灰色关联综合评价汇总.
- 格式:ppt
- 大小:595.50 KB
- 文档页数:16
现代农业科技2021年第6期农艺学全国北方片小粒花生品种的灰色关联度综合评价杨海棠李盼于沐胡延岭刘软枝石彦召吴小波邱冬云(郑州市农林科学研究所,河南郑州450000)摘要为了解全国北方片小粒花生育种现状和品种的综合性状表现,利用灰色系统理论对2017年全国北方片小粒组13个参试花生品种的12个主要性状进行了综合评价。
结果表明:有11个参试品种的加权关联度值均比对照花育20号高,其中郑农花23号加权关联度值排名第一,属高油酸高产综合性状表现最好的品种;全国北方片小粒花生整体育种水平较高,其中郑农花23号、金华19号、冀5059、花育6802、商花5号和开农92,综合性状优良,适宜在全国北方片推广应用。
关键词小粒花生;品种;灰色关联度;全国北方片中图分类号S565.2文献标识码A文章编号1007-5739(2021)06-0037-03D01:10.3969/j.issn.1007-5739.2021.06.016开放科学(资源服务)标识码(OSID):中国是世界上最大的花生生产和出口大国,年总产达1500t,占世界花生总产的43%[1],加工总产值约1500亿元,居世界之首,是为数不多具有比较优势和国际市场竞争力的农产品。
我国目前食用植物油自给率不足40%,迫切需要进一步提高油料生产能力,提高花生产量和品质是缓解油脂供需矛盾的重要途径現目前,生产上大力推广的高油酸花生可以降低低密度脂蛋白胆固醇和心血管疾病风险因子及动脉粥样硬化发展,有助于控制血糖等,高油酸花生的好处不仅体现在经常食用有益于人体健康,而且体现在花生加工品货架期显著延长,更适合制造生物柴油、种用高 油酸花生耐储藏等多个方面[3]。
作物新品种的综合评价是育种工作的重要环节,以往使用的方差分析方法局限于单一的产量性状,而决定花生品种优劣的性状因素很多,如农艺性状和品质性状等,灰色关联度分析能准确判断参试品种优劣,加权关联度值可更为真实地反映品种的综合表现I。
灰色关联度评价法例子
灰色关联度评价法是一种系统分析方法,用于评估多个指标对某一目标的影响程度。
下面是一个关于选择高中学校的例子:
假设我需要选择一所高中学校,但是有以下几个指标需要考虑:
1. 学校内部教育质量排名
2. 学校师资力量情况
3. 学校设施和硬件条件
4. 学校的学科特长
为了确定以上指标对学校的选择影响的程度,我们可以进行如下的灰色关联度评价:
步骤1:收集数据
收集各个高中学校的教育质量排名、师资力量情况、设施和硬件条件以及学科特长的数据。
步骤2:归一化处理
将不同指标的数据进行归一化处理,使得不同指标的取值范围相同。
步骤3:确定参考数列
选取一组参考数列,用于评价不同指标之间的关联程度,并考虑指标的重要性。
步骤4:计算关联度
根据灰色关联度评价法的公式,计算每个指标与目标的关联度。
步骤5:确定权重
通过对每个指标的关联度进行归一化处理后,结合专家意见确定各个指标的权重。
步骤6:综合评价
根据各个指标的权重和关联度,进行综合评价,得出最终的评价结果。
通过这样的灰色关联度评价,我们可以对不同高中学校的教育质量、师资力量、设施和硬件条件、学科特长等指标进行客观的评估,并选择最符合自己需求的学校。
基于层次分析法的灰⾊关联度综合评价模型第1章基于层次分析法的灰⾊关联度综合评价模型灵活型公共交通系统是⼀个复杂的综合性系统,单⼀的常规评价⽅法不能够准确对系统进⾏全⾯评价【39】,这就要求在进⾏灵活型公共交通系统评价时,结合系统固有特点,根据各种评价⽅法的优缺点,构建适合该系统的综合评价模型。
本章以灵活型公共交通系统评价指标体系为基础,参考常规型公共交通系统评价⽅法,建⽴了基于层次分析法的灰⾊关联度综合评价模型。
1.1评价⽅法适应性分析灰⾊关联度分析法基于灰⾊系统理论,是⼀种多指标、多因素分析⽅法,通过对系统的动态发展情况进⾏定量化分析,考察系统各个要素之间的差异性和关联性,当⽐较序列与参考序列曲线相似时,认为两者有较⾼关联度,反之则认为它们之间关联度较低,从⽽给出各因素之间关系的强弱和排序【50】。
与传统的其它多因素分析法相⽐【80】【81】【82】,灰⾊关联度分析法对数据量要求较低,样本量要求较少,计算量较⼩,可以利⽤各指标相对最优值作为参考序列,为最终综合评价等级的确定提供依据,⽽不必对⼤量实践数据有过⾼要求,能够较好解决灵活型公共交通系统作为新型辅助式公系统没有⾜够的经验数据⽀撑其模型参数的问题。
此外,灵活型公共交通系统评价体系是基于乘客、公交企业、政府三⽅主体的综合评价体系,涉及因素较多,指标较为复杂,部分指标之间存在关联性和重复性,信息相对不完全,⽽灰⾊系统的差异信息原理以及解的⾮唯⼀性原理,可以很好的解决这⼀问题【79】。
综上所述,认为灰⾊关联度分析法⽐较适合于灵活型公共交通系统的综合评价。
然⽽灰⾊关联度分析法将所有指标对于总⽬标的影响因素⼤⼩视作等同,没有考虑指标权重的影响,评价值可信度较低,应当通过科学的⽅法,确定指标权重,将其与关联度系数相结合,增加评价结果的科学性和有效性【83】。
常见的权重确定⽅法包括,专家打分法、等权重法、统计试验法、熵值法等。
等权重法不能很好的体现不同指标影响程度的差异性,并且在综合评价值相差不⼤时不利于⽅案的选择【84】;专家打分法、统计试验法评价的主观性较⾼,并且不适⽤于指标较多的情况【85】;⾏和正规化法、列和求逆法等指对判断矩阵的⼀部分数据进⾏利⽤,结果可信度不⾼【86】;最⼩偏差法、对数回归法等,利⽤同⼀指标不同⽅案值,认为变化程度较⼤的指标传递更多信息,应具有较⾼权重,然⽽对于灵活型公共交通系统单⽅案综合⽔平等级评价的情况,并不适⽤。
灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。
根据R 的数值,进行排序。
(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。
此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。
选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。
(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。
设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。
i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。
这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。