实验5 AM调幅仿真
- 格式:docx
- 大小:115.73 KB
- 文档页数:5
AM条幅系统仿真一、实验目的○1学会通过MATLAB中的SIMULINK对以往的实验进行仿真模拟,进行验证性的实验○2通过本次实验对模拟调制技术中的调幅(AM,DSB)有进一步的认识,掌握它们的原理,以及它们之间的关系,各自的特点。
二、实验原理以及过程(1)产生一般的AM波模拟调制中的AM调制是一项最基本的调制技术。
普通AM调制的原理就是调制信号s AM t=s t∗cos(ωc t),其中s(t)为调制信号,cos(ωc t)为载波信号,s AM(t)为已调信号,其中s(t)中含有直流分量m0(s(t)=m(t)+m0,同时实验过程中为了观察方便起见,使m(t)=sin(ωt)),并且假设载波信号的初始相位为零,这样普通AM调制的原理框图就可以是一个正弦和一个余弦信号同时输入到一个乘法器中,就可以产生普通的AM波。
在SIMULINK中实现方法如下所示:其中产生调制信号的信源参数设置如下:调制信号幅度为1,频率为3(rad/sec)为了明显起见bias偏移为1.3,初始相位为0,样本时间为0,这样调制信号可以写为:s t=10+sin(t)---------------------○1载波参数设置如下所示:为了明显起见,载波频率设置为300(rad/sec),初始相位为π/2,使其为余弦函数,偏移为0,样本时间为0。
因此载波可以写为:cos300t----------------------------○2所以已调信号s AM=○1*○2。
其波形如下所示:上图显示的是一般的调幅波,要产生载波被抑制的双边带信号。
(2)产生载波被抑制的双边带信号只需将调制信号中的直流分量去掉即可实现,将调制信号中的Bias设置为零。
便可以产生如下的双边带信号。
(3)AM波的解调AM波的解调原理为:用相干解调法,对于产生的AM波S AM,用产生的AM波与调制时期同频同相的载波相乘即S AM∗cos(ωc t),再通过一个LPF即可恢复出原始的调制信号。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==am解调实验报告篇一:实验5 AM调幅与解调实验报告现代通信原理实验报告实验室名称:通信原理实验室实验日期:年月日篇二:AM实验报告科信学院通信系统仿真二级项目设计说明书(201X/201X学年第二学期)课程名称:通信系统仿真二级项目题目:基于Simulink的模拟通信系统仿真——采用AM调制技术专业班级:通信工程11-21班学生姓名:冯杰、王旋、樊琳琳、李佳会学号: 110312102、110312101、110312103、110312105指导教师:侯华、任丹萍、张龙设计周数: 1周设计成绩:201X年7月12日目录一、项目的目的 .................................................................. . (3)二、项目的内容及要求 .................................................................. . (3)三、项目设计内容 .................................................................. (3)3.1幅度调制及解调原理 (3)3.1.1 AM信号的表达式、频谱及带宽 (3)3.1.2 AM信号的解调——相干解调 (4)3.1.3 高斯噪声原理 (5)3.2建立数学模型 (6)3.3 基于Simulink的仿真模块 (6)3.4 仿真结果 (7)3.5 结果分析 (7)3.6 参考文献 (8)一、项目的目的通信系统仿真项目是通信工程专业CDIO教学体系中重要的设计内容。
它以数字电路、模拟电子线路(低频部分和高频部分)、信息论与编码等课程为基础,将学生所学理论有机地结合起来,树立通信系统的概念,建立通信系统的模型,并通过仿真软件实现通信系统的模拟仿真。
AM信号的仿真分析AM(幅度调制)信号是一种常见的模拟调制技术,它在通信系统中起着重要的作用。
本文将对AM信号进行仿真分析,从原理、调制过程到解调过程进行详细的讨论。
一、幅度调制原理AM信号的产生是通过将低频音频信号与高频载波信号进行调制。
设载波信号为cos(2πf_ct),音频信号为m(t),调制过程可以表示为s(t) = Acos(2πf_ct)(1+ k_am(t)),其中Ac为载波幅度,k_am为调制指数。
可以看到,通过调制指数k_am,音频信号的幅度对载波信号进行调制,从而产生AM信号。
二、AM信号的频谱特性AM信号的频谱特性可以通过频谱分析进行研究。
分析得出,AM信号的频谱主要分布在载频处和载频两侧的正负边带处。
载频处是由于音频信号的幅度最大引起的,正负边带处是由于音频信号的幅度变化引起的。
频谱图如下所示:(插入一张AM信号频谱图)1.载波信号的生成以MATLAB为例,可以通过以下代码生成一个脉冲调制信号:(插入MATLAB代码)2.音频信号的生成仿真中可以选择一段音频作为音频信号输入。
