第十章机械振动和电磁振荡振动
- 格式:pdf
- 大小:1.40 MB
- 文档页数:21
机械振动与波动机械振动与波动是物理学中的重要概念和研究领域。
本文将从机械振动的基本原理、波动的特性以及它们在生活中的应用等方面展开论述。
一、机械振动机械振动是指物体周围环境中某个物理量周期性地变化。
在机械振动中,物体会围绕平衡位置做前后或上下的周期性振动。
机械振动的基本元素有质点、弹簧和阻尼器。
1. 质点振动在质点振动中,一个物体被假设成一个质点,不考虑其大小和形状。
质点在线性回复力作用下,在某个平衡位置附近做简谐运动。
质点振动的周期T和频率f与质点的质量m和弹簧的劲度系数k有关,分别由公式T=2π√(m/k)和f=1/T得出。
2. 弹簧振动弹簧振动是机械振动中常见的一种形式。
当弹簧受到外力拉伸或压缩时,会发生弹性畸变,当外力撤离时,弹簧会恢复原状。
弹簧振动是由弹性势能和动能之间的转换所驱动的周期性运动。
3. 阻尼振动在实际的振动系统中,会存在阻力的存在,使振动系统减弱并最终停止。
这种减弱称为阻尼。
根据阻尼的不同程度,振动系统可以分为无阻尼振动、欠阻尼振动和过阻尼振动三种情况。
二、波动波动是指物理量在空间和时间上周期性地传播和变化。
波动可以分为机械波和非机械波两种类型。
1. 机械波机械波是指需要介质传播的波动现象。
根据波动传播的方向,机械波可分为横波和纵波。
横波传播方向垂直于波动方向,如水波;纵波传播方向与波动方向平行,如声波。
机械波的传播速度与介质的性质有关。
2. 非机械波非机械波是指不需要介质传播的波动现象。
电磁波和光波是两种常见的非机械波。
非机械波可以在真空中传播,并且传播速度快,通常以光速传播。
三、机械振动与波动的应用机械振动与波动在生活中有许多实际应用。
下面将列举其中几个。
1. 音乐乐器音乐乐器的演奏就是利用了机械振动和波动的原理。
例如,弹奏吉他时琴弦的振动产生声波,通过空气传播到人的耳朵,使人产生听觉感受。
2. 地震测量地震测量利用了机械振动和波动的原理。
通过监测地震波在地壳中的传播速度和路径,可以判断地震的强度和震源位置,为地震预测和防灾提供帮助。
010203定义稳态受迫振动和非稳态受迫振动。
类型应用振荡频率电感线圈振荡的频率与电感量、电阻和电容有关,通过调节这些参数可以改变振荡频率。
振荡原理电感线圈中,当电流发生变化时,会产生感应电动势来阻碍电流的变化,从而产生振荡。
应用振荡电路是许多电子设备中的重要组成部分,如信号发生器、无线电等。
电感线圈振荡电磁场振荡电磁波传播电磁波传播原理电磁波的特性应用单摆模型描述物体在平衡位置附近往复运动的模型,可以用于描述机械振动和某些电磁振荡。
单摆的周期公式是 T =2π√(L/g),其中L是悬摆的长度,g是重力加速度。
在不同的星球或不同的重力场中,单摆的周期会发生变化,因此可以用来测量重力场的变化。
弹簧质量模型弹簧质量模型的振动方程是 m(d^2x/dt^2) = -kx,其中m 是质量块的质量,k是弹簧的弹性系数。
解这个方程可以得到振动的频率和振幅,从而可以描述物体的振动特性。
描述一个质量块在弹性力作用下运动的模型,可以用于描述机械振动和某些电磁振荡。
电感线圈模型描述电感线圈在电磁场中运动的模型,可以用于描述某些电磁振荡。
电感线圈的动态方程是d^2i/dt^2 + R(di/dt) + (1/L) *(Li) = 0,其中i是电流,R是电阻,L是电感。
解这个方程可以得到电流的时间变化,从而可以描述电磁振荡的特性。
简谐振动的数学公式简谐振动的数学公式简谐振动的特点简谐振动的描述阻尼振动的数学公式阻尼振动的描述阻尼振动的数学公式阻尼振动的特点03受迫振动的特点受迫振动的数学公式01受迫振动的描述02受迫振动的数学公式1电感线圈振荡的数学公式23电感线圈在电流变化时会产生感应电动势,从而产生振荡。
电感线圈振荡的描述i=Icos(ωt+φ),其中I为电流幅度,ω为角频率,φ为初相位。
电感线圈振荡的数学公式电感线圈的振荡频率由电路阻抗决定,与电源频率无关。
