高二3月月考数学(理)试卷
- 格式:doc
- 大小:207.52 KB
- 文档页数:4
2021-2022学年内江市球溪高级中学高二下学期3月月考数学(理)试题一、单选题1.下列语句是命题的是( )①三角形的内角和等于180︒;②23>;③2x >;④这座山真险啊! A .①② B .①③ C .②③ D .③④【答案】A【分析】能够判断真假的陈述语句是命题,据此判断即可.【详解】①三角形的内角和等于180︒是命题;②23>是命题;③2x >不能判断真假,故不是命题;④这座山真险啊!不是陈述句,因此不是命题. 故选:A.2.过椭圆225x + 29y =1左焦点F 1引直线l 交椭圆于A 、B 两点,F 2是椭圆的右焦点,则△ABF 2的周长是( ) A .20 B .18 C .10 D .16【答案】A【分析】根据椭圆的定义求得正确选项. 【详解】依题意5a =,根据椭圆的定义可知,三角形2ABF 的周长为420a =. 故选:A3.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥【答案】C【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断. 【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题p :.存在0x R ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即⌝p 任意x ∈R ,均有210x x ++≥,故正确; 故选:C4.已知命题:p 垂直于同一平面的两直线平行;命题:q 平行于同一平面的两直线平行.则下列命题中正确的是( ) A .()()p q ⌝∧⌝ B .p q ∧ C .()p q ⌝∨ D .p q ∨【答案】D【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项. 【详解】垂直于同一平面的两直线平行,命题p 为真命题, 平行于同一平面的两直线平行、相交或异面,命题q 为假命题, 所以,()()p q ⌝∧⌝、p q ∧、()p q ⌝∨均为假命题,p q ∨为真命题. 故选:D.5.已知椭圆C :2212516x y +=的左、右焦点为1F ,2F ,上顶点为P ,则( )A .12PF F △为锐角三角形B .12PF F △为钝角三角形C .12PF F △为直角三角形D .P ,1F ,2F 三点构不成三角形【答案】A【分析】根据题意求得1212,,PF PF F F ,要判断12PF F △的形状,只需要看12F PF ∠是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆C :2212516x y +=,得22225,16,9a b c ===,则()()()123,0,3,0,0,4F F P -, 则12125,6PF PF F F ===, 所以1221PF F PF F ∠=∠且为锐角,因为2221212252536140PF PF F F +-=+-=>, 所以12F PF ∠为锐角, 所以12PF F △为锐角三角形. 故选:A.6.已知椭圆2222135x y m n+=和双曲线2222123x y m n -=有公共的焦点,那么双曲线的渐近线方程为 A .15x y = B .15y = C .3x y = D .3y x = 【答案】D【详解】试题分析:∵椭圆和双曲线有公共焦点,∴22223m 5n 2m 3n -=+,整理得22m 8n =,∴双曲线的渐近线方程为y=223n 3132m 28x x ±=±⨯=,故选D .【解析】本题主要考查双曲线、椭圆的标准方程及几何性质.点评:基础题,先根据椭圆方程和双曲线方程分别表示出c ,令二者相等即可求得m 和n 的关系,进而利用双曲线的方程求得双曲线的渐近线方程.7.双曲线221916x y -=的左、右焦点分别为F 1,F 2,点P 在双曲线上,下列结论不正确的是( )A .该双曲线的离心率为53B .该双曲线的渐近线方程为43y x =±C .点P 到两渐近线的距离的乘积为14425D .若PF 1⊥PF 2,则△PF 1F 2的面积为32 【答案】D【分析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a =3,b =4,c =5,22169169144x y -=⨯=, 故离心率e 53=,故A 正确;由双曲线的性质可知,双曲线线221916x y -=的渐近线方程为y =±43x ,故B 正确;设P (x ,y ),则P 到两渐近线的距离之积为22169434316914455252525x y x y x y --+⨯⋅===,故C 正确;若PF 1⊥PF 2,则△PF 1F 2是直角三角形,由勾股定理得2221212||||100PF PF F F +==,由双曲线的定义可得|PF 1|﹣|PF 2|=2a =6(不妨取P 在第一象限),∴2221212()||PF PF PF PF -=+-2|PF 1|⋅|PF 2|=100﹣2|PF 1|⋅|PF 2|,解得|PF 1|⋅|PF 2|=32,可得12121162PF F S PF PF =⨯⨯=,故D 错误. 故选:D8.已知m 是2与8的等比中项,则圆锥曲线221yx m-=的离心率等于( )A 5B 2C 53D 35【答案】C【分析】由等比中项定义求得m ,根据m 的取值确定曲线是椭圆还是双曲线,然后计算离心率.【详解】由已知228m =⨯,4m =±,当4m =-时,方程为2214y x +=,曲线为椭圆, 224,1a b ==,413c -3e =当4m =时,方程为2214y x -=,曲线为双曲线,221,4a b ==,415c =+=为5e = 故选:C .9.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线左支上任意一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( ) A .1 B .2 C .4 D .12【答案】A【分析】利用几何关系结合双曲线定义,以及中位线性质可得. 【详解】如图所示,延长F 1H 交PF 2于点Q ,由PH 为∠F 1PF 2的平分线及PH ⊥F 1Q ,易知1PHF PHQ ∽,所以|PF 1|=|PQ |.根据双曲线的定义,得|PF 2|-|PF 1|=2,即|PF 2|-|PQ |=2, 从而|QF 2|=2.在△F 1QF 2中,易知OH 为中位线,则|OH |=1. 故选:A.10.已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为( ) A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x > B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x > C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x > D .[],x a b ∀∈,()()f x g x > 【答案】C【分析】先解读选项ABC ,D 选项是12M M >成立的充分不必要条件,再判断得解. 【详解】解:A 选项表述的是()f x 的最小值大于()g x 的最大值; B 选项表述的是()f x 的最小值大于()g x 的最小值;C 选项表述的是()f x 的最大值大于()g x 的最大值成立的充要条件;D 选项是12M M >成立的充分不必要条件. 故选:C11.已知椭圆C :()222210x y a b a b +=>>的短轴长为2,上顶点为A ,左顶点为B ,1F ,2F 分别是C 的左、右焦点,且1F AB 23-P 为C 上的任意一点,则1211PF PF +的取值范围为( )A .[]1,2B .2,3⎡⎣C .2,4⎡⎤⎣⎦D .[]1,4【答案】D【分析】由已知和面积得到2a =,3c 1211PF PF +进行化简,配方求最值. 【详解】由已知的22b =,故1b =.∵1F AB 23-∴()1232a c b --=,∴23a c -=又∵222()()1a c a c a c b -=-+==, ∴2a =,3c =∴()2212121111||112444PF PF a PF PF PF PF PF PF PF PF ++===--+, 又12323PF ≤,∴2211114(2)44PF PF PF ≤-+=--+≤, ∴121114PF PF ≤+≤.∴1211PF PF +的取值范围为[]1,4. 故选:D.【点睛】本题主要考查椭圆的定义、椭圆的几何性质,以及配方求最值的问题. 12.已知O 为坐标原点,A ,B 分别是双曲线22:1169x y C -=的左、右顶点,M 是双曲线C 上不同于A ,B 的动点,直线AM ,BM 分别与y 轴交于点P ,Q ,则OP OQ ⋅=( ) A .16 B .9 C .4D .3【答案】B【分析】设动点0(M x ,0)y ,由双曲线方程可得A ,B 的坐标,求出AM ,BM 所在直线方程,可得P 与Q 的坐标,求得202016·16y OP OQ x =-,再由动点M 在双曲线22:1169x y C -=上,得2200169(16)y x =-,则||||OP OQ ⋅的值可求. 【详解】解:设动点0(M x ,0)y ,由双曲线方程22:1169x y C -=得(4,0)A -,(4,0)B , 则004AM y k x =+,004BM y k x =-,所以直线AM 的方程为00(4)4y y x x =++,直线BM 的方程为00(4)4y y x x =--, 由此得004(0,)4y P x +,004(0,)4y Q x --, 所以200020004416··()4416y y y OP OQ x x x =-=+--. 因为动点M 在双曲线22:1169x y C -=上,所以22001169x y -=,所以2200169(16)y x =-,则22002200169(16)·91616y x OP OQ x x -===--. 故选:B. 二、填空题13.命题“9的平方根是3”是________命题(选填“真”或“假”). 【答案】假【分析】根据9的平方根是3±判断即可.【详解】解:因为9的平方根是3±,所以命题“9的平方根是3”是假命题. 故答案为:假14.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 . 【答案】22188y x -=【详解】设双曲线的方程为:22x y λ-=,将(1,3)A -代入可得,8λ=-,所以等轴双曲线的方程为:22188y x -=.15.若斜率为k 的直线l 与椭圆22:132x y C +=交于A ,B 两点,且AB 的中点坐标为11,23⎛⎫⎪⎝⎭,则k =___________. 【答案】-1【分析】根据给定条件设出点A ,B 的坐标,再借助“点差法”即可计算得解. 【详解】依题意,线段AB 的中点11,23⎛⎫⎪⎝⎭在椭圆C 内,设()11,A x y ,()22,B x y ,由22112222132132x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212032x x x x y y y y -+-++=, 而121221,3x x y y +=+=,于是得1212033x x y y --+=,即12121y y k x x -==--, 所以k =1-. 故答案为:1-16.城市的许多街道是相互垂直或平行的,因此,乘坐出租车往往不能沿直线到达目的地,只能按直角拐弯的方式行走.在平面直角坐标系中,定义()1212,d P Q x x y y =-+-为两点()11,P x y 、()22,Q x y 之间的“出租车距离”.给出下列四个结论:①若点()0,0O ,点()1,2A ,则(),3d O A =;②到点()0,0O 的“出租车距离”不超过1的点的集合所构成的平面图形面积是π;③若点()1,2A ,点B 是圆221x y +=上的动点,则(),d A B 的最大值是32+.其中,所有正确结论的序号是______. 【答案】①③【分析】理解“出租车距离”的定义,根据定义写出有关代数式即可求解. 【详解】对于①,根据定义(),10203d O A =-+-= 故正确; 对于②,根据定义,设目的地为(),A x y , 则(),001d O A x y x y =-+-=+≤…① ,当A 点在第一象限时,①式即为1x y +≤ ,第二象限时为1x y -+≤ , 以此类推得如下图形(阴影部分):其面积为:12222⨯⨯= ,故错误;对于③,设(),B x y ,(),11d A B x y =-+- ,∵B 在圆221x y += 上,∴1,1x y ≤≤ ,(),123d A B x y x y =-+-=-- ,()3,y x d A B =-+- ,为在区域为221x y +=,目标函数为(),3d A B x y =--求最大值的 线性规划问题,, 如下图:显然当直线()3,y x d A B =-+-为圆221x y +=在第三象限的切线时,(),d A B 最大, 为32,故正确; 故答案为:①③. 三、解答题17.(1)求焦点在x 轴上,长轴长为6,焦距为4的椭圆标准方程; (2)求离心率2e =()5,3M -的双曲线标准方程. 【答案】(1)22195x y +=;(2)2211616x y -= 【分析】(1)根据题意直接得出,a c 后求解 (2)待定系数法设双曲线方程,列方程组求解【详解】(1)由题意得3,2a c ==,故2945b =-=,椭圆标准方程为22195x y +=(2)①若双曲线焦点在x 轴上,设其方程为22221x y a b-=,由题意2c a =而222c a b =+故a b =,由222591a b a b⎧-=⎪⎨⎪=⎩解得2216a b ==,故双曲线标准方程为2211616x y -= ②若双曲线焦点在y 轴上,设其方程为22221y xa b-=,同理a b =,此时将()5,3M -代入后方程无解综上,双曲线标准方程为2211616x y -= 18.已知命题p :函数()3log f x x a =-在区间1,99⎛⎫⎪⎝⎭上没有零点;命题q :[]00,2x ∃∈,使得30035x x a -+-<0成立.(1)若p 和q 均为真命题,求实数a 的取值范围;(2)若p 和q 其中有一个是真命题,另外一个是假命题,求实数a 的取值范围. 【答案】(1)()3,+∞;(2)(][],22,3-∞-⋃.【分析】先求出当命题p 为真时,解得2a ≤-或2a ≥;再求出当命题q 为真,解得3a >.(1)先判断命题p ,q 均为真命题,再求出实数a 的取值范围为(3,)+∞;(2)先判断p ,q 一真一假,最后实数a 的取值范围为(,2][2,3]a ∈-∞-. 【详解】(1)函数()f x =3log x a -在区间1,99⎛⎫ ⎪⎝⎭上单调递增,p 为真命题∴()f x =3log x a -在区间1,99⎛⎫⎪⎝⎭上没有零点∴311log 2099f a a ⎛⎫=-=--≥ ⎪⎝⎭或者()39log 920f a a =-=-≤得2a ≤-或2a ≥令()335(02)f x x x a x =-+-≤≤∴()f x '=233x -当()f x '>0时,得12x ≤≤,当()f x '<0时,得0≤x <1∴()f x 最小值为()13f a =- q 为真∴a >3(1)p ,q 均为真命题∴a 的取值范围是()3,+∞ (2)p ,q 一真一假若p 真,q 假,则223a a a ≤-≥⎧⎨≤⎩或,解得a 的范围是(][],22,3-∞-⋃;若p 假,q 真,则223a a -⎧⎨⎩<<>,解得无解; ∴a 的取值范围是(][],22,3-∞-⋃.19.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,一条渐近线方程为20x y -=(1)求双曲线C 的标准方程; (2)已知倾斜角为34π的直线l 与双曲线C 交于,A B 两点,且线段AB 的中点的纵坐标为4,求直线l 的方程.【答案】(1)2214y x -=(2)3y x =-+【分析】(1)由实轴长得到a ,由渐近线斜率得到ba,即可得到方程;(2)由倾斜角得到直线斜率,设直线方程,联立双曲线方程,消去x ,利用韦达定理即可表示线段AB 的中点的纵坐标,解出参数即可.【详解】(1)由题,22a =,由20x y -=得,222by x b a=∴=∴=,,,所以双曲线C 的标准方程为:2214y x -=(2)直线斜率3tan 14k π==-,设直线为y x m =-+,联立得2214y x my x =-+⎧⎪⎨-=⎪⎩得2238440y my m -+-=,设,A B 两点坐标分别为()11x y ,、()22x y ,,线段AB 的中点的纵坐标为4,则1282483my y +==⨯=,3m ∴=∴,直线方程为3y x =-+.20.已知5:21p x ≥+,22:20q x mx m --≤,其中0m >. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)是否存在m ,使得p ⌝是q 的必要条件?