1apBiblioteka (a≠ 0 ,p是正整数)
2020/4/8
6
零指数幂、负指数幂的理解
为使“同底数幂的运算法则am÷an=am–n通行无阻: (a≠0, m、n都是正整数)
1= am÷am= am–m = a0, ∴ 规定 a0 =1;
当p是正整数时,
1 1 a
ap
=a0÷a =a0–p
p
p
∴
规定
a p
:
1 ap
(1)10 3
2 0.53
3 34
2020/4/8
11
议一议
计算下列各式,你有什么发现?与同伴交 流。
(1)7-3 7-5
(3)(
1 2
)-5
2
(2)3-1 36 (4)(- 8)0 (- 8)-2
2020/4/8
12
发现:
引入零指数幂和负整数指数幂后,正整数 指数幂的运算性质在指数是整数时仍然适 用。
1、把下列各数表示成
a10n 1 a 10, n为整数 的形式:
(1)120000; (2)0.000021; (3)0.00005001。
2020/4/8
18
小试身手
2、将下列各数用科学计数法表示:
(1)320=3.2×100=3.2×10(2 )
(2)4050=4.05×( 1000
)= 4.05 3×10( )
② 幂的底数是积的形式时,要再用一次
(ab)n=an an.
2020/4/8
3
2、讨论下列问题: (1)同底数幂相除法则中各字母必须满足什么条件?
am÷an= am–n
(a≠0,m,n都是正整数,且m>n) 同底数幂相除,底数_不__变__,指数相__减____.