小数分数转化成百分数
- 格式:ppt
- 大小:1.06 MB
- 文档页数:12
人教版小学数学六年级上册(小数和分数化成百分数)教案教学设计设计说明1.在合作交流中经历知识的探究过程。
(数学课程标准)强调让学生经历数学学习过程与获得数学结论同样重要,为此,在教学中让学生经历自主探究、合作交流等活动,对于开展学生的数学能力有着重要的作用。
在探究新知的过程中,本节课的教学设计采纳小组合作学习的方法,引导学生应用学过的分数、小数互化的知识进行迁移、类推,让学生在探究活动中猎取新知,提升能力。
2.充分发挥学生的主体作用,引导学生主动猎取知识。
教学活动是师生积极参与、交往互动、共同开展的过程。
有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
因此,在教学设计中注重以学生为主体,放手让学生探究,及时肯定学生合理的转化方法,引导学生在体会数学方法的多样化和合理化的过程中,通过观察、比照、分析,觉察规律。
课前打算教师打算PPT课件学情检测卡教学过程⊙激趣导入师:同学们,你们喜欢打篮球吗?你们最喜欢的篮球运发动是谁?(学生自由发表看法)师:前两天,姚明来到了我们学校,为同学们讲授了投篮的技巧,还留下他亲笔签名的篮球。
学校为了开展健身活动,增强学生体质,组织了一次投篮比赛,冠军可以获得姚明亲笔签名的篮球。
很多同学都踊跃参加,经过一番剧烈的争夺,六(1)班的王涛和六(3)班的李强脱颖而出。
到底谁是冠军呢?我们一起来看看他们两人的成绩吧。
(课件出示教材84页例1) 师:怎样推断谁是冠军呢?(学生交流不同的方法)师:要比较两人的成绩,必须求出两人的命中率分别是多少,这节课我们就来探究有关百分率方面的知识。
设计意图:通过生活中的投篮情境导入新知,既激发了学生的学习积极性,又激发了学生强烈的好奇心和求知欲,为学习新知奠定了良好的感情根底。
⊙探究新知1.探究求命中率的方法。
(1)命中率的意义。
师:什么是命中率呢?教师明确:命中率指的是投中的次数占投篮次数的百分之几。
小数、分数、百分数之间的关系及其转化参考答案典题探究例1.将1.3化成百分数是13%.×.(判断对错)考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:把1.3化成百分数,只要把1.3的小数点向右移动两位,同时添上百分号为130%;据此判断.解答:解:1.3=130%.故答案为:×.点评:此题考查把小数化成百分数的方法的运用.例2.在、0.67、66.7%中最大的数是66.7%.×.(判断对错)考点:小数、分数和百分数之间的关系及其转化.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:≈0.6667,66.7%=0.667;在0.6667,0.67,0.667三个数中最大的是0.67;故判断为:错误.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.例3.三成五改写成百分数是35% .考点:小数、分数和百分数之间的关系及其转化.专题:分数和百分数.分析:表示一个数是另一个数的十分之几的数,叫做成数.所以三成五改写成百分数为:三成五==0.35=35%.解答:解:三成五==0.35=35%.故答案为:35%.点评:在做本题时要注意成数与分数及百分数之间的互化.例4.把,,,9%按从大到小的顺序排列是>>>9% .考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:=0.999,≈0.910,=0.9,9%=0.09;因为0.999>0.910>0.9>0.09,所以>>>9%.故答案为:>>>9%.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.演练方阵A档(巩固专练)1.化成百分数约等于()A.257.1% B.2.57% C.257.2%考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:分数化百分数的方法:先把分数化成小数,再把小数点向右移动两位,同时添上百分号,除不尽时通常保留三位小数.解答:解:==18÷7≈2.571=257.1%;故选:A.点评:此题考查分数化百分数的方法,掌握方法,正确转化.2.1.8%改写成分数是()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.专题:分数和百分数.分析:把1.8%先改写成分母是100的分数,再进一步化成分数.解答:解:1.8%===;故应选:B.点评:本题考查了百分数与分数的互化,先把百分数化成分数的书写形式,再进行约分化简即可.3.千分之几的数用()位小数表示.A.千B.三C.一考点:小数、分数和百分数之间的关系及其转化.专题:小数的认识;分数和百分数.分析:千分之几的数可以改写成三位小数;据此进行选择.解答:解:千分之几的数用三位小数表示;故选:B.点评:此题考查把分母是10、100、1000…等分数化成小数的方法:十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示…4.与40%不相等的是()A.四成B.0.4 C.考点:小数、分数和百分数之间的关系及其转化.