若存在,求出m 的值;若不存在,请说明理由.【答案】(1)m 1≥(2)不存在,理由见解析【分析】(1)解不等式,由充分条件的定义得出实数m 的取值范围;(2)由p ⌝是q 的必要条件得出不等关系,结合0m >作出判断.【详解】(1)由521x ≥+得2301x x -≤+,故有3:12p x -<≤. 由2220x mx m --≤得()()20x m x m -+≤,即:2q m x m -≤≤.若p 是q 的充分条件,则p q ⇒成立,即1322m m -≤-⎧⎪⎨≥⎪⎩得m 1≥. (2)因为3:12p x -<≤,所以:1p x ⌝≤-或32x >. 若p ⌝是q 的必要条件,则q p ⇒⌝成立,则21m ≤-或32m ->, 显然这两个不等式均与0m >矛盾,故不存在满足条件的m .21.已知椭圆()2222:10x y C a b a b +=>>的焦距为226. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于不同的两点A ,B ,求AB 的最大值.【答案】(1)2213x y +=; 6.【分析】(1)由题设可得222c =6c a 结合椭圆参数关系求2b ,即可得椭圆C 的方程;(2)设直线l 为y x m =+,联立抛物线整理成一元二次方程的形式,由0∆>求m 的范围,再应用韦达定理及弦长公式求AB 关于m 的表达式,根据二次函数性质求最值即可.【详解】(1)由题设,222c =6c a 2c =3a =2221b a c =-=,所以椭圆C 的方程为22:13x C y +=. (2)设直线l 为y x m =+,联立椭圆C 并整理得:2246330x mx m ++-=,所以2223616(33)48120m m m ∆=-⨯-=->,可得22m -<<,且32A B m x x +=-,23(1)4A B m x x -=, 所以22229|23(1)64|(11)4A B m m x x m AB k ---=-=+⋅(2,2)m ∈-, 故当0m =时,max 6AB =22.已知双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =±,过双曲线C 的右焦点()2,0F 的直线1l 与双曲线C 分别交于左、右两支上的A 、B 两点.(1)求双曲线C 的方程;(2)过原点O 作直线2l ,使得21//l l ,且与双曲线C 分别交于左、右两支上的点M 、N .是否存在定值λ,使得MN MN AB λ⋅=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2213y x -= (2)存在,2λ=【分析】(1)由题意得到3b a =2c =,结合222c a b =+,求得,a b 的值,即可求得双曲线的方程;(2)由MN 与AB 同向,所以2MNAB λ=,设直线1:2l x ty =+,联立方程组,结合韦达定理求得121222129,3131t y y y y t t -+==--,利用弦长公式求得()226131t AB t +=-,根据21//l l ,设2:l x ty =,联立方程组求得()22212131t MN t +=-,进而求得λ的值,得出结论.【详解】(1)解:因为双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =, 所以3b a=3b a =. 又因为右焦点F 的坐标为()2,0,所以2c =,又由222244c a b a =+==,解得1a =,所以3b =所以双曲线C 的方程为2213y x -=. (2)解:存在定值2λ=,使得MN MN AB λ⋅=.因为MN 与AB 同向,所以2MNAB λ=,由题意,可设直线1:2l x ty =+,联立方程组22213x ty y x =+⎧⎪⎨-=⎪⎩,整理得()22311290t y ty -++=, 设()11,A x y ,()22,B x y ,可得121222129,3131t y y y y t t -+==--, 由直线1l 分别交双曲线C 的左、右两支于A 、B 两点,可得()()()222212310Δ12363136100t t t t x x ⎧-≠⎪⎪=--=+>⎨⎪<⎪⎩,即()()()221223103422031t t ty ty t ⎧-≠⎪⎨-+++=<⎪-⎩,可得2310t ->, 所以2121AB t y =+-()22121214t y y y y =++-()2222226112361313131t t t t t t +-⎛⎫+- ⎪---⎝⎭由21//l l ,可设2:l x ty =, 由2233x ty x y =⎧⎨-=⎩,整理得()22313t y -=. 设00(,)M x y ,则()00,N x y --,所以202331y t =-, 则()()()()222222000212111431t MN t y t y t +=+--=+⋅=-,所以22MNAB λ==,故存在定值2λ=,使得MN MN AB λ⋅=.。
2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。
2021年高二下学期3月月考数学(理)试题含答案一、选择题:(每题5分,共60分,唯一正确答案。
)1.下列说法不正确的是()(A)不可能事件的概率是0,必然事件的概率是1(B)某人射击10次,击中靶心8次,则他击中靶心的频率是0.8(C)“直线y=k(x+1)过点(-1,0)”是必然事件(D)先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是2.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()(A)、;(B)、;(C)、;(D)、3.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率是(A)、;(B)、;(C)、;(D)、4. 4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有()(A)2880 ;(B)3080 ;(C)3200 ;(D)36005.以正方体的顶点为顶点,能作出的三棱锥的个数是()(B)(C)(D)6.展开式中含的正整数次幂的项共有()(A)4项(B)3项(C)2项(D)1项7.在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能()(A) 190 (B) 140 (C)130 (D)308.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是()(A) (B) (C)(D)以上都不对9.的展开式中,的系数是()(A) 60 (B) 180 (C)207 (D)26510.某公园现有A、B、C三只小船,A可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有()(A) 48 (B) 36 (C)30 (D)1811.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率等于( )A B C D12.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.B. C.D.二、填空题:(每题5分,共20分)13命题:①的观测值越大,“x与y有关系”不成立的可能性越大.②残差的方差越大,回归直线的拟合效果越好. ③越大,拟合程度就越好.则正确命题序号为__14.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有 ____ 种。
2022-2023学年四川省泸县高二下学期3月月考数学(理)试题一、单选题1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为( )A .①抽签法,②分层随机抽样B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法【答案】A【分析】根据抽签法以及分层抽样的使用条件,可得答案.【详解】对于①,由于抽取的总体个数与样本个数都不大,则应用抽签法;对于②,抽取的总体个数较多,且总体有明确的分层,抽取的样本个数较大,则采用分层随机抽样.故选:A.2.若,则( )()3ln f x x x=+0(12)(1)limx f x f x ∆→+∆-=∆A .1B .2C .4D .8【答案】D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.()14f '=【详解】由题意,所以,21()3f x x x '=+(1)134f '=+=所以.()00(12)(1)(12)(1)lim 2lim 2182x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆故选:D.3.甲,乙两人在5天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则下列结论正确的是( )A .在这5天中,甲,乙两人加工零件数的极差相同B .在这5天中,甲,乙两人加工零件数的中位数相同C .在这5天中,甲日均加工零件数大于乙日均加工零件数D .在这5天中,甲加工零件数的方差小于乙加工零件数的方差【答案】C【分析】由茎叶图的数据,分别计算甲、乙加工零角个数的极差,中位数,平均数,方差,进而得解.【详解】甲在5天中每天加工零件的个数为:18,19,23,27,28;乙在5天中每天加工零件的个数为:17,19,21,23,25对于A ,甲加工零件数的极差为,乙加工零件数的极差为,故A 错误;281810-=25178-=对于B ,甲加工零件数的中位数为,乙加工零件数的中位数为,故B 错误;2321对于C ,甲加工零件数的平均数为,乙加工零件数的平均数为1819232728235++++=,故C 正确;1719212325215++++=对于D ,甲加工零件数的方差为,乙加工零件数的方差为222225404516.45++++=,故D 错误;222224202485++++=故选:C4.若函数的图象在处的切线与直线垂直,则的值为2()ln f x x x =+()(),a f a 2650x y +-=a ( )A .1B .2或C .2D .1或1412【答案】D【分析】由两线垂直可知处切线的斜率为3,利用导数的几何意义有,即可求()(),a f a ()3f a '=的值.a 【详解】由题意知:直线的斜率为,则在处切线的斜率为3,2650x y +-=13-()(),a f a 又∵,即,1()2f x x x '=+()123f a a a '=+=∴或,1a=12故选:D .5.函数的图象大致为( )sin x x x xy e e --=+A .B .C .D .【答案】B【分析】判断函数的奇偶性,再判断函数值的正负,从而排除错误选项,得正确选项.【详解】因为()sin x xx xy f x e e --==+所以()()sin sin x x x xx x x xf x e e e e ------+-==++得,()()f x f x =--所以为奇函数,sin x x x xy e e --=+排除C ;在,设,,单调递增,因此,[0,)+∞()sin g x x x =-()1cos 0g x x ='-≥()g x ()(0)0g x g ≥=故在上恒成立,sin 0x x x xy e e --=≥+[0,)+∞排除A 、D ,故选:B.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6.正方形的边长为2,以为起点作射线交边于点,则的概率是( )ABCD A BC E BEAB .C .D.23131【答案】B【解析】求出以为起点作射线交边于点时所有射线形成的角的大小,再考虑对A BC E BE <应的射线所形成的角的大小,从而可求概率.【详解】如图,在边上取一点,使得,则.BC M BM =6BAM π∠=以为起点作射线交边于点时所有射线形成的角为,A BC E 4CAB π∠=以为起点作射线交边于点且时所有的射线形成的角为,A BC EBE <BAM ∠故时对应的概率为.BE <2634ππ=故选:B.7.已知为实数,则“”是“方程表示的曲线为椭圆”的a 1a >22113x y a +=-A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】取曲线不是椭圆,充分性不成立;反之成立.4a =【详解】当时,取 曲线是圆而不是椭圆,故充分性不成立;1a >4a =22133x y +=当方程表示的曲线为椭圆时,成立,所以“”是“方程表示的曲线22113x y a +=-1a >1a >22113x y a +=-为椭圆”的必要不充分条件.故选:B【点睛】方法点晴:曲线表示椭圆的充要条件是:,且.221x y m n +=0m >0n >m n ≠8.某市2016年至2020年新能源汽车年销量y (单位:百台)与年份代号x 的数据如下表,若根据表中的数据用最小二乘法求得y 关于x 的回归直线方程为,则表中的值为( )ˆ 6.59yx =+m 年份20162017201820192020年份代号x 01234年销量y1015m 3035A .22B .20C .30D .32.5【答案】B【分析】先求出、,再利用回归直线过进行求解.x y (,)x y 【详解】由题意,得,0123425x ++++==,101530359055m m y +++++==因为y 关于x 的回归直线方程为,ˆ 6.59yx =+所以,解得.90=6.52+95m +⨯20m =故选:B.9.圆关于直线对称,则的最小值是( )224610x y x y ++-+=()800,0ax by a b -+=>>32a b +A .B .C .D 3154【答案】B【分析】根据圆的标准方程得出圆的圆心,由圆的对称性可得直线过圆心,得到关于、的关系a b 式,运用基本不等式可求得的最小值.32a b +【详解】圆的标准方程为,圆心坐标为,224610x y x y ++-+=()()222312x y ++-=()2,3-而直线经过圆心,所以,得,()800,0ax by a b -+=>>2380a b --+=238a b +=因为,,0a >0b >()3213219431231238828b a a b a b a b a b ⎛⎫⎛⎫+=⨯+⨯+=⨯++≥+⨯= ⎪ ⎪⎝⎭⎝⎭当且仅当时,等号成立,23a b =因此,的最小值为.32a b +3故选:B.【点睛】本题考查圆的对称性,基本不等式的应用,关键在于巧妙地运用“”,构造基本不等式,1属于中档题.10.正方体,棱长为2,M 是CD 的中点,则三棱锥的体积为( )1111ABCD A B C D -11B AMD -A B .2C .D .4【答案】B【分析】取中点,连接,通过计算证明平面,再根据求解1AD 1,MN B N MN ⊥11AB D 1111B AD M M AB D V V --=即可.【详解】解:如图所示:取中点,连接,1AD 1,MN B N由题意可得,1111AB AD B D ===1MA MD ===13MB ==所以,,11B N AD ⊥1MN AD ⊥所以可得MN ==1B N =所以,222119MN B N MB +==所以,,1MN B N ⊥又因为,11B N AD N ⋂=所以,平面,MN ⊥11AB D所以=.1111B AD MM AB D V V --=111112332AB D S MN =⨯⨯= 故选:B.11.已知圆,过直线上一点向圆作切线,切点为,则()221:443C x y ⎛⎫-+-= ⎪⎝⎭:430l x y -=P C Q 的面积最小值为( )PCQ △A .3BC .D【答案】B【分析】结合图形,利用勾股定理可知取得最小值时也最小,从而求得CPPQmin PQ =而可得的面积最小值.PCQ △【详解】由圆,得圆心,半径,()221:443C x y ⎛⎫-+-= ⎪⎝⎭14,3C ⎛⎫⎪⎝⎭2r =所以圆心到直线的距离为,14,3C ⎛⎫ ⎪⎝⎭:430l x y -=3d因为PQ =所以当直线与垂直时,取得最小值,此时也最小,lCP CPdPQ故min PQ ==所以11222CPQ S PQ CQ PQ PQ =⨯⨯=⨯⨯=≥即PCQ △故选:B.12.