以一个500Hz的正弦波为例,可以通过以下代码生成:(插入MATLAB代码)3.调制过程的仿真将音频信号与载波信号进行幅度调制,并将调制后的信号进行绘制:(插入MATLAB代码)通过运行仿真程序,可以得到调制后的AM信号的时域波形和频谱波形。
1.包络检波(插入MATLAB代码)2.同步检波同步检波可以通过包络检波后,再经过滤波和降频处理得到音频信号。
仿真中,可以模拟原始音频信号作为参考信号,通过乘法混频得到相干波,并通过滤波器得到音频信号。
以下是同步检波的仿真代码:(插入MATLAB代码)通过运行仿真程序,可以获得音频信号的时域波形和频谱波形。
五、结论通过以上对AM信号的仿真分析,可以得到以下结论:1.AM信号的频谱特性主要分布在载频处和正负边带处。
2. AM调制过程中,通过调制指数k_am调制音频信号,可以产生AM 信号。
第九小组项目报告题目AM调幅收音机的仿真与制作一、选择题目的原因AM调幅收音机的各个模块与通信电子电路这门课程的内容息息相关,既减少了理解的困难又能将课本的知识与实践相结合,能更好地理解课本上的内容,因此选择了这个题目。
通信电子电路LC谐振检波电路高频放大混频电路振荡电路二、实验准备首先结合课本的知识以及网上的材料,了解调幅收音机的结构和模块组成以及每个模块的放大参数,然后进行分工,每个模块均按照给定参数进行仿真。
下图为各个模块的放大倍数数据。
三、小组分工李泽民:接收回路,高频放大,低频放大,实物制作与调试李永钰:本地振荡,混频,ppt制作张帅:检波,中频放大四、各个模块的仿真1、接收回路+高频放大实现的功能:将空气中的电磁波接收,并将电磁能量转换为电流信号,经过选频和前级放大输送给后级完成混频。
组成:LC并联谐振回路+高频放大电路仿真如下其中互感线圈T1的前级既充当LC谐振回路的L,又担当着天线的作用,负责接收空气中的电磁波。
LC谐振回路如下通过调节C1可以接受400K—1.1MHz的电磁波,交流分析如下2、本地震荡起初应用电容三点式震荡进行了仿真,波形调整后显示正常,但与混频模块相连接的时候,发现本地震荡输出波形不正常,受混频较大影响。
后采用电感三点式震荡进行仿真,调节反馈系数后可以做到与混频模块相连接后输出波形正常,并且可以调节输出电压大小,输出频率能够包含1M—2.1MHz。
仿真如图可以通过调整T1互感变压器两端电感值来调节输出电压,调节T2的电感值来调节反馈系数,调节C6,C7的值调节震荡频率。
3、混频模块混频原理:高频调制信号与本地震荡加到非线性元件两端,产生新的频率分量,通过中频滤波选出所需的频率相加减所得的465KHz中频。
非线性元件主要有三极管,二极管,乘法器,依次进行了仿真,但他激式晶体管变频仿真制作加调试做了近俩星期没有成功。
①三极管变频仿真下部本地震荡通过T3变压器互感输出加到上方三极管发射机,高频调制信号加到三极管基极,集电极用LC回路选频,原理是正确的,仿真图也是参照课本进行的,到最终调试不成功。
实验5 AM 、DSB 调制仿真实验一、实验目的1、了解LabVIEW 软件的使用方法。
2、掌握AM 、DSB 调制与解调的原理。
二、实验原理1. AM 调制所谓调制,就是在传送信号的一方(发送端)将所要传送的信号(它的频率一般是较低的)“附加”在高频振荡信号上。
所谓将信号“附加”在高频振荡信号上,就是利用信号来控制高频振荡器的某一参数,是这个参数随信号而变化,这里,高频振荡波就是携带信号的“运载工具”,所以也叫载波。
在接收信号的一端(接收端)经过解调(反调制)的过程,把载波所携带的信号取出来,得到原有的信息,解调过程也叫检波。
调制与解调都是频谱变化的过程,必须用非线性元件才能完成。
调制的方式可分为连续波调制和脉冲波调制两大类,连续波调制是用信号来控制载波的幅度、频率或相位,因而分调幅、调频和调相三种方式;脉冲调制是用信号来控制脉冲波的振幅、宽度、位置等,脉冲调制有脉冲振幅、脉宽、脉位、脉冲编码调制等多种形式。
本实验是基于LabVIEW 进行的模拟调制与解调的仿真实验,包含AM 调制与解调、DSB 调制与解调。
我们已经知道,调幅波的特点是载波的振幅受调制信号的控制作周期性的变化,这变化的周期与载波的周期相同,振幅变化与调制信号的振幅成正比。
为简化分析,假定调制信号是简谐振荡,即为单频信号,其表达式为:t w A t m m Ω=cos )(如果用它来对)(cos )(Ω≥=w t A t C c c c ωω进行调幅,那么,在理想情况下,AM 已调信号为tw t w M A tt w kA A t s c a c c m c AM cos )cos 1(cos )cos ()(ΩΩ+=+=ω (5-1)其中调制指数10,≤<=a cm a M A Ak M ,k 为比例系数。
图5-1给出了)(t m 、)(t C 和)(t s AM 的波形图。
(a )调制指数小于1的线性调幅波(b )调制指数等于1的线性调幅波图5-1 普通调幅波形从图中并结合式(5-1)可以看出,普通调幅信号的振幅由滞留分量A c 和直流分量 t w kA m Ωcos 迭加而成,其中交流分量与调制信号成正比,或者说,AM 调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。