专题:分数和百分数.分析:根据成数的意义,四成就是十分之四,也就是40%;根据把小数化成百分数的方法,把0.4的小数点向右移动两位,添上百分号就是40;把化成小数是4÷5=0.8,把0.8的小数点面右移动两位,添上百分号就是80%.据此选择.解答:解:与40%不相等的是;故选:C点评:本题是考查小数、分数、成数、百分数之间的关系,利用它们之间的关系和性质即可进行转化.5.把小数0.0023化成百分数为()A.2.3% B.0.23% C.23% D.0.023%考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:把小数化成百分数,只要把小数点向右移动两位,同时添上百分号即可;据此转化后再选择.解答:解:0.0023=0.23%;故选:B.点评:此题考查小数与百分数互化方法的灵活运用.6.把化成百分数,正确的结果是()A.18.7% B.18.75% C.18.8%考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:用分子除以分母化成小数,然后把小数的小数点向右移动两位,加上百分号,化成百分数.解答:解:=0.1875=18.75%.故选:B.点评:分数化成百分数,可以先把分数化成分母是100的分数,也可以先化成小数,再把小数化成百分数.7.6÷8的商用最简分数表示是()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:根据分数与除法的关系,被除数相当于分数的分子,除号相当分数线,除数相当于分母,商相当于分数值;然后再将分数化简.故选:D.点评:此题是考查分数与除法的关系,最简分数的意义及化简分数,属于基础知识,要记住.8.米可以写作()米.A.0.9 B.0.09 C.0.009考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:百分之几可以写成两位小数;据此进行改写.解答:解:米=0.09米;故选:B.点评:此题考查把分母是10、100、1000…等分数化成小数的方法:十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示…9.把0.875化成最简分数后,它的分数单位是()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.专题:分数和百分数.分析:把0.875化成分数并化简是,表示把单位“1”平均分成8份取其7份,它的1份就是,根据分数单位的意义,这个分数的分数单位就是.的分数单位是.故选:C.点评:此题是考查分数单位的意义、小数与分数的关系.10.下面各数不能化成百分数的是()A.0.28 B.米C.八折D.三成考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:百分数是表示一个数是另一个数百分之几,又叫百分率或百分比;所以它只能表示两数之间的倍数关系,不能表示某一个具体的数量,后面不能带单位名称;由此可知米不能化成百分数.解答:解:A、0.28=28%;B、根据百分数的意义,可知百分数不能表示某一具体的数量,所以米不能化成百分数;C、八折=80%;D、三成=30%.故选:B.点评:明确百分数的意义是解决此题的关键,要注意:当分数表示分率时可以化成百分数,而当分数表示具体的数量时,就不能化成百分数了.B档(提升精练)1.在0.454,0.4,,45% 四个数中,最大的数是()A.0.454 B.0.4C.D.45%考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.专题:运算顺序及法则.分析:先分别把0.4,,和45%化成小数,0.4和可以保留三位小数,进而按照小数大小比较的方法,从中找出最大的数即可.解答:解:0.4≈0.456,≈0.444,45%=0.45因为0.456>0.454>0.45>0.444所以0.4>0.454>45%>所以在0.454,0.4,,45%四个数中,最大的数是0.4.故选:B.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.2.下面分数中,能化成有限小数的是()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:辨识一个分数能否化成有限小数,首先看这个分数是否是最简分数,不是的,先把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数;据此进行分析后再选择.解答:解:A、是最简分数,分母中只含有质因数3,所以不能化成有限小数;B、是最简分数,分母中只含有质因数13,所以不能化成有限小数;C、是最简分数,分母中只含有质因数5,所以能化成有限小数;D、是最简分数,分母中只含有质因数7,所以不能化成有限小数.故选:C.点评:此题主要考查什么样的分数可以化成有限小数:必须是最简分数,分母中只含有质因数2或5.3.下列各数不能化成有限小数的是()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.分析:根据一个最简分数,如果分母的质因数只有2和5,就能化成有限小数;如果除了2 和5 以外还有别的质因数就不能化成有限小数.