浅议灰色关联度分析方法及其应用
- 格式:pdf
- 大小:174.02 KB
- 文档页数:3
从零开始的数学建模:(三)灰⾊关联分析灰⾊关联分析适⽤于⼩样本数据,⼤样本数据推荐使⽤标准化回归分析;基本原理是根据曲线的⼏何形状的相似程度来判断联系是否紧密,也就是说,如果y的曲线和某个x的曲线长得很像,那么这个x或许就是最能影响y的因素;灰⾊关联分析可⽤于系统分析与综合评价⼀、系统分析上的运⽤(1)确定分析序列以⾃变量作为⼦序列,因变量作为母序列,对应本题即第⼀、⼆、三产业作为⼦序列,国内⽣产总值为母序列;(2)对变量进⾏预处理计算每⼀列的均值,并将每⼀列的数除以该均值(注意这⾥使⽤的⽅法和Topsis不⼀样),可得到以下结果:(3)计算极差与关联系数分别计算|x1−x0|、|x2−x0|、|x3−x0|,可求出最⼩值a与最⼤值b,本题计算结果如下:对上述结果执⾏:y=a+ρ|x i−x0|+ρ∗b即可得到关联系数:对以上三列分别求均值,可得到三个数值:0.5084、0.6243、0.7573,因此最终得出结论,第三产业对GDP总量影响最⼤;⼆、综合评价上的运⽤综合评价类问题只有⼀列⼜⼀列数据,需要根据这些数据计算得分;在利⽤灰⾊关联分析之前,仍需要进⾏指标正向化;(1)确定⼦序列与母序列⼦序列即各个因素,取出⼦序列构成的矩阵的每⼀⾏中的最⼤值,组成母序列;(2)对变量进⾏预处理步骤同上,得到z ij;(3)计算极差与关联系数步骤同上,得到r i;(4)计算权重与得分计算各个指标的权重与得分:w i=r ir1+r2+⋯+r ms k=∑w i∗z ij 最后对得分进⾏归⼀化处理即可得到每个样本的评分:S k=s k∑s1+s2+⋯+s n本⽂算法思想参考源于,特此注明Processing math: 100%。
2019年第24期(总第643期)科学咨询/科技管理去体会的。
第三,让较为优秀的正在创业的在校学生担任创业导师。
这些学生自己正在创业,并且还是在校学生,与其他学生之间的距离更近,更容易沟通,也更清楚他们可能会遇到的困难,效果也就会更好。
(三)建立和完善相应的扶持政策第一,政府要完善相应的法律法规,保障大学生创业的合法权益。
[3]首先,政府可在启动资金方面予以扶持,如提供免息贷款或者低利率贷款,同时减免部分税收,这样可以解决学生创业启动资金方面的困难。
其次,政府要简化相关的审批程序,为学生开通绿色窗口,简化流程,降低门槛。
最后,政府各部门要联动,出台一系列扶持学生创业的政策。
第二,学校要出台相应的配套政策。
一方面,学校要为创业学生提供场地、货架等硬件方面的支持,还可以让快递公司进校园,为创业学生提供方便。
另一方面,学校可实行课程替代制度。
学生创业达到一定程度后,经学校相关部门认定,只要达到学校要求的水平即可申请免修相关的课程。
剩下的部分课程,上课的方式也可以做适当调整,如可以采取集中授课或者网络授课的方式,这样才能解决学生的后顾之忧。
参考文献:[1] 张晓芬,史宪睿.“内外协同”高校创新创业人才培养体系构建[J].现代教育管理,2018(3).[2] 王建武,王增辉.“双创”背景下的大学生创业意识培养研究[J].齐齐哈尔师范高等专科学校学报,2017(6).[3] 刘扬.政府助推大学生创业创新研究[D].中央民族大学,2016.摘 要:本文针对灰色关联模型进行分析,通过分析得出灰色关联模型具有处理数据灵活的特点;并且灰色关联模型能应用于样本数量较少且关系为线性关系的系统分析。
关键词:灰色关联模型;线性关系;系统分析引言在实际的工程设计与模型分析过程中,往往存在比较多的变量,而这些变量之间是否存在关系在很大程度上具有不确定性。
但是如果能够明确这些变量之间的关系,它们就会对工程设计以及系统分析起到理论的指导作用。
灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
灰色关联度方法介绍一、灰色关联度方法的概念灰色关联度方法是一种常用的分析方法,它是将各个因素之间的关系转化为数学模型进行计算,从而得出它们之间的相关程度。
灰色关联度方法主要应用于多因素分析和决策评价等领域。