AM调制解调电路的设计仿真与实现一、AM调制原理AM调制(Amplitude Modulation)是一种将调制信号的振幅变化嵌入到载波信号中的调制方式。
调制信号通常是低频信号,而载波信号则是高频信号。
通过调制,把载波信号的振幅按照调制信号的幅度变化,实现信号的传输。
AM调制过程中,调制指数的大小决定了调制信号对载波信号的影响程度。
二、AM调制电路的设计AM调制电路需要实现信号的调制以及解调两个部分。
1.调制部分设计调制部分的主要任务是将调制信号与载波信号相乘,实现调制效果。
设计需要考虑的要点有:(1)调制器:调制器使用运算放大器作为基本构建单元,将调制信号与载波信号相乘,输出调制波形。
(2)输出滤波器:调制后的信号带有高频成分和调制信号的频率分量,通过使用一个带通滤波器,滤除非关注的频率成分。
2.解调部分设计解调部分的主要任务是从调制后的信号中恢复出原始的调制信号。
设计需要考虑的要点有:(1)检波器:解调电路中最重要的组成部分是检波器。
检波器用于从调制信号中提取出被调制信号,通常使用整流器或鉴频器实现。
(2)滤波器:在解调信号之后,需要通过滤波器去除高频噪声和杂散信号,从而得到原始的调制信号。
三、AM调制解调电路的仿真实验为了验证设计的正确性和有效性,可以使用电子电路仿真软件进行AM调制解调电路的仿真实验。
常用的仿真软件有Multisim、PSPICE等。
在设计好AM调制解调电路模型之后,可以进行以下仿真实验:1.调制效果验证:输入一个调制信号和一个载波信号,观察输出调制波形的振幅变化情况。
可以调整调制指数或载波频率,观察调制效果的变化。
2.解调效果验证:输入一个调制信号和一个载波信号的混合信号,通过滤波器和检波器,恢复出原始的调制信号。
观察解调效果的清晰度和准确性。
通过仿真实验,可以对设计的AM调制解调电路进行参数优化和性能评估,进一步提高电路的可靠性和效率。
四、AM调制解调电路的实际实现在进行仿真实验验证通过后,可以将AM调制解调电路进行实际实现,制作出实际的电路板和元件。
少年易学老难成,一寸光阴不可轻- 百度文库题目:AM调制与解调的设计时间:2011/1/4—2011/1/10目录一、题目分析 (2)二、电路的总框图 (2)三、调制 (2)1. AM调制波电路图 (2)2.工作原理 (3)3.调制仿真 (4)四、解调 (6)1.包络检波电路 (6)2.工作原理 (6)3. 解调仿真 (7)五、完整电路图 (8)六、理想条件及参数计算 (8)七、总结 (9)1.设计电路的特点 (9)2. 使用价值 (9)3. 心得体会 (10)4.问题解答 (10)5.元器件清单 (12)八、参考文献 (13)一、题目分析调幅调制和解调在理论上包括了信号处理,模拟电子,高频电子和通信原理等知识,涉及比较广泛。
在实际上包括了各种不同信息传输的最基本原理,是大多数设备发射与接收的基本部分,所以我们做的这个课题是有很大的意义的。
本设计报告总体分为两大问题:信号的解调和调制。
在调制部分省略了载波信号的放大、功放部分,要调制的信号也同样省略了放大部分,所以在调制中保留了调制器中的主要部分—乘法器,在解调部分也只是保留了检波器部分,即二极管检波器。
在确定电路后,利用了EDA 软件Multisim 进行仿真来验证结果。
二、电路的总框图三、调制部分 1、AM 调制波电路图调制信号乘法器载波信号半波整流器低通滤波器已调波R1500ΩR2500ΩR3500ΩQ12N2222Q32N2222Q22N2222Q52N2222Q72N2222Q42N2222Q62N2222Q82N2222Q92N2222R951ΩR46.8kΩR851ΩR1010kΩKey=A 50%W1500kΩKey=A 50%R1110kΩKey=A50%C3100uFC210nF R1451ΩR71kΩR131kΩR121kΩR53.9kΩR63.9kΩC110nFC410nFC510nF Q102N2222R1675kΩR1775kΩR182kΩR192kΩVCC 12VVEE -8VXFG1XFG2XSC2ABExt Trig++__+_V2120 Vrms 60 Hz 0°XSC3A B Ext Trig++__+_V3120 Vrms60 Hz 0°XSC4AB E x t T r i g ++__+_V5120 Vrms 60 Hz 0° V4120 Vrms 60 Hz 0°32313029280272410VEE VCC 01815141716131211987506432133222、工作原理滑动变阻器W1向右滑动到100%电源VEE 产生一个电压加载到信号发生器XFG2产生频率为10kHz 幅值为的22mv 的调制信号,然后与信号发生器XFG1产生的频率为10MHz ,幅值为23mv 的载波信号进入到乘法器形成已调信号,用框图的形式表现如下:乘法器MC1496工作原理:Q1、Q2与Q3、Q4组成双差分放大器,Q5、Q6组成单差分放大器用以激励Q1~Q4。