先化成最简分数,再将分母分解质因数,即可做出选择.解答:解:32=2×2×2×2×2,12=2×2×3,20=2×2×5,=故应选B.点评:此题主要考查一个最简分数能不能化成有限小数的方法.4.下列各数中,()在0.6和之间.A.59% B.63% C.考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.专题:小数的认识;分数和百分数.分析:把化成小数,再把所用选项也化成小数,再进行解答.解答:解:=0.64,59%=0.59,63%=0.63,=0.66.在0.6的0.64之间的有0.63.故答案选:B.点评:本题的关键是把这些数都化成小数后,再进行选择.5.下面各数中,最小的是()A.B.C.0.777 D.77.8%考点:小数、分数和百分数之间的关系及其转化.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:≈0•733,77•8%=0•778,,≈0•7777,在0•733,0•777,0•7777,0•778四个数中最小的是0•733,即最小.故选A点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.6.下列四个数中,最大的是()A.101% B.0.9 C.D.1考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:101%=1.01,≈0.9995;在1.01,0.9,0.995,1四个数中最大的是1.01;即101%是最大的;故选A.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.7.下列分数中,不能化为有限小数的是()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:辨识一个分数能否化成有限小数,首先看这个分数是否是最简分数,不是的,先把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数;据此进行分析后再选择.解答:解:A、化简后是,分母只含有质因数5,所以能化成有限小数;B、是最简分数,分母只含有质因数5,所以能化成有限小数;C、化简后是,分母只含有质因数2,所以能化成有限小数;D、是最简分数,分母含有质因数5和3,所以不能化成有限小数.故选:D.点评:此题主要考查什么样的分数可以化成有限小数:必须是最简分数,分母中只含有质因数2或5.8.在,18%,二成,和0.181这四个数中最小的是()A.B.二成C.18% D.0.181考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.分析:把、18%、二成和0.181这四个数都化成小数,然后再进行比较.解答:解:≈0.1818;18%=0.18;二成=20%=0.2;18%<1.81<<二成;故选:C.点评:本题考查的知识点有:小数、分数、百分数、成数之间的互化及小数的大小比较.9.下列四个数中,你认为最大的是()A.B.101% C.D.1考点:小数、分数和百分数之间的关系及其转化;分数大小的比较.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:0.≈1.000,101%=1.01,≈0.9995;在1.000,1.01,0.9995,1这四个数中最大的数是1.01;即101%是最大的;故选:B.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.10.下列各数中,最大的数是()A.3.14 B.C.3D.31.4%考点:小数、分数和百分数之间的关系及其转化;分数大小的比较.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:≈3.1429,≈3.1667,31.4%=0.314;在3.14,3.1429,3.1667,0.314四个数中最大的是3.1667;即是最大的;故选:C.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.C档(跨越导练)1.旅游团组织庆祝会,有25%的人可以得到气球,得到气球的人数占()A.B.C.D.考点:小数、分数和百分数之间的关系及其转化.专题:分数和百分数.分析:根据百分数化成分数的方法:首先把百分数改写成分数形式,然后能约分的要约分乘最简分数.由此解答.解答:解:25%=;答:得到气球的人数占.故选:C.点评:此题主要考查把百分数化成分数的方法,先把百分数改写成分数形式,然后能约分的要约分.2.把30%的百分号去掉,原来的数就()A.扩大100倍B.缩小100倍C.不变考点:小数、分数和百分数之间的关系及其转化.专题:压轴题.分析:30%=0.3,把30%的百分号去掉,原来的数就由0.3变成30,小数点就向右移动了两位,就表示原来的数扩大了100倍.解答:解:30%=0.3,30%→30即0.3→30,相当于小数点向右移动了两位,就表示原来的数扩大了100倍.故选:A.点评:此题属于考查小数与百分数的互化和小数点的位置移动,引起小数的大小变化.3.