二、灰色关联度方法的原理灰色关联度方法是基于灰色系统理论的,它通过对数据进行处理,将数据转化为一组序列,然后通过对这些序列进行比较,得出各个因素之间的相关程度。
具体来说,它主要包括以下步骤:1. 数据预处理:将原始数据进行标准化处理,使得各个因素之间具有可比性。
2. 灰色关联度计算:通过对标准化后的数据进行加权平均值计算,并与参考序列进行比较,得出各个因素与参考序列之间的相关程度。
3. 灰色预测模型建立:根据各个因素与参考序列之间的相关程度建立预测模型,并对未来趋势进行预测。
三、灰色关联度方法的应用1. 多因素分析:在复杂多变的环境下,往往需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,从而帮助决策者进行有效的决策。
2. 决策评价:在决策过程中,需要对各种方案进行评价,灰色关联度方法可以通过对各种方案之间的比较,得出它们之间的相关程度,从而帮助决策者选择最优方案。
3. 经济预测:在经济预测中,需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,并建立预测模型进行未来趋势预测。
四、灰色关联度方法的优缺点1. 优点:(1)能够充分考虑多个因素之间的相互作用和影响。
(2)具有较高的精确性和可靠性。
(3)能够处理样本数据量较小、数据质量较差等问题。
2. 缺点:(1)需要对数据进行标准化处理,增加了计算复杂度。
(2)依赖于参考序列的选择和权重设置,在实际应用中可能存在一定误差。
(3)不适用于非线性系统和高维数据分析。
五、灰色关联度方法的发展趋势随着计算机技术的不断发展和数据处理能力的提高,灰色关联度方法在多因素分析、决策评价和经济预测等领域得到了广泛应用。
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
灰色关联法确定权重1. 引言灰色关联法是一种基于数学模型的分析方法,通过对多个指标进行比较和关联,确定它们之间的相关程度和影响因素的重要性。
在决策分析、综合评价和预测预警等领域中广泛应用。
本文将详细介绍灰色关联法的原理、步骤以及如何利用该方法确定权重。
2. 灰色关联法原理灰色关联法是由中国科学家陈胜武于1981年提出的,其基本原理是通过建立灰色关联度模型,从而判断各个因素对目标因素的影响程度。
该方法主要包括以下几个步骤:2.1 数据标准化首先需要将各个指标的数据进行标准化处理,将其转化为无量纲纯数值。
常用的标准化方法有极差法、标准差法和正态化等。
2.2 确定参考数列参考数列是一个代表目标因素发展趋势的序列,可以是已知数据或者专家经验给出的预测值。
2.3 计算关联系数通过计算各个指标与参考数列之间的关联系数,来评价各个因素对目标因素的影响程度。
关联系数的计算可以采用相关系数、欧氏距离等方法。
2.4 确定权重根据关联系数的大小,确定各个因素的权重。
关联系数越大,说明该指标对目标因素的影响越大,其权重也就越高。
3. 灰色关联法确定权重步骤下面将详细介绍如何利用灰色关联法确定指标的权重:3.1 数据准备首先需要收集所需数据,并进行预处理。
确保数据的准确性和完整性,同时对数据进行标准化处理,使其具有可比性。
3.2 确定参考数列根据研究目的和实际情况,选择一个代表目标因素发展趋势的参考数列。
可以是已知数据或者专家经验给出的预测值。
3.3 计算关联系数通过计算各个指标与参考数列之间的关联系数,来评价各个因素对目标因素的影响程度。
常用的计算方法有相关系数法和欧氏距离法。
相关系数法相关系数是衡量两个变量之间相关程度的指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
可以通过计算各个指标与参考数列的相关系数,得到关联系数。
欧氏距离法欧氏距离是衡量两个向量之间差异程度的指标,可以通过计算各个指标与参考数列之间的欧氏距离,来得到关联系数。
灰色关联法的应用原理1. 灰色系统理论简介灰色系统理论是由我国科学家陈纳德于1982年提出的一种新的系统理论方法。
它是一种用于处理信息不完全、不确定性的数学方法,广泛应用于工程、管理和经济等领域。