若实数,满足,则( )x y 24ln 2ln 44x y x y +≥+-A .B .C .D.xy=x y +=1x y +=31x y =【分析】对不等式变形得到,换元后得到,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭()ln 1ln 10a a b b -++-+≥构造,求导研究其单调性,极值最值情况,得到,从而只有()ln 1g x x x =-+()()max 10g x g ==时,即时,满足要求,从而解出,依次判断四个选项.1a b ==()()0g a g b ==12x y ==【详解】因为,24ln 2ln 44x y x y +≥+-所以,即,212ln ln 222x y x y +≥+-()221ln 222x y x y ≥+-所以,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭令,21,22x a y b ==则,即,()ln 2ab a b ≥+-ln ln 2a b a b +≥+-所以,()ln 1ln 10a ab b -++-+≥令,则,()ln 1g x x x =-+()111xg x x x -'=-=当时,,单调递增,()0,1x ∈()0g x '>()g x 当时,,单调递减,()1,x ∈+∞()0g x '<()g x 所以在处取得极大值,也是最大值,()ln 1g x x x =-+1x =,()()max 1ln1110g x g ==-+=要想使得成立,只有时,即时,满足要求,()()0g a g b +=1a b ==()()0g a g b ==所以,211,212x y ==由定义域可知:,0,0x y >>解得:,12x y ==A 选项正确;xy =,BC 错误.12x y +=D 错误;312x y ==【点睛】对不等式或方程变形后,利用同构来构造函数解决问题,常见的同构型:(1);()()e ln ln e ln x x f x x f x x x x=⇒==+(2);()()ln ln e e e ln ln ln x x x xx f x f x x x x -==⇒==(3);()()ln ln e e e x x xf x x x x f x =+=⇒=+(4),()()e ln ln e e xx x f x x x f xx =-=⇒=-本题难点在于变形为,换元后得到24ln 2ln 44x y x y +≥+-2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭,从而构造解决问题.()ln 1ln 10a ab b -++-+≥()ln 1g x x x =-+二、填空题13.某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有户.14028080500++=利用分层抽样的方法, 中等收入家庭应选户28010056500⨯=故答案为:56【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.14.已知实数满足,则的最大值为___________.,x y 10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩2z y x =-【答案】0【分析】作出不等式组表示的平面区域,再利用目标函数的几何意义计算作答.【详解】作出不等式组表示的平面区域,如图中阴影(含边界),其中10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩ABC ,(1,2),(1,0),(2,1)A B C目标函数,即表示斜率为2,纵截距为z 的平行直线系,2z y x =-2y x z =+画出直线,显然直线经过点A ,其纵截距是经过阴影且斜率为2,纵截距为z 的平0:2l y x =0lABC 行直线系中最大的,所以的最大值为0.2z y x =-故答案为:015.若对任意的,均有成立,则称函数为和在上的[,]x a b ∈()()()≤≤g x h x f x ()h x ()g x ()f x [,]a b “中间函数”.已知函数,且是和在区间()(1)1,()3,()(1)ln =--=-=+h x m x g x f x x x ()h x ()g x ()f x 上的“中间函数”,则实数m 的取值范围是__________.[1,2]【答案】[]0,2【分析】根据“中间函数”的定义列出不等式,将问题转化成不等式恒成立问题,利用参变分离以及构造函数的方法来解决函数最值,从而求出的取值范围.m 【详解】依题意得:已知条件等价为:在区间上恒成立3(1)1(1)ln m x x x -≤--≤+[1,2]对于在区间上恒成立,变形为:3(1)1m x -≤--[1,2]21m x ≥-+令,易知单调递增, ()21F x x =-+()F x ()()max 20F x F ∴==()max 0m F x ∴≥=对于在区间上恒成立,变形为:(1)1(1)ln m x x x --≤+[1,2]()1ln 11x x m x++≤+令()()1ln 1ln 11ln 1x x x G x x x x x ++=+=+++则()2ln x xG x x -'=[1,2]x ∈ ()1ln 10x x x '∴-=-≥为增函数,ln x x ∴-ln 1ln10x x ∴-≥->在单调递增,()G x ∴[1,2]x ∈()()min 12G x G ∴==()min 2m G x ∴≤=综上所述: 即02m ≤≤[]0,2m ∈故答案为:.[]0,2【点睛】本题考查了用参变分离的方法解决恒成立的问题,考查了用导数求函数单调性、极值、最值以及恒成立的等价形式,对学生分析问题和解决问题的能力有一定的要求,属于难题.16.已知椭圆的左,右焦点分别为,,过作垂直轴的直线交椭圆2222:1(0)x y E a b a b +=>>1F 2F 1F x 于两点,点在轴上方.若,的内切圆的面积为,则直线的方程是E ,A B A x ||3AB =2ABF △916π2AF _____________________ .【答案】3430x y +-=【分析】利用,的内切圆的面积为求出a 、b 、c ,得到的坐标,即可求出||3AB =2ABF △916π2,A F 直线的方程.2AF 【详解】椭圆中,令,得,2222:1x y E a b +=x c =2422221c b y b a a ⎛⎫=-= ⎪⎝⎭所以.2223b AB y a ===又△ABF 2的内切圆面积为,即所以内切圆半径.916π2916r ππ=34r =由椭圆的定义可得△ABF 2的周长为4a ,而△ABF 2的面积为,即.113234224S c a=⋅⋅=⋅⋅2a c =又,解得:222223,b a b c a ==+2224,3,1a b c ===则,所以直线AF 2的方程是,即为3x +4y -3=0.()231,1,02A F ⎛⎫- ⎪⎝⎭()3014y x -=--故答案为:3x +4y -3=0三、解答题17.已知的极坐标方程为,以极点O 为坐标原点,极轴为x 轴正半轴,建立平面直C 4cos ρθ=角坐标系,(1)求的直角坐标方程,C (2)过作直线l 交圆于P ,Q 两点,且,求直线l 的斜率.()1,1M C 2PM QM=【答案】(1)()2224x y -+=【分析】(1)利用极坐标与直角坐标互化公式即可求解;(2)设直线的倾斜角为,则直线的参数方程为(t 为参数),代入圆方程中化α()()1cos :1sin x tl y t αα⎧=+⎪⎨=+⎪⎩简,利用根与系数的关系,结合已知和参数的几何意义即可求解.【详解】(1)解:因为的极坐标方程为:,且,C 4cos ρθ=cos ,sin x y ρθρθ==所以,,24cos ρρθ=224x y x +=故的直角坐标方程为.C ()2224x y -+=(2)解:设直线的倾斜角为,α则直线的参数方程为(t 为参数),()()1cos :1sin x t l y t αα⎧=+⎪⎨=+⎪⎩与联立,得.()2224x y -+=()22sin cos 20t t αα+--=点P 对应的参数为,点Q 对应的参数为,1t 2t 则,()12122sin cos 2t t t t αα⎧+=--⎨⋅=-⎩因为,所以,122t t =122t t =-联立可得,解得:23sin 8sin cos 3cos 0αααα-+=tan α=18.已知是函数的极值点,则:1x =()()()3221133x a x f a x a x =++-+-(1)求实数的值.a (2)求函数在区间上的最值.()f x []0,3【答案】(1);3a =(2)在上的最小值为,最大值为.()f x []0,3143-18【分析】(1)由求得的值;()10f '=a (2)结合函数的单调性来求得函数在区间上的最值.()f x ()f x []0,3【详解】(1),()()()22213f x x a x a a '=++-+-由题意知,()()()2112130f a a a '=++-+-=或,3a =2a =-时,,3a =()()()28991f x x x x x '=+-=+-当时,,函数在上单调递增,9x <-()0f x ¢>()f x (),9-∞-当时,,函数在上单调递减,91x -<<()0f x '<()f x ()9,1-当时,,函数在上单调递增,1x >()0f x ¢>()f x ()1,+∞所以为函数的极值点,满足要求;1x =时,,2a =-()()22211f x x x x '=-+=-因为,当且仅当时,,()0f x '≥1x =()0f x '=所以函数在上单调递增,()f x (),-∞+∞不是函数的极值点,不符合题意.1x =()f x 则.3a =(2)由(1)知,且在单调递减,在单调递增,()321493x f x x x =+-()f x []0,1[]1,3又,,,()00f =()1413f =-()318f =则,.()min 143f x =-()max 18f x =19.如图,已知多面体ABCDEF 中,平面ABCD ,平面ABCD ,且B ,D ,E ,F 四点共ED ⊥//EF 面,ABCD 是边长为2的菱形,,.60BAD ∠=︒1DE EF ==(1)求证:平面ACF ;EF ⊥(2)求平面AEF 与平面BCF 所成锐二面角的余弦值.【答案】(1)证明见解析;.【分析】(1)连BD 交AC 于点O ,连接OF ,证明四边形EFOD 为矩形,再利用线面垂直的判定推理作答.(2)以O 为原点,建立空间直角坐标系,利用空间向量求解二面角作答.【详解】(1)如图,连接BD 交AC 于点O ,连接OF ,因B ,D ,E ,F 四点共面,平面ABCD ,平面平面,则,//EF BDEF ⋂ABCD BD =//EF BD 而底面ABCD 是边长为2的菱形,,则,因此四边形EFOD 为平行四边形,60BAD ∠=︒1OD EF ==又平面ABCD ,且平面ABCD ,即,则为矩形,即,ED ⊥OD ⊂ED OD ⊥EFOD EF OF ⊥又,,则,而,平面ACF ,//EF BD AC BD ⊥EF AC ⊥OF AC O ⋂=,OF AC ⊂所以平面ACF .EF ⊥(2)由(1)知,,而平面ABCD ,则平面ABCD ,即有OA ,OB ,OF 两两//FO ED ED ⊥FO ⊥垂直,以O 为原点,以向量,,的方向分别为x ,y ,z 轴正方向建立空间直角坐标系,OA OB OFO xyz -如图,则,((0,1,0),(0,1,1),0),(0,0,),1A C F B E -,((0,1,0),(0,1,1),AF EF BF CB ===-=设为平面AEF 的法向量,则,令,得,111(,,)n x y z =11100n AF z n EF y ⎧⋅=+=⎪⎨⋅==⎪⎩11x=n = 设为平面BCF 的法向量,则,令,得,222(,,)m x y z =222200m BF y z m CB y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 21x =-(m =- 于是得,cos ,||n m n m n m ⋅〈〉===∣所以平面AEF 与平面BCF20.某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.(1)若该蛋糕店一天生产30个这种面包,求当天的利润y (单位:元)关于当天需求量n (单位:个,)的函数解析式;n N ∈(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:日需求量n 282930313233频数346674假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.【答案】(1),;(2)平均数为(元),方差为;(3)一定要停止,330,306,30n n y n -<⎧=⎨-≥⎩n N ∈59 3.8理由见解析【分析】(1)当天需求量时,当天的利润,当天需求量时,当天的利润30n <330y n =-30n ≥,由此能求出当天的利润y 关于当天需求量n 的函数解析式.60y =(2)由题意,利用平均数和方差的公式,即可求出这30天的日利润的平均数和方差.(3)根据该统计数据,一定要停止这种面包的生产.推导出连续10天的日需求量都不超过10个,由此说明一定要停止这种面包的生产.【详解】(1)由题意可知,当天需求量时,当天的利润,30n <()853*******y n n n =+--⨯=-当天需求量时,当天的利润.30n ≥83063060y =⨯-⨯=故当天的利润y 关于当天需求量n 的函数解析式为:,.330,3060,30n n y n -<⎧=⎨≥⎩n ∈N (2)由题意可得:日需求量n 282930313233日利润545760606060频数346674所以这30天的日利润的平均数为(元),54357460235930⨯+⨯+⨯=方差为.()()()22254593575946059233.830-⨯+-⨯+-⨯=(3)根据该统计数据,一定要停止这种面包的生产.理由如下:由,()()()()()()22222212101210266621010x x xx x x x xx s -+-++--+-++-=== 可得,()()()222121066620x x x -+-++-= 所以(,,),所以,()2620kx -≤110k ≤≤N k ∈k x N ∈10k x ≤由此可以说明连续10天的日需求量都不超过10个,即说明一定要停止这种面包的生产.【点睛】本题主要考查了函数解析式、平均数、方差的求法,考查函数性质、平均数、方差公式等基础知识综合应用,考查运算求解能力.21.已知,分别是双曲线C :(,)的左、右焦点,,P 是C 上1F 2F 22221x y a b -=0a >0b >126F F =一点,,且112PF F F ⊥12PF PF +=(1)求双曲线C 的标准方程;(2)经过点的直线l 与双曲线C 交于A ,B 两点,过点A 作直线的垂线,垂足为D ,过点O2F 2x =作(O 为坐标原点),垂足为M .则在x 轴上是否存在定点N ,使得为定值?若存在,OM BD ⊥MN求出点N 的坐标;若不存在,请说明理由.【答案】(1)22163x y -=(2)存在,.5,04N ⎛⎫ ⎪⎝⎭【分析】(1)根据双曲线的定义取出a 、b 、c 即可;(2)设BD 交x 轴于E 点,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,NMN为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =【详解】(1)由题意得,212PF PF a-=∵,,112PF F F ⊥1226F F c ==∴,222136PF PF -=又,∴,解得,12PF PF +=236a ⋅=a =∴,,26a =2293b a =-=∴双曲线C 的标准方程为.22163x y -=(2)由(1)得,设,,则,()23,0F ()11,A x y ()22,B x y ()12,D y易知直线l 的斜率不为0,设直线l 的方程为,3x ty =+t ≠联立直线l 与双曲线C 的方程,消去x 得,()222630ty ty -++=∵,∴,.()22410t∆=+>12262ty y t +=--12232y y t =-∵直线BD 的斜率,21212221y y y y k x ty --==-+∴直线BD 的方程为,()211221y y y y x ty --=-+设BD 交x 轴于E 点,如图,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,MNN 为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =在直线BD 的方程中,令,得()211221y y y y x ty --=-+0y =()12112121121222ty y y ty y y x y y y y y ++=-=--+-,1122121233152222263222222t ty y t t t t y y t t ++--=-=-=+=⎛⎫---+ ⎪--⎝⎭∴直线BD 过定点.5,02E ⎛⎫⎪⎝⎭∴,则.5,04N ⎛⎫ ⎪⎝⎭1524MN OE ==综上,在x 轴上存在定点,使得为定值.5,04N ⎛⎫ ⎪⎝⎭MN5422.已知函数,,其中.()11ln f x a x x x ⎛⎫=--⎪⎝⎭()()12e 1x g x x -=--a R ∈(1)当时,判断的单调性;10a -<<()f x (2)当时,是否存在,,且,使得?