易受伤,大数据技术的应用令运动员的健康状况再也不是博弈运动中的未知现象。
2018年中国数字经济运⾏现状及⾯临的挑战分析,数字经济应⽤领域不断延伸「图」2018年中国数字经济运⾏现状及⾯临的挑战分析,数字经济应⽤领域不断延伸「图」⼀、数字经济的定义20世纪40年代以来,电⼦计算机的发明与通讯设备、信息⽹络等的快速普及,引发了科技与社会经济的剧烈变⾰,被称之为“数字化⾰命”,也被称为第三次⼯业⾰命或第三次科技⾰命。
相应地,社会经济发展形态也发⽣了巨⼤变化,继农业经济、⼯业经济后,⼀种以现代信息通信技术为依托、以⽹络尤其是互联⽹为载体,通过信息⽹络实现资源⽣产、分配、交换和消费的新型经济——数字经济,开始成为全球关注的焦点。
现阶段数字经济尚未形成统⼀的定义,但⼀般沿⽤G20杭州峰会的表述。
根据G20杭州峰会的表述,数字经济是指以使⽤数字化的知识和信息作为关键⽣产要素、以现代信息⽹络作为重要载体、以信息通信技术的有效使⽤作为效率提升和经济结构优化的重要推动⼒的⼀系列经济活动。
在云计算、物联⽹、⼈⼯智能等新⼀代信息技术的驱动下,数字经济的外延不断拓展,由狭义的数字产业化转向⼴义的产业数字化,涉⾜的⾏业由传统的基础电信、电⼦信息制造、软件服务、互联⽹等信息产业渗透⾄其他⾮信息⾏业,在智能制造、现代农业、“互联⽹+”等⽅⾯均发挥着重要作⽤。
⼆、数字经济发展现状在数字化浪潮的席卷下,各国纷纷开启数字化⾰命,争夺数字经济这⼀未来产业⾼地。
截⾄2015年,34个OECD(经合组织)成员国中有27个制订了数字经济相关的国家战略。
美国相继发布《联邦云计算战略》《⼤数据研究和发展倡议》等⽂件,加快部署云计算、⼤数据、⼈⼯智能等全球⽹络信息技术的前端领域。
欧盟也于2015年推出数字化单⼀市场战略,⼒图解决欧洲电信市场碎⽚化及投资不⾜的问题,在同⼀市场为企业和服务制定公平竞争环境。
2015年英国政府出台《数字经济战略(2015-2018)》,2017年发布《英国数字化战略》,⼒争让英国成为全球领先的数字化经济体。
2018-2024年中国信息安全行业研究报告在当今数字化快速发展的时代,信息安全已经成为了关系到国家、企业和个人的重要议题。
从 2018 年到 2024 年,中国信息安全行业经历了巨大的变革和发展。
在过去的几年里,随着互联网、云计算、大数据等技术的广泛应用,信息安全威胁日益复杂多样。
网络攻击手段不断翻新,从传统的病毒、木马到高级持续性威胁(APT),从针对个人用户的欺诈到针对关键基础设施的攻击,信息安全面临着前所未有的挑战。
在这一背景下,中国信息安全市场呈现出持续增长的态势。
据相关数据统计,2018 年中国信息安全市场规模已经达到了数百亿元,并在随后的几年里保持着两位数的增长率。
政府、金融、电信、能源等行业成为信息安全投入的重点领域。
政府对信息安全的重视程度不断提高。
出台了一系列政策法规,加强对信息安全的监管和规范。
例如,《网络安全法》的实施,为信息安全行业的发展提供了法律保障,明确了各方在网络安全方面的责任和义务。
同时,政府加大了对信息安全产业的支持力度,推动自主可控的信息安全技术研发和应用。
金融行业由于其业务的敏感性和数据的重要性,对信息安全的投入一直处于较高水平。
银行、证券、保险等机构纷纷加强网络安全防护体系建设,采用加密技术、身份认证、风险评估等手段保障客户信息和资金安全。
电信行业作为信息传输的重要基础设施,面临着大量的网络攻击和数据泄露风险。
运营商不断升级网络安全防护系统,加强对用户数据的保护,同时积极开展 5G 网络安全技术研究和应用。
能源行业的信息化程度不断提高,电力、石油、天然气等领域的关键信息系统成为攻击的重点目标。
因此,能源企业加大了在信息安全方面的投入,加强工业控制系统安全防护,保障能源生产和供应的安全稳定。
在技术发展方面,人工智能、区块链、物联网等新兴技术为信息安全带来了新的机遇和挑战。
人工智能技术可以用于网络威胁检测和分析,提高安全防护的效率和准确性。
区块链技术的不可篡改和去中心化特点,为数据安全和信任建立提供了新的解决方案。
第1篇一、报告概述随着信息技术的飞速发展,大数据已成为推动社会进步的重要力量。
本报告旨在通过对当前大数据分析技术的调查,分析大数据分析在各个领域的应用现状、发展趋势及面临的挑战,为我国大数据分析技术的发展提供参考。
二、大数据分析技术概述1. 大数据分析定义大数据分析是指对海量数据进行分析、挖掘,以发现数据背后的规律、趋势和关联性,从而为决策提供支持的过程。
大数据分析技术包括数据采集、数据存储、数据处理、数据挖掘、数据分析等多个环节。
2. 大数据分析技术分类(1)数据采集技术:包括爬虫技术、API接口、传感器数据等。
(2)数据存储技术:如Hadoop、Spark、Flink等分布式存储系统。
(3)数据处理技术:包括数据清洗、数据集成、数据转换等。
(4)数据挖掘技术:如关联规则挖掘、聚类分析、分类分析等。
(5)数据分析技术:包括统计分析、可视化分析、预测分析等。
三、大数据分析在各领域的应用1. 金融领域大数据分析在金融领域的应用主要体现在风险控制、精准营销、客户关系管理等方面。
通过对海量交易数据、客户行为数据等进行分析,金融机构可以更好地了解客户需求,降低风险,提高盈利能力。
2. 医疗领域大数据分析在医疗领域的应用主要包括疾病预测、药物研发、患者管理等方面。
通过对患者病历、基因数据、医疗设备数据等进行分析,有助于提高医疗诊断的准确性,缩短研发周期,降低医疗成本。
3. 零售领域大数据分析在零售领域的应用主要包括库存管理、精准营销、供应链优化等方面。
通过对销售数据、客户行为数据等进行分析,零售企业可以更好地把握市场动态,提高库存周转率,提升客户满意度。
4. 交通领域大数据分析在交通领域的应用主要包括交通流量预测、交通信号控制、公共交通优化等方面。
通过对交通数据、气象数据、地理信息数据等进行分析,有助于提高交通效率,降低交通事故发生率。
5. 教育领域大数据分析在教育领域的应用主要包括学生学习行为分析、课程推荐、教学质量评估等方面。