灰色关联法是灰色系统理论的重要应用之一,通过建立灰色关联模型,可以分析和预测变量之间的关联程度。
2. 灰色关联法的基本思想灰色关联法是基于系统理论的思想,通过建立灰色关联模型来研究变量之间的关联程度。
其基本思想是利用灰色关联度来度量不同变量之间的相关程度,从而揭示变量之间隐藏的关联关系。
3. 灰色关联度的计算方法灰色关联度是衡量变量之间关联程度的指标,其计算方法有多种。
常见的计算方法包括绝对关联度、相对关联度等。
3.1 绝对关联度的计算方法绝对关联度是将每个变量与参考序列进行比较,计算其相对于参考序列的关联度。
计算公式为:绝对关联度 = |Xk(i) - Yk(i)| / [max(|X(i) - Xk(i)|) + max(|Y(i) - Yk (i)|)]其中,Xk(i)和Yk(i)分别表示变量X和变量Y在第i个时刻的值,X(i)和Y(i)分别表示变量X和变量Y在第i个时刻的最大值。
3.2 相对关联度的计算方法相对关联度是将每个变量与样本序列(即变量在不同时刻的取值)进行比较,计算其相对于样本序列的关联度。
计算公式为:相对关联度 = (Xk(i) - Xk(1)) / (Xk(p) - Xk(1))其中,Xk(i)表示变量X在第i个时刻的值,Xk(1)表示变量X在第1个时刻的值,Xk(p)表示变量X在第p个时刻的值。
4. 灰色关联度的应用案例灰色关联法可以应用于各种领域的数据分析和预测中。
以下是几个灰色关联度的应用案例:4.1 城市人口预测利用灰色关联法可以建立城市人口与相关因素之间的关联模型,从而进行人口预测。
通过分析城市人口与经济发展、环境变化等因素的关联度,可以预测未来人口的增长趋势,并为城市规划和政策制定提供参考。
灰色关联度方法介绍一、什么是灰色关联度方法1.1 灰色关联度方法的定义灰色关联度方法是一种用于分析、预测和决策的数学方法,由我国科学家陈彦斌于1988年提出。
它是一种相对较新的分析方法,可以应用于各种具有不确定性和模糊性的问题,特别在工程和管理领域得到广泛应用。
1.2 灰色关联度方法的特点灰色关联度方法的特点主要包括以下几个方面:1.适用范围广:灰色关联度方法可以用于处理不确定性、模糊性较强的问题,适用于各种实际情况。
2.简单易懂:灰色关联度方法基于数学模型,计算过程相对简单,容易理解和操作。
3.较强的应用性:灰色关联度方法可以广泛应用于决策分析、预测和优化等领域,并取得不错的效果。
二、灰色关联度方法的步骤2.1 确定比较对象与指标在应用灰色关联度方法进行分析前,首先需要明确比较的对象和相关指标。
比较对象可以是不同的产品、项目、方案等,指标可以是性能指标、经济指标、质量指标等。
2.2 数据标准化处理为了消除指标之间的量纲不同和取值范围不同的影响,需要对原始数据进行标准化处理。
常用的方法包括极差标准化法和零一标准化法。
2.3 计算关联系数和关联度通过计算比较对象之间指标的关联系数,可以得到相对于参考对象的关联度。
关联系数的计算公式为:R i=minmj=1|x i(j)−x0(j)|+ρ⋅maxmj=1|x i(j)−x0(j)||xi(j)−x(j)|+ρ⋅maxmj=1|xi(j)−x(j)|其中,R i表示第i个比较对象相对于参考对象的关联系数,x i(j)表示第i个比较对象的第j个指标值,x0(j)表示参考对象的第j个指标值,m表示指标的个数,ρ是一个平衡系数。
然后,可以通过计算关联系数的加权平均值得到关联度,关联度的计算公式为:R i‾=1m∑w jmj=1⋅R i(j)其中,R i‾表示第i个比较对象的关联度,w j表示第j个指标的权重。
2.4 确定排名根据计算得到的关联度,可以确定比较对象的排名。
灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。
与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。
它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。
灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。
该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。
灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。
2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。
3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。
4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。
5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。
灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。
2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。
3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。
4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。
然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。
2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。
灰色关联度分析灰色关联分析(Grey Correlation Analysis )是一种分析多因素之间关系的方法,由邓聚龙教授创立,通过不同样本之间关联度分析,对各因素进行排序,对各因素之间关系进行描述的一种统计方法。
我们假设以及知道某一个指标可能是与其他的某几个因素相关的,那么我们想知道这个指标与其他哪个因素相对来说更相关,与哪个因素相对关系弱一点,依次类推,把这些因素排个序,得到一个分析结果,我们就可以知道我们关注的这个指标,与因素中的哪些更相关。
1、确定母数列(参考序列)和子数列(比较序列)设参考数列0X ,比较数列12,,,n X X X ,由于各因素之间的单位等各不相同,可能会造成有的数大有的数很小。
但是这并不是由于它们内禀的性质决定的,而只是由于量纲不同导致的,因此我们需要对它们进行无量纲化。
因此,为了使得不同因素能够进行比较,且保证结果的误差,需要对数据进行无量纲化处理。
GRA 常用的方法是初值化,即把这一个序列的数据统一除以最开始的值,由于同一个因素的序列的量级差别不大,所以通0,1,2,,4.2''0()|()()|(1,2,3,4)j j k X k X k j ∆=-= max 0min 0max max |()()|min min |()()|i i k i i k X k X k X k X k ∆=-∆=- 3、求关联度minmax max ()()j j k k ρζρ∆+∆=∆+∆ 其中,一般调节系数ρ的取值区间为()10,,通常取0.5ρ=。
4、作关联度 4、关联度排序,如果21r r <,则参考数列0x 与比较数列1x 更相似,最终的目的也是为了计算变量之间的关联程度。
GRA 算法本质上来讲就是提供了一种度量两个向量之间距离的方法,对于有时间性的因子,向量可以看成一条时间曲线,而GRA 算法就是度量两条曲线的形态和走势是否相近。
为了避免其他干扰,凸出形态特征的影响,GRA 先做了归一化,将所有向量矫正到同一个尺度和位置,然后计算每个点的距离。
灰色关联分析在市场营销中的应用研究市场营销是公司赢得消费者的关注和信任的前提,也是公司实现盈利的核心途径。
而市场营销的成功不仅仅取决于市场营销人员的角色演绎和行为表现,更关键的是依靠市场营销人员进行准确的市场营销分析,有效的挖掘客户需求和潜在需求,找到市场的发展方向,以此制定更符合市场需求的产品和服务,最终收获商业成功。