证明你的结论.18a <<1x 2x 12x x ≠()()()1,2i i f x g x i ==【答案】(1)在单调递增,在单调递减()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)不存在,证明见解析【分析】(1)由,求导得到,再根据()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=,由,求解;10a -<<()0f x ¢>()0f x '<(2)设,求导,分,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+3x ≥,判断函数的单调性求解.03x <<【详解】(1)解:依题意,的定义域为,()f x ()0,∞+由,得,()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=当时,令,得,10a -<<()0f x '=1a x a +=-当时,,所以在单调递增;10,a x a +⎛⎫∈- ⎪⎝⎭()0f x ¢>()f x 10,a a +⎛⎫- ⎪⎝⎭当时,,所以在单调递减;1,a x a +⎛⎫∈-+∞ ⎪⎝⎭()0f x '<()f x 1,a a +⎛⎫-+∞⎪⎝⎭综上,当时,在单调递增,在单调递减.10a -<<()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)法一:设,则,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+①当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞又因为,所以,18a <<()221111113ln 31ln 31033e 33e h a ⎛⎫=---+>-+--> ⎪⎝⎭所以,在不存在零点;()0h x >()h x [)3,+∞②当时,设,则,03x <<()1ex x xϕ-=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以,()()10x ϕϕ≥=1e x x -≥0x >111e x x -≤又因为且,所以,18a <<03x <<133ex x x x ---≥所以,()()2223113x a x a ax a x h x x x x +-++++-'≥+=当时,函数18a <<()()231x x a x a δ=+-++,()()223411050a a a a ∆=--+=-+<所以,所以,所以在单调递增;()0x δ>()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==法二:设,则.()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-=+'-=+'则,又,()21221131113e e x x ax a x x h x a x x x x --++--⎛⎫'=+=+++ ⎪⎝⎭18a <<所以,()221211113123e e x x x x h x a x x x x x ----⎛⎫'=+++>++ ⎪⎝⎭当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞当时,设,则,03x <<()1ex x xϕ-'=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以.()()10x ϕϕ≥=1e x x -≥0x >111ex x -≤所以()222121221113123123220e e x x x x x x x h x a x x x x x x x x x ------+⎛⎫=+++>++≥++=> ⎪⎝⎭'所以,所以在单调递增;()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==。
2023-2024学年宁夏回族自治区石嘴山市高二下册3月月考数学(理)模拟试题一、单选题1.设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能为A .B .C .D.【正确答案】D【分析】通过原函数的单调性可确定导函数的正负,结合图象即可选出答案.【详解】由函数()f x 的图象可知,当(0,)x ∈+∞时,()f x 单调递减,所以(0,)x ∈+∞时,()0f x '<,符合条件的只有D 选项,故选D.本题主要考查了函数的单调性与导函数的符号之间的对应关系,属于中档题.2.211e x dx x ⎛⎫+= ⎪⎝⎭⎰()A .2e ln 2-B .2e e ln 2--C .2e e ln 2++D .2e e ln 2-+【正确答案】D【分析】根据定积分的运算法则进行求解即可.【详解】()()()2222111e e ln e ln 2e ln1e e ln 2x x dx x x ⎛⎫+=+=+-+=-+ ⎪⎝⎭⎰.故选:D.3.已知随机变量X 的概率分布为()()()1,2,3,41aP X n n n n ===+,其中a 是常数,则1522P X ⎛⎫<<= ⎪⎝⎭()A .12B .23C .13D .56【正确答案】D【分析】根据概率和为1,求得参数a ,再求()()1,2P X P X ==,则问题得解.【详解】因为()()()()12341261220a a a a P X P X P X P X =+=+=+==+++=,解得54a =.故()()555128246P X P X =+==+=.故选:D本题考查根据分布列求参数值,属基础题.4.把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子,每个盒子只放一个小球,则1号球和2号球都不放入1号盒子的方法共有()A .18种B .12种C .9种D .6种【正确答案】B【分析】先确定1号盒子的选择情况,再确定剩下盒子的选择情况,进而根据分布计数原理求得答案.【详解】由于1号盒子不能放1号和2号球,则1号盒子有3号球、4号球2种方法,则剩下3个盒子各放一个球有33A 种方法,一共有332=12A ⨯种方法.故选:B.5.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是A .0.2B .0.3C .0.4D .0.5【正确答案】D根据条件概率,即可求得在第一个路口遇到红灯,在第二个路口也遇到红灯的概率.【详解】记“小明在第一个路口遇到红灯”为事件A ,“小明在第二个路口遇到红灯”为事件B “小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件C 则()0.4P A =,()0.5P B =,()0.2P AB =()0.2(|)0.5()0.4P AB P B A P A ===故选D.本题考查了条件概率的简单应用,属于基础题.6.若4m A =183m C ,则m 等于()A .9B .8C .7D .6【正确答案】D【详解】由A =m (m -1)(m -2)(m -3)=18·,得m -3=3,m =6.7.函数()ln 25y x x =+的导数为()A .()ln 2525x x x+-+B .()ln 25225x x x +++C .()2ln 25x x +D .25x x +【正确答案】B【分析】根据复合函数的求导法则以及导数的乘法运算法则求解出原函数的导数.【详解】解析:因为()()()()ln 25ln 25y x x x x '''=⋅++⋅+,所以()()1ln 252525y x x x x ''=++⋅⋅++,所以()2ln 2525x y x x '=+++,故选:B.8.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是().A .420B .180C .64D .25【正确答案】B【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论.【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种,A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种,共有180种不同的涂色方案.故选:B .本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.9.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线:40l x y +-=距离的最小值为()A.2BC.D.【正确答案】C【分析】由题知过点P 作曲线2ln y x x =-的切线,当切线与直线:40l x y +-=平行时,点P 到直线:40l x y +-=距离的最小,再根据导数的几何意义求解即可.【详解】解:过点P 作曲线2ln y x x =-的切线,当切线与直线:40l x y +-=平行时,点P 到直线:40l x y +-=距离的最小.设切点为000(,)(0)P x y x >,12'=-y x x,所以,切线斜率为0012k x x =-,由题知00121x x -=-得01x =或0 12x =-(舍),所以,(1,1)P -,此时点P 到直线:40l x y +-=距离d ==.故选:C10.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【正确答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.11.如图,已知电路中有5个开关,开关5S 闭合的概率为13,其它开关闭合的概率都是12,且是相互独立的,则灯亮的概率为()A .78B .1516C .2324D .45【正确答案】A【分析】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,由所设事件表示事件灯不亮,利用概率乘法公式求其概率,再利用对立事件概率公式求事件灯亮的概率.【详解】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,则事件灯不亮可表示为12345A A A A A ⋅⋅⋅⋅,由已知12341()()()()2P A P A P A P A ====,51()3P A =,∴1234511121()(1)42238P A A A A A ⋅⋅⋅⋅=-⨯⨯⨯=,∴事件灯亮的概率78P =,故选:A.12.某制药公司生产某种胶囊,其中胶囊中间部分为圆柱,且圆柱高为l ,左右两端均为半球形,其半径为r ,若其表面积为S ,则胶囊的体积V 取最大值时r =()A 4S πB 2S πC SπD 6S π【正确答案】A【分析】由圆柱和球的表面积公式将l 用r 和S 表示出来,再代入圆柱体积和球体积公式,表示出胶囊的体积V ,利用求导求出V 的最大值及此时r 的值.【详解】依题意,224422S r r rl S l rππππ-+=⇒=,故32342()323Sr V r r r l r πππ=+=-2()22S V r r π'=-,当4Sr π=()0V r '=,V 取最大值.故选:A二、填空题13.由曲线1x =-,0x =,e x y =以及x 轴所围成的面积为______.【正确答案】11e-【分析】根据定积分的几何意义即可求解区域面积.【详解】曲线1x =-,0x =,e x y =以及x 轴所围成的面积可表示:x 在()1,0-上的定积分,被积函数为e x y =,所以0001111e ee e 1ex xdx ---==-=-⎰.故答案为.11e-14.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )等于________.【正确答案】65【详解】分析:由题意知,X ~B (5,3m+3),由EX=5×3m+3=3,知X ~B (5,35),由此能求出D (X ).详解:由题意知,X ~B (5,3m+3),∴EX=5×3m+3=3,解得m=2,∴X ~B (5,35),∴D (X )=5×35×(1-35)=65.点晴:二项分布X ~B (n ,p )则EX=np .DX=np(1-p)15.已知在()()22nx y x y -+的展开式中含有24x y 项,则求24x y 的系数是______.【正确答案】70-【分析】由二项式定理展开项的特点即性质求解即可.【详解】()2nx y +展开式的通项为:()1C 2C 2n rr r r n rn r r r n n T x y x y ---+=⋅=⨯⋅⋅则()()22nx y x y -+的展开式含11C 22C 2C 22C 2r n r n r r r n r n r r r n r n r r r n rn r r n n n n x x y y x y x y x y -----+---+⨯⋅⋅-⨯⋅⋅=⨯⋅⋅-⨯⋅⋅,若其展开式中含有24x y 项,则1246n +=+=,故5n =,所以24x y 的系数为413255C 22C 2108070⨯-⨯=-=-.故答案为.70-16.若函数()()232e xf x mx x x =+-+在R 上单调递增,则实数m 的取值范围是______.【正确答案】[e,)+∞【分析】求出函数的导数,结合题意可知()()21e 0xf x m x x '=+--≥在R 上恒成立,即()21e x m x x -≤--在R 上恒成立,从而构造函数,将问题转化为求函数的最值问题即可.【详解】因为函数()()232e xf x mx x x =+-+在R 上单调递增,故()()21e 0xf x m x x '=+--≥在R 上恒成立,即()21e xm x x -≤--在R 上恒成立,设()2()1e x g x x x =--,则()2()2e xg x x x '=+-,当<2x -或1x >时,()0g x '>,当2<<1x -时,()0g x '<,由220x x +-=,得121122x x ==,当x <x ()0g x >x <()0g x <,作出函数()2()1e xg x x x =--的大致图象如图:故1x =为函数极小值点,此时函数也取得最小值,最小值为(1)e g =-,故e,e m m -≤-∴≥,经验证,当e m =时,()()21e 0xf x m x x '=+--≥在R 上恒成立,仅在1x =时取等号,适合题意,故实数m 的取值范围是[e,)+∞,故[e,)+∞三、解答题17.现有6本不同的书,如果满足下列要求,分别求分法种数.(1)分成三组,一组3本,一组2本,一组1本;(2)分给三个人,一人3本,一人2本,一人1本;(3)平均分成三个组每组两本.【正确答案】(1)60;(2)360;(3)15.【分析】(1)根据题意,由分步计数原理直接计算可得答案;(2)根据题意,先将6本书分为1、2、3的三组,再将分好的三组分给3人,由分步计数原理计算可得答案;(3)根据题意,由平均分组公式计算可得答案.【详解】(1)根据题意,第一组3本有36C 种分法,第二组2本有23C 种分法,第三组1本有1种分法,所以共有3263C C 160⨯=种分法.(2)根据题意,先将6本书分为1、2、3的三组,有3263C C 160⨯=种分法,再将分好的三组分给3人,有33A =6种情况,所以共有606360⨯=种分法.(3)根据题意,将6本书平均分为3组,有22264233C C C A =15种不同的分法.18.某学校组织一项益智游戏,要求参加该益智游戏的同学从8道题目中随机抽取3道回答,至少答对2道可以晋级.已知甲同学能答对其中的5道题.(1)设甲同学答对题目的数量为X ,求X 的分布列,(2)求甲同学能晋级的概率.【正确答案】(1)分布列见解析(2)57【分析】(1)由题意可知甲同学答对题目的数量X 的可能取值为0,1,2,3,分别求出相应的概率,从而可求出X 的分布列,(2)甲同学能晋级的概率(2)(3)P P X P X ==+=,从而可求得结果【详解】(1)由题意可知甲同学答对题目的数量X 的可能取值为0,1,2,3,则33381(0)56C P X C ===,12533815(1)56C C P X C ===,21533815(2)28C C P X C ===,35385(3)28C P X C ===,所以X 的分布列为X0123P15615561528528(2)由题意可得甲同学能晋级的概率为1555(2)(3)28287P P X P X ==+==+=19.已知(2n x +展开式中第3项和第7项的二项式系数相等(1)求展开式中含2x 的项的系数;(2)系数最大的项是第几项?【正确答案】(1)1120;(2)第3项或第4项.【分析】(1)利用二项式系数的性质求出n 值,再求出二项展开式的通项即可求出指定项的系数;(2)利用(1)的信息根据系数最大列出不等式组即可作答.【详解】(1)依题意,26n n C C =,由组合数的性质得8n =,于是得8(2x展开式的通项88213888(2)2,,8rrr r rr r T C x C x r N r --+-=∈⋅⋅=≤,由3822r -=得4r =,则8844167012120C -⋅=⋅=,所以展开式中含2x 的项的系数为1120;(2)令Tr +1项的系数最大,由(1)得89188871882222r r rr r r rr C CC C-----+⎧⋅≥⋅⎨⋅≥⋅⎩,即8!8!2(8)!!(9)!(1)!8!8!2(8)!!(7)!(1)!r r r r r r r r ⎧≥⋅⎪---⎪⎨⎪⋅≥⎪--+⎩,整理得1292181r rr r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得23r ≤≤,而,8r N r ∈≤,从而得2r =或3r =,所以展开式中系数最大项是第3项或第4项.20.