AM调制MATLAB仿真程序% AM_amplitude_modulation_test.mclc;close all;clear all;%--参数%--采样参数fs =10e6; %--数字采样速率, fs >= 2(fc+fm+0.5*Bm), 这⾥取 fs = 10 MHzN =200; %--采样点个数, N > fix(2*fs/fm); %--⾄少⼀个周期内采两个点n =0:N-1; %--采样序列t =n/fs; %--采样时间序列%--调制信号Am =1; %--归⼀化幅值fm =0.1e6; %--调制信号的频率, 这⾥取 fm = 0.1MHzBm = 0;%--带宽,这⾥取为单频信号,所以 Bm=0%-----------------------%--调制信号表达式%----------------------sm = Am*cos(2*pi*fm*t);%--载波信号Ac =1; %--归⼀化幅值fc =1e6; %--载波频率, ⼀般 fc > fm, 这⾥取 fc = 1 MHz%-----------------------%--载波信号表达式%----------------------sc = Ac*cos(2*pi*fc*t);%--调制度mf = 0.5;%--mf 取值在 0 和 1 之间. mf = 0 表⽰没有调制;mf =1 是过调制的边界%--普通幅度调制:载波+双边带 %-- 点乘:.* , 两个相等长度的⽮量对应点相乘% s_am = (1+mf*Am*cos(2*pi*fm*t)).*(Ac*cos(2*pi*fc*t));%----------------------------%--普通幅度调制, 调幅波表达式%----------------------------s_am_general = (1+mf*sm).*sc; %--%--双边带调制:抑制载波 %-- 点乘:.* , 两个相等长度的⽮量对应点相乘% s_am_DSB = mf*Am*cos(2*pi*fm*t).*(Ac*cos(2*pi*fc*t));%----------------------------%--双边带调制, 调幅波表达式%----------------------------s_am_DSB = mf*sm.*sc; %--%--单边带调制:抑制载波+抑制其中⼀个边带% s_am_SSB_UP = ⾼通滤波器{Am*mf*cos(2*pi*fm*t).*Ac*cos(2*pi*fc*t)};% = 0.5*Am*mf*cos(2*pi*(fm+fc)*t);%--上边带% s_am_SSB_DW = 低通滤波器{Am*mf*cos(2*pi*fm*t).*Ac*cos(2*pi*fc*t)};% = 0.5*Am*mf*cos(2*pi*(fm-fc)*t);%--下边带,DW 表⽰ DOWN%----------------------------%--单边带调制, 调幅波表达式%----------------------------s_am_SSB_UP = 0.5*Am*mf*cos(2*pi*(fm+fc)*t); %--上边带s_am_SSB_DW = 0.5*Am*mf*cos(2*pi*(fm-fc)*t); %--下边带,DW 表⽰ DOWN%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_general; %--普通幅度调制(包含:载波+上边带+下边带)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-普通幅度调制')%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_DSB; %--双边带幅度调制(抑制:载波)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sm)title('基带信号')axis tight %--使得图形紧凑subplot(3,2,3)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-双边带调制')%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_SSB_UP; %--单边带幅度调制(抑制:载波+下边带)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-单边调制-上边带')%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_SSB_DW; %--单边带幅度调制(抑制:载波+上边带)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sm)title('基带信号')axis tight %--使得图形紧凑subplot(3,2,3)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-单边调制-下边带')。