与此同时,现如今,市场营销已经进化成一门科学,各种分析工具也应声而生,灰色关联分析在市场营销中应用广泛。
灰色关联分析以其“模糊满意度”和“各指标模糊程度”两个特性,有效地表达指标的关联性。
下文将详细探讨灰色关联分析在市场营销中的应用研究。
一、灰色关联分析概述灰色关联分析是对研究事物时,风险评估和决策分析的一种定量分析方法。
该方法可用于测定待研究的两组数据之间关系的紧密程度,进而找到它们之间的相互影响。
该方法能清晰的表达出各指标之间的联系,及其所在的环境和条件。
因此,该方法可用于多个行业领域,如经济、管理、社会、物理、科技等。
二、灰色关联分析在市场营销中的应用1. 用户行为研究灰色关联分析可用于研究消费者的购买行为及其影响因素。
可将客户的消费金额、次数、购买渠道、时间等作为评估指数,将各指数之间的联系进行分析,以发现顾客的消费特点以及顾客满意度所处的程度。
2. 产品市场分析随着市场竞争的加剧,公司不但需要研究自身的产品,也需要对竞争对手的产品进行认真分析。
应用灰色关联分析进行产品市场分析,可找到产品和竞争对手产品之间的关联性,及其潜在的市场需求。
进而,制定更优质的产品,提升产品竞争力。
3. 市场营销策略制定灰色关联分析可通过多因素分析,帮助公司制定更符合市场需求的营销策略。
公司可将市场研究数据作为评估指数,进行多因素分析,以找到各个市场数据之间的联系及其潜在数据分析结果。
进而,制定更符合市场需求的营销策略,实现更好的考试结果。
三、结语在市场营销领域,灰色关联分析的应用,不仅有助于对市场营销数据的有效分析,还能为公司制定更符合市场需求的营销策略。
灰色关联度分析一、关联度分析的意义关联度是表征两个事物的关联程度设有参考序列和比较序列xxx四个时间数据序列如图所示:则关联度为r12>r13>r14关联度分析是一种曲线间n何形状的分析比较,即n何形状越接近,则关联程度越大,反之则小。
二、面积关联度分析法关联度应用关联系数来表示,我们用曲线间的差值大小作为一种衡量关联度的尺度。
设母因素时间数列和子因素时间数列分别是:xx记f k时刻x j对x i的关联系数为§ij(f k),其绝对差值为:︱x︱= k=1,2,……,n这是对两个方列各时刻的最小绝对差为:=︳x︳各时刻的最大绝对差为:︳x︳则母因素为子因素两曲线在各时刻的相对差值用下式表示:式中称为x j对x i在K时刻的关联系数关联系数的上界值=1关联系数的下界值=K∈(0,1),称为分辨系数,减少极值对计算的影响,提高分辨率。
⑵原始数据标准化处理方法关联系数的值主要决定于x i和x j在各时刻的差值,由于x i和x j数据单位不同,会影响的值,因此若是要对原始数据作无量纲处理,即标准化处理。
数据标准化有两种方法:初值化处理和均值化处理。
初值化处理即把序列第一个数据除以该序列所有数据,得到一个新数列。
均值化处理即把序列平均值除以该序列所有数据,得到一个新数列。
⑶面积关联度关联系数只表示各时刻数据间的关联程度,我们用基本均值表示两条曲线间的关联程度r=k=1,2,……,N称r为子因素曲线x j对母因素曲线x i的关联度。
⑷多个序列的最小绝对差和最大绝对差。
在灰色关联度分析中,无论序列有多少,和各只有一个。
和的求法,以为例解释,类似。
=︳x︳例母序列:子序列:第一步:固,,j变动时,得到:︳︳,︳︳,……, ︳︳第二步:从中可以选出:︳︳第三步:当k变动时,可以得到:︳︳, ︳︳,……, ︳︳第四步:从中又可以选出最小的=⑸关联度比较及实际意义当计算出子因素对母因素的关联度后,将排序则子因素对母因素影响的重要程度依次是序列:灰色系统优势分析1、优势分析的意义如果母函数数列不止一个,被比较的子函数数列也不止一个,则可以构成关联矩阵,通过关联矩阵多元素间的关系,可以分析哪些因素是优势,哪些是劣势。
灰色关联分析应用实例(求灰色关联度)灰色关联分析应用实例设序列12(30.5,34.7,35.9,38.2,41)(22.1,25.4,27.1,28.3,31.5)==X X求其绝对关联度、相对关联度和综合关联度(0.5ρ=)(数据取自教材77页第二题)由题目可知,原序列为等时距序列,且皆为1时等时距。