已知函数()()221ln f x ax a x x =+--.(1)当12a =时,求函数()f x 的单调区间和极值;(2)讨论函数()f x 单调性.【正确答案】(1)()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;函数()f x 的极小值()1f 12=,无极大值(2)答案见解析【分析】(1)利用导数与函数的单调性、极值的关系求解,注意函数的定义域,即可得到答案;(2)利用导数与函数的单调性的关系求解,注意对a 的取值范围进行分类讨论,求解即可.【详解】(1)当12a =时,()21ln ,02f x x x x =->,则()()()111x x f x x x x+-'=-=,当01x <<时,()0f x '<,则()f x 单调递减,当1x >时,()0f x '>,则()f x 单调递增,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1x =时,函数()f x 取得极小值()1f 12=,无极大值.(2)()()221ln ,0f x ax a x x x =+-->,则()22(21)1(1)(21)ax a x x ax f x x x+--+-='=,当0a ≤时,()0f x '<,则()f x 单调递减;当0a >时,当102x a <<时,()0f x '<,则函数()f x 单调递减,当12x a>时,()0f x '>,则函数()f x 单调递增.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;当0a >时,()f x 在10,2a ⎛⎫ ⎪⎝⎭上单调递减,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增.21.2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行、也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛,除此之外,卡塔尔世界杯还是首次在北半球冬季举行、第二次世界大战后首次由从未进过世界杯的国家举办的世界杯足球赛.小胡、小陈两位同学参加学校组织的世界杯知识答题拿积分比赛游戏,规则如下:小胡同学先答2道题,至少答对一道题后,小陈同学才存机会答题,同样也是两次答题机会,每答对一道题获得5积分,答错不得分.小胡同学每道题答对的概率均为34,小陈同学每道题答对的概率均为23,每道题是否答对互不影响.(1)求小陈同学有机会答题的概率;(2)记X 为小胡和小陈同学一共拿到的积分,求X 的分布列和数学期望.【正确答案】(1)1516(2)分布列见解析,55()4E X =【分析】(1)利用对立事件及独立事件的概率乘法公式计算即可;(2)先求出变量取值的概率,然后列出随机变量的分布列,利用期望公式求解即可【详解】(1)记“小陈同学有机会答题”为事件A ,所以()()331511114416P A P A ⎛⎫⎛⎫=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭,所以小陈同学有机会答题的概率是1516.(2)X 的所有可能取值为0,5,10,15,20,所以()3310114416P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()21233215C 1144324P X ⎛⎫⎛⎫⎛⎫==⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2211223322321110C 1C 1144334348P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯⨯-+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()221122332322515C 1C 144343312P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()2232120434P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为:X05101520P 116124114851214所以11115155()051015201624481244E X =⨯+⨯+⨯+⨯+⨯=.22.已知函数()x f x e ax =-有两个零点1x ,()212x x x <.(1)求实数a 的取值范围;(2)证明.21122x x x -<-【正确答案】(1)(),e +∞;(2)证明见解析.【分析】(1)求导,对参数分类讨论,通过导数研究函数的零点情况,求得参数取值范围;(2)方法一:由题意得1212x x e ax e ax ⎧=⎨=⎩,令210t x x =->,两式相除得11t t x e =-,欲证21122x x x -<-,即证()212t e t t-<-,即证2222t t t e ++<,记()()2220t t t h t t e ++=>,通过导数研究函数的最值情况,即可证得不等式;方法二:令211x t x =>,代入化简得1ln 1t x t =-,2ln 1t t x t =-,将不等式转化为()21ln 2ln t t t -<-,即证()2ln 2ln 220t t t +-+<.记()()()2ln 2ln 221g t t t t t =+-+>,通过求导,并对导数中的部分函数求导研究原函数的最值情况,证得不等式.【详解】(1)解:()f x 的定义域为R ,()'x f x e a =-.①当0a ≤时,()'0x f x e >≥,所以()f x 在R 上单调递增,故()f x 至多有一个零点,不符合题意;②当0a >时,令()'0f x <,得ln x a <;令()'0f x >,得ln x a >,故()f x 在(),ln a -∞上单调递减,在()1,na +∞上单调递增,所以()()()min ln ln 1ln f x f a a a a a a ==-=-(i )若0a e <≤,则()()min 1ln 0f x a a =-≥,故()f x 至多有一个零点,不符合题意;(ii )若a e >,则ln 1a >,()()min 1ln 0f x a a =-<,由(i )知0x e ex -≥,∴ln ln ln 0a e e a a a -=-≥,∴2ln ln 0a a a e a ->-,()()22ln 2ln 2ln 0f a a a a a a a =-=->.又∵()010f =>,0ln 2ln a a <<,故()f x 存在两个零点,分别在()0,ln a ,()ln ,2ln a a 内.综上,实数a 的取值范围为(),e +∞.(2)证明:方法1:由题意得1212x x e ax e ax ⎧=⎨=⎩,令210t x x =->,两式相除得212111x x t x x t e e x x -+===,变形得11t t x e =-.欲证21122x x x -<-,即证()212t e t t-<-,即证2222t t t e ++<.记()()2220t t t h t t e ++=>,()()()2222'220t t t t t e t t e t h t e e+-++==-<,故()h t 在()0,∞+上单调递减,从而()()02h t h <=,即2222t t t e ++<,所以21122x x x -<-得证.方法2:由题意得:1212x x e ax e ax ⎧=⎨=⎩由(1)可知1x ,20x >,令211x t x =>,则21x tx =,则1111x tx e ax e atx ⎧=⎨=⎩,两式相除得()11t x e t -=,1ln 1t x t =-,2ln 1t t x t =-,欲证21122x x x -<-,即证()21ln 2ln t t t -<-,即证()2ln 2ln 220t t t +-+<.记()()()2ln 2ln 221g t t t t t =+-+>,()()2ln 112'2ln 2t t g t t t t t-+=⋅+-=,令()()ln 11h t t t t =-+>,()11'10t h t t t-=-=<,故()h t 在()1,+∞上单调递减,则()()10h t h <=,即()'0g t <,∴()g t 在()1,+∞上单调递减,从面()()10g t g <=,∴()2ln 2ln 220t t +-+<得证,即21122x x x -<-得证.方法点睛:通过导数研究函数零点问题,带参需要分类讨论;对于双变量问题,一般选择另一个变量对双变量进行代换,如本题中令210t x x =->或211x t x =>,然后构造新函数,通过导数研究函数的最值情况.。
2021-2022学年广西玉林市第十一中学高二下学期3月月考数学试题(理)一、单选题1.若复数()()31z i i =-+,则z =( )A .B .CD .20【答案】B【解析】化简得到()()3142z i i i =-+=+,再计算模长得到答案.【详解】()()3142z i i i =-+=+,故z =故选:B .【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力. 2.下列求导数运算正确的是( ) A .()cos sin x x '= B .()33ln 3xx '=C .()ln ln -1x x x '=D .sin cos 33x x '⎛⎫= ⎪⎝⎭【答案】B【分析】根据函数的求导公式和求导法则,以及复合函数的求导法则,逐项求导,即可得到本题答案.【详解】由于(cos )sin x x '=-,故选项A 不正确; 由于()3=3ln 3x x ',故选项B 正确; 由于(ln )ln 1x x x '=+,故选项C 不正确; 由于1sin cos 333x x ⎛⎫'= ⎪⎝⎭,故选项D 不正确.故选:B【点睛】本题主要考查求导公式和求导法则,属基础题.3.已知()()231f x x xf '=+,则()1f '=( )A .1B .2C .-1D .-2【答案】C【解析】按照求导法则对函数进行求导,令1x =代入导数式即可得解.【详解】函数()()231f x x xf '=+,则()()231f x x f ''=+,令1x =代入上式可得()()1231f f ''=+,解得()11f '=-. 故选:C【点睛】本题考查导数的运算法则,属于基础题.4.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)【答案】C【详解】由题意可知()02bf x x x +'=-<+,在(1,)x ∈-+∞上恒成立,即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-,故C为正确答案.5.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()0f x f x '-<,且()01f =,则不等式()1xf x e<的解集为( ) A .()0,∞+ B .()2,∞+ C .(),0∞- D .(),2∞-【答案】A【分析】构造函数()()xf x h x e=,由题意得()0h x '<即函数()h x 在R 上单调递减,再根据题意得()01h =,即可得解.【详解】令()()xf x h x e =,则()()()()()2x x x xf x e f x e f x f x h x e e ''--'==, ()()0f x f x '-<,∴()0h x '<,∴函数()h x 在R 上单调递减,又 ()()0001f h e ==,()()1xf x h x e =<, ∴()0,x ∈+∞.故选:A.【点睛】本题考查了导数的应用,考查了根据题意构造新函数的能力,属于中档题.6.己知函数()y xf x '=的图象如图所示(其中()f x '是函数()f x 的导函数),则下面四个图象中,()y f x =的图象大致是( )A .B .C .D .【答案】C【分析】先利用函数()y xf x '=的图象求得函数()f x 的单调区间,进而得到正确选项. 【详解】由题给函数()y xf x '=的图象,可得当1x <-时,()0xf x '<,则()0f x '>,则()f x 单调递增; 当10x -<<时,()0xf x '>,则()0f x '<,则()f x 单调递减; 当01x <<时,()0xf x '<,则()0f x '<,则()f x 单调递减; 当1x >时,()0xf x '>,则()0f x '>,则()f x 单调递增; 则()f x 单调递增区间为(),1-∞-,()1,+∞;单调递减区间为()1,1- 故仅选项C 符合要求. 故选:C7.若0()2f x '=-,则0001()()2lim k f x k f x k→--等于 A .-2 B .-1 C .1 D .2【答案】C【分析】由题意结合导函数的定义求解()00012k f x k f x lim k→⎛⎫-- ⎪⎝⎭的值即可. 【详解】由导数的定义可知:()()()()00000100212'lim lim 12k f x k f x f x x f x f x x k ∆→-→⎛⎫-- ⎪+∆-⎝⎭==∆-, 则()00012k f x k f x lim k→⎛⎫-- ⎪⎝⎭()()0001021112lim '11222k f x k f x f x k -→⎛⎫-- ⎪⎝⎭=-⨯=-=-. 本题选择C 选项.【点睛】本题主要考查导数的定义及其应用等知识,属于基础题.8.已知复数1i z =-(i 是虚数单位),则24z z +=( )A .24i -B .2iC .24i +D .2【答案】D【分析】利用复数的加减乘除运算性质即可求得24z z+的值.【详解】1i z =-,则()()()()()22241i 441i (1i 2i)=21i 2i=21i 1i 1i z z ++=+-++-+-=--+ 故选:D9.点A 是曲线23ln 2y x x =-上任意一点,则点A 到直线21y x =-的最小距离为( ) ABCD【答案】A【分析】动点A 在曲线23ln 2y x x =-,则找出曲线上某点的斜率与直线21y x =-的斜率相等的点为距离最小的点,利用导数的几何意义即可 【详解】不妨设()23ln 2f x x x =-,定义域为:()0,∞+ 对()f x 求导可得:()13f x x x'=- 令()2f x '= 解得:1x =(其中13x 舍去) 当1x =时,32y =,则此时该点31,2⎛⎫⎪⎝⎭到直线21y x =-的距离为最小根据点到直线的距离公式可得:d =解得:d =故选:A10.若复数(2)z a ai =-+(a R ∈,i 为虚数单位)为纯虚数,则0)ax dx =⎰( ). A .22π+B .2π+C .42π+D .44π+ 【答案】B【解析】根据纯虚数的定义,结合定积分的几何意义、微积分基本定理进行求解即可.【详解】因为z 为纯虚数,所以有2020a a a -=⎧⇒=⎨≠⎩,原式2200)x dx xdx ==+⎰⎰⎰,因为0⎰的几何意义表示坐标原点为圆心,半径为2的14圆的面积,所以20124ππ=⋅⋅=⎰,而222221112020222xdx x ==⨯-⨯=⎰,所以原式22000)2x dx xdx π==+=+⎰⎰⎰, 故选:B11.已知2()f x x =,则过点P (-1,0)且与曲线()y f x =相切的直线方程为( ) A .0y =B .440x y ++=C .0y =或440x y ++=D .0y =或440x y -+=【答案】C【解析】设切点为()00,x y 则切线方程为()20002y x x x x -=-,将点()1,0P -代入解0x ,即可求切线方程.【详解】设切点为()00,x y ,则200y x =,切线斜率为()002k f x x '==所以切线方程为()20002y x x x x -=-,因为过点()1,0P - 则()200021x x x -=--解得00x =或02x =-,所以切线方程为0y =或440x y ++= 故选:C12.若不等式2xln x≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,4] C .(0,+∞) D .[4,+∞)【答案】B【分析】分析:由已知条件推导出32ln ,0a x x x x ≤++>,令32ln ,0y x x x x=++>,利用导数形式求出1x =时,y 取得最小值4,由此能求出实数的取值范围. 【详解】详解:由题意22ln 3x x x ax ≥-+-对()0,x ∈+∞上恒成立, 所以32ln ,0a x x x x≤++>在()0,x ∈+∞上恒成立,设32ln ,0y x x x x =++>,则22223231x x y x x x +-=+-=,由0y '=,得123,1x x =-=,当()0,1∈x 时,0'<y ,当()1,∈+∞x 时,0'>y , 所以1x =时,min 1034y =++=,所以4a ≤, 即实数a 的取值范围是(],4-∞.