从甲地到乙地,小王用了0.75小时,小李用了40分钟,小X用了小时,三人()的速度最快.A.小王B.小李C.小X D.无法确定考点:小数、分数和百分数之间的关系及其转化;简单的行程问题.专题:运算顺序及法则.分析:因为三个人行驶的路程一定,所以谁用的时间最短,则谁的速度就最快,据此比较他们的时间即可解答问题.解答:解:0.75小时=45分钟小时=35分钟45分钟>40分钟>35分钟所以小X用的时间最短,则小X的速度最快.故选:C.点评:解答此题的关键是明确:路程一定时,时间与速度成反比例.4.关于分数和百分数,下面说法正确的是()A.后面都可以加单位B.都能表示具体的数量C.都能表示两个数的比率考点:小数、分数和百分数之间的关系及其转化.专题:分数和百分数.分析:分数既可以表示具体的数量,也可以表示两个数的比率,当表示具体的数量时,后面可以带单位,当表示比率时,后面不能带单位;而百分数只表示两个数的比率,不能表示具体的数量,后面不能带单位;据此进行选择.解答:解:关于分数和百分数:A、后面都可以加单位,因为百分数的后面不能加单位,所以此种说法错误;B、都能表示具体的数量,因为百分数不能表示具体的数量,所以此种说法错误;C、都能表示两个数的比率,此种说法正确;故选:C.点评:此题考查分数和百分数的区别和联系.5.把化成百分数(百分号前面的数保留一位小数)是()A.50% B.55.5% C.55.6% D.56.0%考点:小数、分数和百分数之间的关系及其转化.专题:运算顺序及法则.分析:把分数化百分数,先用分数的分子除以分母得出小数商,除不尽时通常保留三位小数,再把小数点向右移动两位,同时填上百分号.解答:解:=5÷9≈0.556=55.6%.故选:C.点评:此题考查分数化百分数方法的灵活运用.6.完成同样多的作业,小军用了0.4小时,小强用了小时()做得快.A.小军B.小强C.无法比较考点:小数、分数和百分数之间的关系及其转化.专题:简单应用题和一般复合应用题.分析:完成同样多的作业,看谁做得快,只要根据谁用的时间少谁就做得快;据此先把小时化成小数,进而比较得解.解答:解:小时=0.25小时,因为0.4小时>0.25小时,所以小强做得快.故选:B.点评:此题考查学生的生活经验:完成同样多的作业,谁用的时间少就说明谁做得快;也考查了分数与小数的互化.7.把31.4%、3.、π、3.1、314从大到小排列,排在第二的数是()A.31.4% B.πC.3.1考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.专题:运算顺序及法则.分析:小数的大小比较方法:整数部分大,这个数就大;整数部分相同,比较小数部分,十分位上的数就大;十分位上的数相同的,百分位上的数,依此类推,进行比较即可.解答:解:314>3.1>π>3.>31.4%所以排在第二的数是3.1;故选:C.点评:此题考查了小数的大小比较方法.8.2466÷95=25.9578…的商用百分数表示(百分号前保留一位小数)是()A.26% B.25.96% C.2595.8%考点:小数、分数和百分数之间的关系及其转化;近似数及其求法.专题:小数的认识;分数和百分数.分析:小数化百分数,只要把小数点向右移动两位,同时填上百分号即可;要使此商的百分号前保留一位小数,根据商为25.9578…,需要把商保留三位小数,由于万分位上的数是8满五了,所以尾数舍掉后,要向千分位进一为25.958,再化成百分数即可.解答:解:2466÷95=25.9578…≈25.958=2595.8%.故选:C.点评:此题考查小数化百分数的方法,也考查了用“四舍五入”法求近似数的方法的灵活运用.9.在3.014,3,314%,中,最大的数是 3.1.考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案.解答:解:3≈3.1429,314%=3.14,3.1≈3.1444,3.≈3.1414,3.014,3.1429,3.1444,3.1414四个数中最大的是3.1444;即3.1是最大的;故答案为:3.1.点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.10.在、3.、3.1、314%中,按从大到小的顺序排列 3.1>>3.>314% .考点:小数、分数和百分数之间的关系及其转化;小数大小的比较.专题:分数和百分数.分析:把分数、百分数,循环小数都化成保留一定位数的小数,再根据小数的大小比较方法进行比较、排列.解答:解:≈3.143,3.≈3.141、3.1≈3.144、314%=3.14,因此,3.1>>3.>314%.故答案为:3.1>>3.>314%.优选点评:小数、循环小数、分数、百分数的大小比较通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较.21 / 21。
如何将分数和小数转化为百分数分数和小数的转化为百分数在数学运算中,我们常常会遇到需要将分数和小数转化为百分数的情况。
百分数是指将数值乘以100后加上百分号“%”表示,它可以更直观地表示数值大小。
本文将介绍如何将分数和小数转化为百分数,并提供一些实用的转化方法。
一、将分数转化为百分数将分数转化为百分数有以下几种方法:方法一:直接乘以100将分数乘以100即可得到百分数的值。