第一步:求始点零像化,得000000000000000000111111((1),(2),(3),(4),(5))(0,4.2,1.2,2.3,2.8)((1),(2),(3),(4),(5))(0,3.3,1.7,1.2,3.2)====X x x x x x X x x x x x第二步:求0110,,-s s s s4000240011124000010101021()(5)9.121()(5)7.821(()())((5)(5) 1.32====+==+=-=-+-=∑∑∑k k k s x k x s x k x s s x k x k x x计算灰色绝对关联度0101011010.93231ε++==+++-s s s s s s因此可以看出两个序列是高度相关的类似的再求相对关联度 第一步:将序列初值化'0'0'0'0'0'00000000'0'0'0'0'0111111((1),(2),(3),(4),(5))(1,1.138,1.035,1.064,1.073)((1),(2),(3),(4),(5))(1,1.149,1.067,1.044,1.113)====X x x x x x X x x x x x再将其始点零像化'0'0'0'0'0'00000000'0'0'0'0'0111111((1),(2),(3),(4),(5))(0,0.138,0.104,0.029,0.009)((1),(2),(3),(4),(5))(0,0.149,0.082,0.023,0.069)==-==--X x x x x x X x x x x x第二步:求0110',',''-s s s s400002400111240'00010101021'()'(5)0.068721''()'(5)0.078721''('()())('(5)'(5)0.0099952===+==+=-=-+-=∑∑∑k k k x k x s x k x s s x k x k x x第三步:求相对关联度0101011010.99141ε++==+++-s s s s s s两个序列的相对关联度也是高度相关的。
灰色关联分析在企业绩效评价中的应用研究绪论企业绩效评价是企业管理中至关重要的一个方面。
不论是内部管理还是外部投资者对企业的评估,都离不开对企业绩效的准确衡量与分析。
然而,由于企业绩效受到诸多内外因素的影响,如市场环境、竞争对手、经济周期等,传统的评价方法往往无法对这些多元因素进行综合分析。
在这种情况下,灰色关联分析作为一种新兴的数据分析技术,被广泛应用在企业绩效评价中。
本文旨在探讨灰色关联分析在企业绩效评价中的应用,并研究其优势和适用性。
一、灰色关联分析概述灰色关联分析是一种基于灰色系统理论的数据分析方法。
它可用于解决数据不完备、信息不确定的问题。
与传统的数据分析方法相比,灰色关联分析能够更好地描述数据之间的联系。
该方法通过构建灰关联度模型,将各因素之间的关联程度定量化,从而得出全面的评价结果。
在企业绩效评价中,灰色关联分析能够帮助企业管理者和投资者了解企业的核心竞争力与发展状况,从而指导决策并优化企业的运营。
二、灰色关联分析在企业绩效评价中的应用1. 确定关键因素在企业绩效评价中,确定关键因素是至关重要的一步。
灰色关联分析能够通过计算各因素之间的灰关联度来确定关键因素。
例如,我们可以将企业经营自由现金流、销售收入、市场份额等作为因素,通过灰色关联度模型,从中找到对企业绩效影响最大的关键因素。
这有助于企业管理者更好地把握核心竞争力所在,并针对关键因素采取相应措施。
2. 分析绩效影响因素灰色关联分析在企业绩效评价中的另一个应用是通过分析各因素之间的关联程度,来揭示绩效的影响因素。
通过对企业绩效数据进行灰色关联分析,我们可以发现隐藏在大量数据背后的规律性。
例如,我们可以将销售额与广告投入、产品质量、市场拓展等因素进行关联分析,从而找到对销售额影响最大的因素。
这有助于企业管理者更好地优化资源配置,提升绩效。
3. 绩效预测与优化灰色关联分析还可以用于企业绩效的预测与优化。
通过建立灰色关联度模型,我们可以将历史绩效数据与其他关联因素进行关联分析,从而预测未来绩效的发展趋势。