点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.二、填空题13.已知i 是虚数单位,则复数212(2)2ii i++-对应的点在第________象限. 【答案】二【分析】直接利用复数代数形式的乘除运算化简,得出复数所对应的点,即可判断点所在的象限.【详解】解:由题意得,已知复数212(2)2ii i++-, 则设()()()()2212212(2)44222i i iz i i i i i i +++=+=+=-+--+, 即:4z i =-+,则复数所对应的点为()4,1-,则在第二象限. 故答案为:二.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.14.计算31(2)x dx +⎰的值是________.【答案】8【分析】首先根据定积分公式求出被积函数的原函数,然后代入数值计算结果即可求出. 【详解】解:32311111(2)(2)|96128222x dx x x ⎛⎫⎛⎫+=+=⨯+-⨯+= ⎪ ⎪⎝⎭⎝⎭⎰.故答案为:8.【点睛】本题考查被积函数的原函数的求法,考查学生的计算能力和转换能力,属于基础题. 15.若直线2y kx =-与曲线13ln y x =+相切,则k =__________. 【答案】3【解析】设切点为00(,2)x kx -,利用导数的几何意义求出切线的斜率,再利用切点为切线与曲线的公共点列出等式,两式联立求解即可. 【详解】设切点为00(,2)x kx -,∵3y x '=,∴0003,213ln ,k x kx x ⎧=⎪⎨⎪-=+⎩①②由①得03kx =,代入②得013ln 1x +=,则01x =,3k =. 故答案为:3【点睛】本题考查已知曲线的切线求参数,导数的几何意义,属于基础题.16.函数2()ln(1)f x x a x =++有两个极值点12,x x ,且12x x <,则a 的取值范围是___________. 【答案】102a <<【分析】利用导数与函数极值点的关系可列出关于a 的不等式,解之即可求得a 的取值范围 【详解】由2()ln(1)(1)f x x a x x =++>-, 可得222()2(1)11a x x a f x x x x x++'=+=>-++ 则方程2220x x a ++=有两个大于1-的不同的根则二次函数222y x x a =++的图像与x 轴两个不同交点的横坐标均大于1- 又二次函数222y x x a =++的图像开口向上,对称轴12x =-则()()2Δ48021210a a =->⎧⎪⎨⨯-+⨯-+>⎪⎩,解之得102a <<故答案为:102a <<三、解答题17.已知复数2(4)(2),z a a i a R =-++∈. (1)若z 为实数,求实数a 的值; (2)若z 为纯虚数,求实数a 的值;(3)若z 在复平面上对应的点在直线210x y ++=上,求实数a 的值. 【答案】(1)2a =-(2)a =2(3)1a =-【解析】(1)z 为实数则虚部为0;(2)z 为纯虚数则实部为0且虚部不为0;(3)z 在复平面上对应的点()242a a -+,,满足直线的方程代入列出方程即可得解.【详解】(1)若z 为实数,则20a +=,2a =-;(2)若z 为纯虚数,则24020a a ⎧-=⎨+≠⎩,解得实数a 的值为2;(3)z 在复平面上对应的点()242a a -+,,在直线210x y ++=上,则()242210a a -+++=,即2210a a ++=解得1a =-.【点睛】本题考查复数的有关概念,复数的几何意义,属于基础题.18.已知函数32()(,)f x x ax bx a b R =++∈.若函数()f x 在1x =处有极值-4. (1)求()f x 的单调递减区间;(2)求函数()f x 在[1,2]-上的最大值和最小值. 【答案】(1)71.3⎛⎫- ⎪⎝⎭,;(2)()4()8min max f x f x =-=,. 【详解】试题分析:()1先求出导函数,根据导数的几何意义得到关于,a b 的方程组,求得,a b 后再根据导函数的符号求出单调递减区间.() 2由()1求出函数的单调区间,可以数判断函数()f x 在[]1,2-上的单调性,求出函数()f x 在[]1,2-上的极值和端点值,通过比较可得()f x 的最大值和最小值.试题解析:(1)∵()32f x x ax bx =++,∴()2'32f x x ax b =++,依题意有即()()'1320114f a b f a b ⎧=++=⎪⎨=++=-⎪⎩,解得2.7a b =⎧⎨=-⎩ ∴()()()2'347371f x x x x x =+-=+-,由()'0f x <,得713x -<<, ∴函数()f x 的单调递减区间7,1.3⎛⎫- ⎪⎝⎭()2由()1知()3227f x x x x ,=+- ∴()()()2'347371f x x x x x =++=+-,令()'0f x =,解得12713x x =-=,.当x 变化时,()()'f x f x ,的变化情况如下表:由上表知,函数()f x 在()1,1-上单调递减,在()1,2上单调递增. 故可得()()14min f x f ==-, 又(1)8,(2)2f f -==. ∴()()18.max f x f =-=综上可得函数()f x 在[]1,2-上的最大值和最小值分别为8和4-.19.已知函数()()330f x x ax b a =-+>的极大值为6,极小值为2.求:(1)实数a ,b 的值;(2)求()f x 在[]22-,上的单调区间. 【答案】(1)14a b =⎧⎨=⎩(2)()f x 的单调递增区间为[]2,1--和[]1,2;单调递减区间为[]1,1-【分析】(1)根据()f x 先求出()f x ',解不等式0f x与()0f x '<,利用导数与极值的关系,确定极值点,进而可求解;(2)由(1)可得:3()34f x x x =-+,从而得2()333(1)(1)f x x x x '=-=+-,进而可求解.【详解】解:(1)()()2330f x x a a '=->,由()0f x x '>⇒<x ∴()f x在(,-∞,)+∞上单调递增;由()0f x x '<⇒,∴()f x在(上单调递减,即x =()f x取到极大值;x =()f x 取到极小值.((636232f a b f b ⎧⎧=-+=⎪⎪⇒⎨⎨=⎪⎪=⎩⎩14a b =⎧⇒⎨=⎩. (2)()334f x x x =-+,则233fxx ;由()01f x x '>⇒<-或1x >,又[]2,2x ∈-,()f x 的单调递增区间为[]2,1--和[]1,2;单调递减区间为[]1,1-.【点睛】本题考查导数与函数的单调性、极值的应用及方程的解法,考查了理解辨析能力与运算求解能力,属于中档题. 20.已知函数()213ln 42g x x x x b =-++. (1)当54b =-时,求()g x 在(()1,1g )处的切线方程;(2)若函数()g x 在[1,4]上有两个不同的零点,求实数b 的取值范围. 【答案】(1)52y =-;(2)52ln 24b ≤<-.【分析】(1)根据()2135ln 424g x x x x =-+- ,求导()13122g x x x '=-+,再求得()1'g ,根据切点,写出切线的方程;(2)将函数()g x 在[1,4]上有两个不同的零点,转化为213ln 42b x x x -=-+在[1,4]内有两个实根,()213ln 42h x x x x =-+,利用导数法研究其单调性,画出图象求解. 【详解】(1)因为()2135ln 424g x x x x =-+- , 所以()13122g x x x'=-+,所以()1311022'=-+=g , 又因为切点为(1,52-), 所以切线的方程为52y =-; (2)若函数()g x 在[1,4]上有两个不同的零点,可得213ln 42b x x x -=-+在[1,4]内有两个实根, 设()213ln 42h x x x x =-+,()()()12131222x x h x x x x--'=-+=, 当()1,2x ∈时,()h x 递减,当()2,4x ∈时,()h x 递增,由()514h =-,()22ln 2h =-+,()4ln 42h =-, 画出()y h x =的图象,如图所示可得52ln 24b -+<-≤-, 解得52ln 24b ≤<-. 【点睛】本题主要考查导数的几何意义和导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.21.已知函数()f x 为一次函数,若函数()f x 的图象过点(0,2),且20()6f x dx =⎰. (1)求函数()f x 的表达式.(2)若函数2()g x x =,求函数()f x 与()g x 的图象围成图形的面积.【答案】(1)()2f x x =+;(2)92【分析】(1)假设出一次函数()()20f x kx k =+≠,根据积分构造出方程求得k ,进而得到结果; (2)联立两函数解析式可求得交点坐标,从而可知所求面积为()()21S f x g x dx -=-⎡⎤⎣⎦⎰,利用积分的运算法则求得结果.【详解】(1)()f x 为一次函数且过点()0,2 ∴可设()()20f x kx k =+≠ ()()2220022224602k f x dx kx dx x x k ⎛⎫∴=+=+=+= ⎪⎝⎭⎰⎰,解得:1k = ()2f x x ∴=+(2)由22y x y x ⎧=⎨=+⎩得:11x =-,22x =f x 与()g x 围成的图形面积()()21S f x g x dx -=-⎡⎤⎣⎦⎰ 即()222312118119222421233232S x x dx x x x -⎛⎫⎛⎫⎛⎫=+-=+-=+---+= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎰ 【点睛】本题考查利用积分求解函数解析式、利用积分求解两函数围成图形面积的问题,属于积分知识的基础应用问题.22.某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x 万件,需另投入流动成本()C x 万元,当年产量小于7万件时,()2123C x x x =+(万元);当年产量不小于7万件时,()36ln 17e C x x x x=++-(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.(1)写出年利润()P x (万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取320e =).【答案】(1)()23142,07315ln ,7x x x P x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩;(2)当年产量320x e ==万件时,年利润最大,最大年利润为11万元.【分析】(1)根据题中条件,分07x <<和7x ≥两种情况,分别求出对应的解析式,即可得出结果;(2)根据(1)中解析式,分别求出7x <和7x ≥两种情况下,()P x 的最大值,即可得出结果.【详解】(1)因为每件产品售价为6元,则x 万件商品销售收入为6x 万元,由题意可得,当07x <<时,()()2211626224233P x x C x x x x x x =--=---=-+-;当7x ≥时,()()336266ln 17215ln e e P x x C x x x x x x x ⎛⎫=--=-++--=-- ⎪⎝⎭; 所以()23142,07315ln ,7x x x P x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩; (2)由(1)可得,当07x <<,()()2211426101033P x x x x =-+-=--+≤, 当且仅当6x =时,等号成立;当7x ≥时,()315ln e P x x x =--,则()33221e e x P x x x x-'=-+=, 所以,当37x e ≤<时,()0P x '>,即函数()315ln e P x x x =--单调递增;当3x e >时, ()0P x '<,即函数()315ln e P x x x=--单调递减; 所以当3x e =时,()315ln e P x x x =--取得最大值()333315ln 11e P e e e =--=; 综上,当320x e ==时,()P x 取得最大值11万元;即当年产量为320x e ==时,该同学的这一产品所获年利润最大,最大年利润是11万元.【点睛】思路点睛:导数的方法求函数最值的一般步骤:(1)先对函数求导,根据导数的方法判定函数在给定区间的单调性;(2)根据函数单调性,即可求出函数的最值.。
福建省福州市高二数学下学期3月月考试卷理(含解析)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的1.一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒2.若f'(x)=3,则等于()A.3 B.C.﹣1 D.13.若曲线y=x2+ax+b在点(1,b)处的切线方程是x﹣y+1=0,则()A.a=1,b=2 B.a=﹣1,b=2 C.a=1,b=﹣2 D.a=﹣1,b=﹣24.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln25.下列积分不正确的是()A.B.C. D.6.已知函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>27.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0] C.[0,1] D.[,1]8.若函数f(x)=x3+ax﹣2在区间(1,+∞)内是增函数,则实数a的取值范围是()A.[﹣3,+∞)B.(﹣3,+∞)C.[0,+∞)D.(0,+∞)9.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣210.曲线y=ln(2x﹣1)上的点到直线2x﹣y+8=0的最短距离是()A.B.2 C.3 D.011.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()A.(﹣3,0)∪(3,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有的最小值为()A.2 B.C.3 D.二、填空题:共4小题,每小题5分,共20分.13.函数y=x2﹣lnx的单调递减区间为.14.已知函数f(x)=f′()sinx+cosx,则f()= .15.由y2=4x与直线y=2x﹣4所围成图形的面积为.16.已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图示.x ﹣1 0 4 5 f(x) 1 2 2 1下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.三、解答题:共6小题,共70分,解答写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}满足a3=6,a4+a6=20(1)求通项a n;(2)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.18.在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a﹣c)cosB (Ⅰ)求∠B的大小(Ⅱ)若、a+c=4,求三角形ABC的面积.19.已知椭圆=1(a>b>0)的一个顶点为A(0,1),离心率为,过点B(0,﹣2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.20.设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点,如图所示,(1)求f(x)的解析式;(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.21.已知函数f(x)=ln(ax+1)+,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.22.已知函数,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.2016-2017学年福建省福州市文博中学高二(下)3月月考数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的1.一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒【考点】62:导数的几何意义.【分析】求导数,把t=3代入求得导数值即可.【解答】解:∵s=1﹣t+t2,∴s′=﹣1+2t,把t=3代入上式可得s′=﹣1+2×3=5由导数的意义可知物体在3秒末的瞬时速度是5米/秒,故选C2.