例如,将1/2转化为百分数,就是(1/2)×100=50%。
方法二:转化为小数再乘以100将分数进行除法运算,得到其对应的小数值,然后将小数值乘以100即可得到百分数。
例如,将3/4转化为百分数,先进行除法运算得到0.75,然后将0.75×100=75%。
方法三:化为百分数的分数形式有些分数可以直接化为百分数的形式,例如1/5可以化为20%,1/8可以化为12.5%。
二、将小数转化为百分数将小数转化为百分数的方法如下:方法一:直接乘以100将小数乘以100即可得到百分数的值。
例如,将0.35转化为百分数,就是0.35×100=35%。
方法二:使用移动小数点的方法将小数点向右移动两位,然后在末尾加上百分号“%”即可得到百分数。
例如,将0.75转化为百分数,先向右移动两位得到75,然后加上百分号得到75%。
方法三:化为百分数的小数形式有些小数可以直接化为百分数的形式,例如0.2可以化为20%,0.125可以化为12.5%。
三、实例演练为了帮助读者更好地理解如何将分数和小数转化为百分数,这里给出一些实例演练。
例一:将2/5转化为百分数方法一:(2/5) × 100 = 40%方法二:2 ÷ 5 = 0.4,0.4 × 100 = 40%例二:将0.6转化为百分数方法一:0.6 × 100 = 60%方法二:0.6向右移动两位为60%,即0.6 = 60%例三:将5/8转化为百分数方法一:(5/8) × 100 = 62.5%方法二:5 ÷ 8 ≈ 0.625,0.625 × 100 = 62.5%通过以上实例演练可以看出,不同的分数或小数转化为百分数的方法可能不同,我们可以根据具体情况采取合适的转化方法。
小数分数百分数互相转化方法
小数分数百分数互相转化方法:1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
百分数与分数小数的转化数学中,我们常常会遇到百分数、分数和小数之间的相互转化。
这种转化涉及到不同形式的数值表示,对于解决实际问题和进行数值计算都非常重要。
本文将介绍百分数、分数和小数之间的转化方法和示例。
一、百分数转化为分数和小数当我们遇到百分数时,需要将其转化为分数或小数,以便于进行计算或比较大小。
1. 百分数转化为分数百分数转化为分数的方法是:将百分数的数字部分除以100,并将其作为分数的分子,分母为100。
例如:- 把30%转化为分数:30% ÷ 100 = 30 ÷ 100 = 3/10- 把75%转化为分数:75% ÷ 100 = 75 ÷ 100 = 3/42. 百分数转化为小数百分数转化为小数的方法是:将百分数的数字部分除以100。
例如:- 把60%转化为小数:60% ÷ 100 = 60 ÷ 100 = 0.6- 把85%转化为小数:85% ÷ 100 = 85 ÷ 100 = 0.85二、分数转化为百分数和小数当我们遇到分数时,需要将其转化为百分数或小数,以方便进行比较或计算。
1. 分数转化为百分数分数转化为百分数的方法是:将分数的分子除以分母,再将结果乘以100%。
例如:- 把2/5转化为百分数:(2 ÷ 5) × 100% = 0.4 × 100% = 40%- 把3/8转化为百分数:(3 ÷ 8) × 100% = 0.375 × 100% = 37.5%2. 分数转化为小数分数转化为小数的方法是:将分子除以分母。
例如:- 把1/2转化为小数:1 ÷ 2 = 0.5- 把3/4转化为小数:3 ÷ 4 = 0.75三、小数转化为百分数和分数当我们遇到小数时,需要将其转化为百分数或分数,以便于进行比较或计算。
1. 小数转化为百分数小数转化为百分数的方法是:将小数乘以100%。
小数分数百分数互化方法一、小数化分数。
1.1 有限小数化分数。
有限小数化分数很简单,就看小数的位数。
比如说 0.25,它有两位小数,那咱就把它写成 25/100,然后约分,变成 1/4。
这就好比把一块蛋糕平均分成 100 份,取了 25 份,再把这 25 份重新组合一下,就成了 1/4 块蛋糕。
1.2 无限循环小数化分数。
无限循环小数化分数稍微有点麻烦,但也有窍门。
比如说 0.333...,这是个纯循环小数,设它为 x,那 10x 就等于 3.333...,用 10x - x 就等于 3,也就是 9x = 3,x 就等于 1/3。
这就像解一个谜题,找到关键就能迎刃而解。
二、分数化小数。
2.1 普通分数化小数。
普通分数化小数,直接用分子除以分母就行。
像 3/4,3÷4 = 0.75,这就一目了然。
2.2 带分数化小数。
带分数化小数,先把带分数变成假分数,再用分子除以分母。
比如说 2 又 1/2,先变成 5/2,然后 5÷2 = 2.5,这就轻松搞定。
2.3 特殊分数化小数。
有些特殊分数,像 1/2 就是 0.5,1/4 是 0.25,1/5 是 0.2,这些要牢记于心,能让咱们在计算的时候快人一步。
三、小数化百分数。
3.1 方法。
小数化百分数,把小数点往右移两位,再加上百分号就行。
比如 0.75,小数点右移两位变成 75,加上百分号就是 75%,这简直是小菜一碟。
3.2 举例说明。
像 0.125 变成 12.5%,就像给这个小数穿上了一件百分数的外衣,一下子就变了个模样。
小数、分数、百分数互化,只要掌握了方法,那就是手到擒来。
多练习练习,就能熟能生巧,在数学的世界里畅游无阻!。