电感线圈振荡的特点机械振动在工程中的应用机器运转机械振动可以提高机器的运转效率和精度,如振动筛、振动电机等。
高二物理电磁振荡整理知识点电磁振荡是高中物理中重要的内容之一,也是电磁学的基础。
在本文中,我们将对高二物理电磁振荡的知识点进行整理和总结,以供学生复习和巩固。
1. 电磁场的概念电磁场是指电荷或电流所产生的空间中存在的物理量,它包括电场和磁场两部分。
电场是由电荷产生的作用力,在空间中可以用电场线表示;磁场是由电流产生的作用力,在空间中可以用磁感线表示。
电磁场的性质主要有强度、方向和分布等。
2. 电磁振荡的基本概念电磁振荡是指在电磁场中,电磁波或者电磁信号以一定的频率在空间中传播的现象。
其基本特点包括振幅、频率、周期和波长等。
电磁振荡可以通过电磁波方程模型来进行描述,其中包括电场和磁感应强度的变化规律。
3. 电磁振荡的物理量在电磁振荡中,有一些重要的物理量需要了解。
(1) 振幅:振幅是指电磁振荡的最大偏移量,表示波的振动幅度。
(2) 频率:频率是指电磁波在单位时间内的振动次数,通常用赫兹(Hz)来表示。
(3) 周期:周期是指电磁波振动完成一个完整的周期所需的时间,通常用秒(s)来表示。
(4) 波长:波长是指电磁波振动完成一个完整的波长所需的距离,通常用米(m)来表示。
4. 电磁振荡的类型电磁振荡可以分为两种类型,即机械振荡和电磁振荡。
(1) 机械振荡:机械振荡是指由于机械系统的周期性运动而产生的振动。
例如,弹簧振子、单摆等都属于机械振荡。
(2) 电磁振荡:电磁振荡是指由于电磁场的周期性变化而产生的振动。
典型的例子包括电磁波、交流电等。
5. 电磁振荡的应用领域电磁振荡的应用非常广泛,涉及电信、无线通信、雷达、电磁感应等众多领域。
(1) 电信领域:电磁振荡在电信领域中被广泛应用,可以用于传输和接收信息。
(2) 无线通信领域:无线通信是指不通过物理连接的方式进行信息传输,电磁振荡可以实现无线通信的传输和接收。
(3) 雷达领域:雷达是宇航和军事等领域中常用的一种目标检测和测距的设备,它利用电磁波的速度和反射来实现对目标的探测。
用机械振动类比理解电磁振荡★疑难辨析★对电磁振荡的机制,课本上的分析是基于电容器充放电和电感器自感,这个分析思路理解起来有些复杂,但似乎也只能如此。
不过,我们都会发现,电磁振荡现象中,电容器极板上的电荷量和通过电感器的电流,一个按正弦规律变化,另一个按余弦规律变化,这和机械振动中振子的位移和速度的变化规律很相似,那么,机械振动与电磁振荡运动学上的相似,是不是还有更根本的动力学上的相似?电磁振荡可不可以类比机械振动来理解呢?基于这个想法,笔者做了一些尝试性思考,供大家参考。
一、振动与波的关系类比从振动和波的关系来看,机械振动与机械波,电磁振荡与电磁波,有着相似的关系。
1、波是振动的传播机械波是机械振动在介质中的传播,时空中周期性振动的物理量是介质中质点的位移x 和速度v ;电磁波是电磁振动的传播,时空中周期性振动的物理量是电磁场的电矢量E 和磁矢量B 。
2、波的产生都需要振动的波源机械波的波源,是振动的质点,比如弹簧振子、声带、音叉、琴弦等;电磁场的波源,是震荡的电荷,比如振荡电路、分子、原子甚至原子核等。
二、弹簧振子模型与LC 振荡电路类比由数学知识可知,方程结构上的相似,会导致相同形式的解,要类比研究机械振动和电磁振荡,首先应该从运动方程角度找到两者的相似性。
1、运动方程类比弹簧振子偏离平衡位置的位移为x ,则振子的速度为x v t ∆=∆,振子的加速度为v a t∆=∆,振子的动力学方程为kx a m =-,或者写成v kx t m∆=-∆,或者22d d x kx t m =-;LC 振荡电路中电容器极板上的电荷量为q ,通过电感线圈的电流i 就是电容器的充放电电流,有q i t∆=∆,对电感器,有自感电动势为i e L t ∆=-∆,导线电阻不计时,有电容器两极板间的电压u e =,且有q =Cu ,则电流对时间的变化率为q i e u C t L L L ∆=-=-=-∆,或者22d d q q C t L =-,此即电磁振荡的动力学方程。