若f'(x)=3,则等于()A.3 B.C.﹣1 D.1【考点】6F:极限及其运算.【分析】由=﹣=﹣×f'(x0),由题意,即可求得答案.【解答】解:=﹣=﹣×f'(x0)=﹣×3=﹣1,故选C.3.若曲线y=x2+ax+b在点(1,b)处的切线方程是x﹣y+1=0,则()A.a=1,b=2 B.a=﹣1,b=2 C.a=1,b=﹣2 D.a=﹣1,b=﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】由y=x2+ax+b,知y′=2x+a,再由曲线y=x2+ax+b在点(1,b)处的切线方程为x ﹣y+1=0,求出a和b.【解答】解:∵y=x2+ax+b,∴y′=2x+a,∵y′|x=1=2+a,∴曲线y=x2+ax+b在点(1,b)处的切线方程为y﹣b=(2+a)(x﹣1),∵曲线y=x2+ax+b在点(1,b)处的切线方程为x﹣y+1=0,∴a=﹣1,b=2.故选B.4.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln2【考点】65:导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.5.下列积分不正确的是()A.B.C. D.【考点】68:微积分基本定理.【分析】利用微积分基本定理即可得出.【解答】解:A. = =ln3,因此正确;B.∵=2.故B不正确.==,因此正确;D. = = =.因此正确.综上可知:只有B不正确.故选B.6.已知函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>2【考点】6D:利用导数研究函数的极值.【分析】求出函数的导数,利用导数有两个不相等的实数根,通过△>0,即可求出a的范围.【解答】解:函数f(x)=x3+ax2+(a+6)x+1,所以函数f′(x)=3x2+2ax+(a+6),因为函数有极值,所以导函数有两个不相等的实数根,即△>0,(2a)2﹣4×3×(a+6)>0,解得:a<﹣3或a>6,故选:C.7.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0] C.[0,1] D.[,1]【考点】62:导数的几何意义.【分析】根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.【解答】解:设点P的横坐标为x0,∵y=x2+2x+3,∴y′=2x0+2,利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),又∵,∴0≤2x0+2≤1,∴.故选:A.8.若函数f(x)=x3+ax﹣2在区间(1,+∞)内是增函数,则实数a的取值范围是()A.[﹣3,+∞)B.(﹣3,+∞)C.[0,+∞)D.(0,+∞)【考点】6A:函数的单调性与导数的关系.【分析】由已知,f′(x)=3x2≥0在[1,+∞)上恒成立,可以利用参数分离的方法求出参数a的取值范围.【解答】解:f′(x)=3x2+a,根据函数导数与函数的单调性之间的关系,f′(x)≥0在[1,+∞)上恒成立,即a≥﹣3x2,恒成立,只需a大于﹣3x2的最大值即可,而﹣3x2在[1,+∞)上的最大值为﹣3,所以a≥﹣3.即数a的取值范围是[﹣3,+∞).故选A.9.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【考点】62:导数的几何意义.【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.10.曲线y=ln(2x﹣1)上的点到直线2x﹣y+8=0的最短距离是()A.B.2 C.3 D.0【考点】6H:利用导数研究曲线上某点切线方程;3H:函数的最值及其几何意义;IT:点到直线的距离公式.【分析】在曲线y=ln(2x﹣1)上设出一点,然后求出该点处的导数值,由该导数值等于直线2x﹣y+8=0的斜率求出点的坐标,然后由点到直线的距离公式求解.【解答】解:设曲线y=ln(2x﹣1)上的一点是P( m,n),则过P的切线必与直线2x﹣y+8=0平行.由,所以切线的斜率.解得m=1,n=ln(2﹣1)=0.即P(1,0)到直线的最短距离是d=.故选B.11.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()A.(﹣3,0)∪(3,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)【考点】6B:利用导数研究函数的单调性.【分析】先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(﹣3)=0可求得答案.【解答】解:设F(x)=f (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.∵F(﹣x)=f (﹣x)g (﹣x)=﹣f (x)•g (x)=﹣F(x).故F(x)为(﹣∞,0)∪(0,+∞)上的奇函数.∴F(x)在(0,+∞)上亦为增函数.已知g(﹣3)=0,必有F(﹣3)=F(3)=0.构造如图的F(x)的图象,可知F(x)<0的解集为x∈(﹣∞,﹣3)∪(0,3).故选D12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有的最小值为()A.2 B.C.3 D.【考点】63:导数的运算;3R:函数恒成立问题;7F:基本不等式.【分析】由对于任意实数x,f(x)≥0成立求出a的范围及a,b c的关系,求出f(1)及f′(0),作比后放缩去掉c,通分后利用基本不等式求最值.【解答】解:∵f(x)≥0,知,∴c.又f′(x)=2ax+b,∴f′(0)=b>0,f(1)=a+b+c.∴≥1+=≥1+=2.当且仅当4a2=b2时,“=”成立.故选A.二、填空题:共4小题,每小题5分,共20分.13.函数y=x2﹣lnx的单调递减区间为(0,1] .【考点】6B:利用导数研究函数的单调性.【分析】根据题意,先求函数的定义域,进而求得其导数,即y′=x﹣=,令其导数小于等于0,可得≤0,结合函数的定义域,解可得答案.【解答】解:对于函数,易得其定义域为{x|x>0},y′=x﹣=,令≤0,又由x>0,则≤0⇔x2﹣1≤0,且x>0;解可得0<x≤1,即函数的单调递减区间为(0,1],故答案为(0,1]14.已知函数f(x)=f′()sinx+cosx,则f()= 0 .【考点】63:导数的运算.【分析】求函数的导数,先求出f′()的值即可得到结论.【解答】解:函数的导数为f′(x)=f′()cosx﹣sinx,令x=,得f′()=f′()cos﹣sin=﹣1,则f(x)=﹣sinx+cosx,则f()=﹣sin+cos=,故答案为:0.15.由y2=4x与直线y=2x﹣4所围成图形的面积为9 .【考点】67:定积分.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线yy2=4x与直线y=2x﹣4所围成的封闭图形的面积,即可求得结论【解答】解:联立方程组,解得或,∴曲线y=x2与直线y=x围成的封闭图形的面积为S=(y+2﹣y2)dy=(y2+2y﹣)|=9,故答案为:916.已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图示.x ﹣1 0 4 5 f(x) 1 2 2 1下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是①②⑤.【考点】6E:利用导数求闭区间上函数的最值;6D:利用导数研究函数的极值.【分析】由导数图象可知,函数的单调性,从而可得函数的极值,故可得①,②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,即可求得结论.【解答】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.三、解答题:共6小题,共70分,解答写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}满足a3=6,a4+a6=20(1)求通项a n;(2)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.【考点】8E:数列的求和.【分析】(1)由已知条件,利用等差数列的通项公式列出方程组,求出等差数列的首项和公差,由此能求出等差数列的通项公式.(2)由a n=2n,{b n﹣a n}是首项为1,公比为3的等比数列,利用等比数列的通项公式,能求出数列{b n}的通项公式,再利用分组求和法能求出数列{b n}的前n项和T n.【解答】解:(1)∵等差数列{a n}满足a3=6,a4+a6=20,∴,解得,∴.(2)∵a n=2n,{b n﹣a n}是首项为1,公比为3的等比数列,∴,∴,∴.18.在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a﹣c)cosB (Ⅰ)求∠B的大小(Ⅱ)若、a+c=4,求三角形ABC的面积.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)根据正弦定理得: ===2R解出a、b、c代入到已知条件中,利用两角和的正弦函数的公式及三角形的内角和定理化简,得到cosB的值,然后利用特殊角的三角函数值求出B即可;(Ⅱ)要求三角形的面积,由三角形的面积公式S=acsinB知道就是要求ac的积及sinB,由前一问的cosA的值利用同角三角函数间的基本关系求出sinA,可根据余弦定理及、a+c=4可得到ac的值,即可求出三角形的面积.【解答】解(Ⅰ)由已知及正弦定理可得sinBcosC=2sinAcosB﹣cosBsinC∴2sinAcosB=sinBcosC+cosBsinC=sin(B+C)又在三角形ABC中,sin(B+C)=sinA≠0∴2sinAcosB=sinA,即,得(Ⅱ)∵b2=7=a2+c2﹣2accosB∴7=a2+c2﹣ac又∵(a+c)2=16=a2+c2+2ac∴ac=3∴即19.已知椭圆=1(a>b>0)的一个顶点为A(0,1),离心率为,过点B(0,﹣2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.【考点】K4:椭圆的简单性质.【分析】(1)根据椭圆的基本概念和平方关系,建立关于a、b、c的方程,解出a=,b=c=1,从而得到椭圆的方程;(2)求出F1B直线的斜率得直线F1B的方程为y=﹣2x﹣2,与椭圆方程联解并结合根与系数的关系算出|x1﹣x2|=,结合弦长公式可得|CD|=,最后利用点到直线的距离公式求出F2到直线BF1的距离d,即可得到△CDF2的面积.【解答】解:(1)∵椭圆=1(a>b>0)的一个顶点为A(0,1),离心率为,∴b==1,且=,解之得a=,c=1可得椭圆的方程为;…(2)∵左焦点F1(﹣1,0),B(0,﹣2),得F1B直线的斜率为﹣2∴直线F1B的方程为y=﹣2x﹣2由,化简得9x2+16x+6=0.∵△=162﹣4×9×6=40>0,∴直线与椭圆有两个公共点,设为C(x1,y1),D(x2,y2),则∴|CD|=|x1﹣x2|=•=•=又∵点F2到直线BF1的距离d==,∴△CDF2的面积为S=|CD|×d=×=.20.设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点,如图所示,(1)求f(x)的解析式;(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.【考点】6D:利用导数研究函数的极值;36:函数解析式的求解及常用方法;3R:函数恒成立问题.【分析】(1)求出y=f'(x),因为导函数图象经过(﹣2,0)和(,0),代入即可求出a、b、c之间的关系式,再根据图象可知函数的单调性,而f(x)极小值为﹣8可得f(﹣2)=﹣8,解出即可得到a、b、c的值;(2)根据函数增减性求出函数在区间[﹣3,3]的最小值大于等于m2﹣14m,即可求出m的范围.【解答】解:(1)∵f'(x)=3ax2+2bx+c,且y=f'(x)的图象经过点(﹣2,0),,∴∴f(x)=ax3+2ax2﹣4ax,由图象可知函数y=f(x)在(﹣∞,﹣2)上单调递减,在上单调递增,在上单调递减,由f(x)极小值=f(﹣2)=a(﹣2)3+2a(﹣2)2﹣4a(﹣2)=﹣8,解得a=﹣1∴f(x)=﹣x3﹣2x2+4x(2)要使对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,只需f(x)min≥m2﹣14m即可.由(1)可知函数y=f(x)在[﹣3,﹣2)上单调递减,在上单调递增,在上单调递减且f(﹣2)=﹣8,f(3)=﹣33﹣2×32+4×3=﹣33<﹣8∴f(x)min=f(3)=﹣33﹣33≥m2﹣14m⇒3≤m≤11故所求的实数m的取值范围为{m|3≤m≤11}.21.已知函数f(x)=ln(ax+1)+,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)对函数求导,令f′(1)=0,即可解出a值.(Ⅱ)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数,(Ⅲ)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为,单调增区间为【解答】解:(Ⅰ),∵f′(x)在x=1处取得极值,f′(1)=0即 a+a﹣2=0,解得 a=1(Ⅱ),∵x≥0,a>0,∴ax+1>0①当a≥2时,在区间(0,+∞)上f′(x)>0.∴f(x)的单调增区间为(0,+∞)②当0<a<2时,由f′(x)>0解得由∴f(x)的单调减区间为,单调增区间为(Ⅲ)当a≥2时,由(II)知,f(x)的最小值为f(0)=1当0<a<2时,由(II)②知,处取得最小值,综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)22.已知函数,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)通过、x=1是函数h(x)的极值点及a>0,可得,再检验即可;(2)通过分析已知条件等价于对任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.结合当x∈[1,e]时及可知[g(x)]max=g(e)=e+1.利用,且x∈[1,e],a>0,分0<a<1、1≤a≤e、a>e三种情况讨论即可.【解答】解:(1)∵,g(x)=x+lnx,∴,其定义域为(0,+∞),∴.∵x=1是函数h(x)的极值点,∴h′(1)=0,即3﹣a2=0.∵a>0,∴.经检验当时,x=1是函数h(x)的极值点,∴;(2)对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.当x∈[1,e]时,.∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1.∵,且x∈[1,e],a>0.①当0<a<1且x∈[1,e]时,,∴函数在[1,e]上是增函数,∴.由1+a2≥e+1,得a≥,又0<a<1,∴a不合题意;②当1≤a≤e时,若1≤x<a,则,若a<x≤e,则.∴函数在[1,a)上是减函数,在(a,e]上是增函数.∴[f(x)]min=f(a)=2a.由2a≥e+1,得a≥,又1≤a≤e,∴≤a≤e;③当a>e且x∈[1,e]时,,∴函数在[1,e]上是减函数.∴.由≥e+1,得a≥,又a>e,∴a>e;综上所述:a的取值范围为.。
遂川中学2020届高二年级下学期第三次月考数 学(理重) 试 题命题人:康显春 审题人:王文武一、选择题(本大题共12小题,每小题5分,共60分)1.已知随机变量ξ服从正态分布2N(0,)σ,若P(>2)=0.023ξ,则P(-22)=ξ≤≤( )A.0.477B. 0.628C. 0.954D. 0.9772.已知回归直线斜率的估计值为2.1,样本点的中心为(3,4),则回归直线方程为( )A. 2.1 5.4y x =-B. 2.1 2.3y x =-C. 2.1 2.3y x =+D. 2.3 2.1y x =-3.直线3,14,x t y t =⎧⎨=-⎩(t 为参数)与圆3cos ,3sin ,x y b θθ=⎧⎨=+⎩(θ为参数)相切,则b =( )A 46-或B 64-或C 19-或D 9-或14. 把区间[,]()a b a b n <等分后,第i 个小区间是( ) A.1[,]i i n n - B.1[(),()]i i b a b a n n --- C.1[,]i i a a n n -++ D.1[(),()]i i a b a a b a n n -+-+- 5.若521)(xx -的展开式中含αx R α∈()的项,则α的值不可能为( ) A. 5- B. 1 C. 7 D. 26.设1(3,)3X B ,31Y X =+,那么,EY DY 分别是( ) A .3,2 B. 4,6 C.3,7 D. 6,77.记集合(){}22,|16A x y x y =+≤,集合()(){},|40,,B x y x y x y A =+-≤∈表示的平面区域分别为12,ΩΩ.若在区域1Ω内任取一点(),P x y ,则点P 落在区域2Ω中的概率为( ) A.24ππ- B.324ππ+ C.24ππ+ D.324ππ- 8.若0,0x y >>,228x y xy ++=,则2x y +的最小值是 ( )A.112B.3C.92D.4 9.一台打桩机将一木桩打入地下,每次打击所做的功相等,土壤对木桩的阻力与木桩进入 土壤的深度成正比。
一中2021-2021-2学期高二年级3月考试试题制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
数 学〔理〕说明:本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.满分是150分,考试时间是是120分钟.答案写在答题卡上,交卷时只交答题卡.第一卷〔选择题〕一、选择题〔本大题一一共12 小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,请将正确答案涂在答题卡上.............〕 1.假设0()2f x '=-,那么0001()()2lim k f x k f x k→--等于〔 〕A .-2B .-1C .1D .22.函数f (x )的导函数为f ′(x ),且满足f (x )=2 f ′(e )x +ln x 〔e 为自然对数的底数〕,那么f ′(e )=〔 〕A. 1eB .e C. -1e D .- e3.11||x dx -⎰等于〔 〕A .0B .1C .2D .124.函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( ).A .-37B .-29C .-5D .-115.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,那么f 2021(x )=〔 〕A .sin xB .-sin xC .cos xD .-cos x6.内接于半径为R 的圆的矩形的周长的最大值为( ).A .22RB .2RC .42RD . 4R 7.方程x -ln x -2=0的根的个数为〔 〕A .0B .1C .2D .3 8.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( )A. 1B. 13C. 23D.439.设函数()219ln 2f x x x =-在区间[a -1,a +1]上单调递减,那么实数a 的取值范围是( ) A. [-∞,2) 10.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,那么此物体到达最高时的高度为〔 〕A.1603 mB.803 mC.403m D.203m11.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现理解到以下情况:〔1〕甲不是最高的;〔2〕最高的是没报铅球;〔3〕最矮的参加了跳远;〔4〕乙不是最矮的,也没参加跑步.可以判断丙参加的比赛工程是〔 〕A .跑步比赛B .跳远比赛C .铅球比赛D .不能断定12.如图,直线l 和圆C ,当l 从l 0开场在平面上绕点O 按逆时针方向匀速转到〔转到角不超过90°〕时,它扫过的圆内阴影局部的面积S 是时间是t 的函数,这个函数的图像大致是〔 〕第二卷〔非选择题〕二、选择题〔本大题一一共4小题,每一小题5分,一共20分,将答案写在答题卡上..........〕 13.曲线sin xy x=在点M(π,0)处的切线方程为________. 14.在用数学归纳法证明不等式1111(1,*)1222n n N n n n +++>>∈++的过程中,从n =k 到n =k +1时,左边需要增加的代数式是.________________. 15.假设函数f (x )=a3x 3+952a -x 2+4ax +c (a >0)在(-∞,+∞)内无极值点,那么a 的取值范围是______________.16.定义在R 上的可导函数y =f (x )的导函数为()f x ',满足()()f x f x '>,且()01f =,那么不等式()1xf x e<的解集为 . 三、解答题〔本大题一一共6 小题,一共70分〕 17. 〔10分〕求证: e x≥(1+x ) ≥ln(1+x ).18. 〔12分〕函数y =f (x )在区间[a ,b]上的图像是连续不连续的曲线,且f (x )在区间[a ,b]上单调,f (a )>0,f (b )<0.试用反证法证明:函数y =f (x )在区间[a ,b]上有且只有一个零点.19.〔12分〕如下图,在边长为60 cm 的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.〔12分〕设f (n )=1+12+13+…+1n,是否有关于自然数n 的函数g (n ),使等式f (1)+f (2)+…+f (n -1)=g (n )[f (n )-1]对n ≥2的一切自然数都成立?并证明你的结论.21.〔12分〕假设函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式.(2)假设方程f (x )=k 有3个不同的根,务实数k 的取值范围.22.〔12分〕设函数2()ln f x ax a x =--,其中x ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使11()xf x e x->-在区间〔1,+∞〕内恒成立〔e =2.71828…是自然对数的底数〕.一中2021-2021-2学期高二年级3月考试数学〔理〕参考答案一、选择题〔本大题一一共12 小题,每一小题5分,一共60分〕二、选择题〔本大题一一共4小题,每一小题5分,一共20分〕 13.1()y x ππ=-- ; 14.112122k k -++; 15.[1,9]; 16.}{0x x > 三、解答题〔本大题一一共6 小题,一共70分〕 17. 〔10分〕求证: e x≥1+x >ln(1+x ).证明:根据题意,应有x >-1,设f (x )=e x-(1+x ),那么 f ′(x )=e x-1, 由f ′(x )=0,得 x =0.当-1< x < 0时,f ′(x )<0;当x > 0时,f ′(x )>0.∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增,f (x )min = f (0)=0. ∴ 当x >-1,f (x )≥f (0)=0, 即 e x≥1+x .设g (x )=1+x -ln(1+x ),那么g ′(x )=1-11+x =x1+x ,由g ′(x )=0,得 x =0.当-1< x < 0时,g ′(x )<0;当x > 0时,g ′(x )>0.∴g (x )在(-1,0)上单调递减,在(0,+∞)上单调递增,g (x )min =g (0)=1. ∴ 当x >-1,g (x )≥g (0)=1>0, 即1+x >ln(1+x ).18. 〔12分〕函数y =f (x )在区间[a ,b]是的图像连续不连续,且f (x )在区间[a ,b]上单调,f (a )>0,f (b )<0.试用反证法证明:函数y =f (x )在区间[a ,b]上有且只有一个零点.证明:因为函数y =f (x )在区间[a ,b]上的图像连续不连续,且f (a )>0,f (b )<0,即f (a )·f (b )<0.所以函数y =f (x )在区间[a ,b]上一定存在零点x 0,假设y =f (x )在区间[a ,b]上还存在一个零点x 1〔x 1≠x 0〕,即f (x 1)=0,由函数f (x )在区间[a ,b]上单调且f (a )>0,f (b )<0知f (x )在区间[a ,b]上单调递减; 假设x 1>x 0,那么f (x 1)< f (x 0),即0<0,矛盾, 假设x 1<x 0,那么f (x 1) > f (x 0),即0>0,矛盾,因此假设不成立,故y =f (x )在区间[a ,b]上有且只有一个零点.19.〔12分〕如下图,在边长为60 cm 的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?解:设箱子的底边长为x cm ,那么箱子高h =60-x 2cm.箱子容积V =V (x )=x 2h =60x 2-x32(0<x <60).求V (x )的导数,得V ′(x )=60x -32x 2=0,解得x 1=0(不合题意,舍去),x 2=40.当x 在(0,60)内变化时,导数V ′(x )的正负如下表:x (0,40) 40 (40,60) V ′(x )+-因此在x =40处,函数V (x )获得极大值,并且这个极大值就是函数V (x )的最大值. 将x =40代入V (x )得最大容积V =402×60-402=16 000(cm 3).所以箱子底边长取40 cm 时,容积最大,最大容积为16 000 cm 3.20.〔12分〕设f (n )=1+12+13+…+1n,是否有关于自然数n 的函数g (n ),使等式f (1)+f (2)+…+f (n -1)=g (n )[f (n )-1]对n ≥2的一切自然数都成立?并证明你的结论.解: 当n =2时,f (1)=g (2)[f (2)-1], 得(1)1(2)21(2)1(1)12f g f ===-+-.当n =3时,f (1)+f (2)=g (3)[f (3)-1],得(1)(2)(3)(3)1f f g f +=-=1+⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+12+13-1=3.猜测g (n )=n (n ≥2).下面用数学归纳法证明:当n ≥2时,等式f (1)+f (2)+…+f (n -1)=n [f (n -1)]恒成立. (1)当n =2时,由上面计算知,等式成立.(2)假设n =k 时等式成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1](k ≥2), 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1) [ f (k +1)-1+1k ]-k =(k +1) [ f (k +1) -1], 故当n =k +1时等式也成立.由(1)(2)知,对一切n ≥2的自然数n ,等式都成立. 故存在函数g (n )=n 使等式成立.21.〔12分〕假设函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式.(2)假设方程f (x )=k 有3个不同的根,务实数k 的取值范围.解 f ′(x )=3ax 2-b .(1)由题意得(2)120,4(2)824.3f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩ 解得⎩⎪⎨⎪⎧a =13,b =4,故所求函数的解析式为f (x )=13x 3-4x +4.(2)由(1)可得f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =2或者x =-2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2) -2(-2,2) 2 (2,+∞)f ′(x)+0 -0 +f (x )283-43因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数f (x )=13x 3-4x +4的图象大致如下图.假设f (x )=k 有3个不同的根,那么直线y =k 与函数f (x ) 的图象有3个交点,所以-43<k <283.22.〔12分〕设函数2()ln f x ax a x =--,其中x ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使11()xf x e x->-在区间〔1,+∞〕内恒成立〔e =2.71828…是自然对数的底数〕.制卷人:打自企;成别使;而都那。
2019年春季高二年级3月月考
数学(理科)试卷
一、选择题(本大题共12小题,共60.0分)
1.有5位学生和2位老师并坐一排合影,若教师不能坐在两端,且要坐在一起,则有多少种
不同坐法
A. 种
B. 240种
C. 480种
D. 960种
2.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这
些五位数中偶数的个数为
A. 5040
B. 1440
C. 864
D. 720
3.设有编号为1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖
盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有
A. 30种
B. 31种
C. 32种
D. 36种
4.一个三位数,个位、十位、百位上的数字依次为x、y、z,当且仅当,时,称这样
的数为“凸数”如,现从集合2,3,中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为
A. B. C. D.
5.已知,则
A. B. 1 C. D. 0
6.的展开式中的系数是
A. B. C. 5 D. 20
7.二项式展开式中只有一项的系数为有理数,则n可能取值为
A. 6
B. 7
C. 8
D. 9
8.
则常数a的值为
A. B. C. 或 D. 1或
9.在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1
个红球的条件下,第二个人摸出1个白球的概率为
A. B. C. D.
10.设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测
到正品,则等于
A. B. C. D.
11.投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率
为,且各次投篮是否投中相互独立,则该同学通过测试的概率为
A. B. C. D.
12.将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒
子为空的概率是
A. B. C. D.
二、填空题(本大题共4小题,共20.0分)
13.某学校的数学课外小组有2个女生,3个男生,要从他们中挑选2人组成代表队去参加比
赛,则代表队男生、女生都有的概率为_____.
14.若的展开式中的常数项为60,则a的值为______.
15.某地区气象台统计,该地区下雨的概率是,刮风的概率是,既刮风又下雨的概率为,
现该地区开始刮风,则该地区会下雨的概率为__________.
16.李明参加中央电视台同一首歌大会的青年志愿者选拔,在已知备选的10道题中,李明
能答对其中的6道,规定考试从备选题中随机地抽出3题进行测试,至少答对2题才能入选则李明入选的概率为________.
三、解答题(本大题共6小题,共70.0分)
17.从5名男生和4名女生中选出4人去参加座谈会,问:
Ⅰ如果4人中男生和女生各选2人,有多少种选法?
Ⅱ如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
Ⅲ如果4人中必须既有男生又有女生,有多少种选法?
18.已知二项式
求二项式展开式中各项系数之和;
若二项式展开式中第9项,第10项,第11项的二项式系数成等差数列,求n的值;
在的条件下写出它展开式中的有理项.
19.Ⅰ已知,求的值.
Ⅱ若展开式前三项的二项式系数和等于37,求的展开式中二项式系数最
大的项的系数.
20.甲乙两人各射击一次,击中目标的概率分别为假设两人射击是否击中目标相互之
间没有影响,每次射击是否击中目标相互之间也没有影响。
求甲射击4次,至少1次未击中目标的概率。
求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率。
若连续2次未击中目标,则停止射击,求乙恰好射击5次后,被终止射击的概率。
21.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4
个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.
求顾客抽奖1次能获奖的概率;
若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列
22.为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加
1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图小数点前一位数字为茎,小数点的后一位数字为叶,如图,若跑步时间不高于秒,则称为“好体
能”.
Ⅰ写出这组数据的众数和中位数;
Ⅱ要从这16人中随机选取3人,求至少有2人是“好体能”的概率;
Ⅲ以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生人数众多任
取3人,记X表示抽到“好体能”学生的人数,求X的分布列。