第十章 机械振动与电磁振荡
- 格式:pdf
- 大小:52.88 KB
- 文档页数:2
010203定义稳态受迫振动和非稳态受迫振动。
类型应用振荡频率电感线圈振荡的频率与电感量、电阻和电容有关,通过调节这些参数可以改变振荡频率。
振荡原理电感线圈中,当电流发生变化时,会产生感应电动势来阻碍电流的变化,从而产生振荡。
应用振荡电路是许多电子设备中的重要组成部分,如信号发生器、无线电等。
电感线圈振荡电磁场振荡电磁波传播电磁波传播原理电磁波的特性应用单摆模型描述物体在平衡位置附近往复运动的模型,可以用于描述机械振动和某些电磁振荡。
单摆的周期公式是 T =2π√(L/g),其中L是悬摆的长度,g是重力加速度。
在不同的星球或不同的重力场中,单摆的周期会发生变化,因此可以用来测量重力场的变化。
弹簧质量模型弹簧质量模型的振动方程是 m(d^2x/dt^2) = -kx,其中m 是质量块的质量,k是弹簧的弹性系数。
解这个方程可以得到振动的频率和振幅,从而可以描述物体的振动特性。
描述一个质量块在弹性力作用下运动的模型,可以用于描述机械振动和某些电磁振荡。
电感线圈模型描述电感线圈在电磁场中运动的模型,可以用于描述某些电磁振荡。
电感线圈的动态方程是d^2i/dt^2 + R(di/dt) + (1/L) *(Li) = 0,其中i是电流,R是电阻,L是电感。
解这个方程可以得到电流的时间变化,从而可以描述电磁振荡的特性。
简谐振动的数学公式简谐振动的数学公式简谐振动的特点简谐振动的描述阻尼振动的数学公式阻尼振动的描述阻尼振动的数学公式阻尼振动的特点03受迫振动的特点受迫振动的数学公式01受迫振动的描述02受迫振动的数学公式1电感线圈振荡的数学公式23电感线圈在电流变化时会产生感应电动势,从而产生振荡。
电感线圈振荡的描述i=Icos(ωt+φ),其中I为电流幅度,ω为角频率,φ为初相位。
电感线圈振荡的数学公式电感线圈的振荡频率由电路阻抗决定,与电源频率无关。
电感线圈振荡的特点机械振动在工程中的应用机器运转机械振动可以提高机器的运转效率和精度,如振动筛、振动电机等。
高二物理电磁振荡整理知识点电磁振荡是高中物理中重要的内容之一,也是电磁学的基础。
在本文中,我们将对高二物理电磁振荡的知识点进行整理和总结,以供学生复习和巩固。
1. 电磁场的概念电磁场是指电荷或电流所产生的空间中存在的物理量,它包括电场和磁场两部分。
电场是由电荷产生的作用力,在空间中可以用电场线表示;磁场是由电流产生的作用力,在空间中可以用磁感线表示。
电磁场的性质主要有强度、方向和分布等。
2. 电磁振荡的基本概念电磁振荡是指在电磁场中,电磁波或者电磁信号以一定的频率在空间中传播的现象。
其基本特点包括振幅、频率、周期和波长等。
电磁振荡可以通过电磁波方程模型来进行描述,其中包括电场和磁感应强度的变化规律。
3. 电磁振荡的物理量在电磁振荡中,有一些重要的物理量需要了解。
(1) 振幅:振幅是指电磁振荡的最大偏移量,表示波的振动幅度。
(2) 频率:频率是指电磁波在单位时间内的振动次数,通常用赫兹(Hz)来表示。
(3) 周期:周期是指电磁波振动完成一个完整的周期所需的时间,通常用秒(s)来表示。
(4) 波长:波长是指电磁波振动完成一个完整的波长所需的距离,通常用米(m)来表示。
4. 电磁振荡的类型电磁振荡可以分为两种类型,即机械振荡和电磁振荡。
(1) 机械振荡:机械振荡是指由于机械系统的周期性运动而产生的振动。
例如,弹簧振子、单摆等都属于机械振荡。
(2) 电磁振荡:电磁振荡是指由于电磁场的周期性变化而产生的振动。
典型的例子包括电磁波、交流电等。
5. 电磁振荡的应用领域电磁振荡的应用非常广泛,涉及电信、无线通信、雷达、电磁感应等众多领域。
(1) 电信领域:电磁振荡在电信领域中被广泛应用,可以用于传输和接收信息。
(2) 无线通信领域:无线通信是指不通过物理连接的方式进行信息传输,电磁振荡可以实现无线通信的传输和接收。
(3) 雷达领域:雷达是宇航和军事等领域中常用的一种目标检测和测距的设备,它利用电磁波的速度和反射来实现对目标的探测。
用机械振动类比理解电磁振荡★疑难辨析★对电磁振荡的机制,课本上的分析是基于电容器充放电和电感器自感,这个分析思路理解起来有些复杂,但似乎也只能如此。
不过,我们都会发现,电磁振荡现象中,电容器极板上的电荷量和通过电感器的电流,一个按正弦规律变化,另一个按余弦规律变化,这和机械振动中振子的位移和速度的变化规律很相似,那么,机械振动与电磁振荡运动学上的相似,是不是还有更根本的动力学上的相似?电磁振荡可不可以类比机械振动来理解呢?基于这个想法,笔者做了一些尝试性思考,供大家参考。
一、振动与波的关系类比从振动和波的关系来看,机械振动与机械波,电磁振荡与电磁波,有着相似的关系。
1、波是振动的传播机械波是机械振动在介质中的传播,时空中周期性振动的物理量是介质中质点的位移x 和速度v ;电磁波是电磁振动的传播,时空中周期性振动的物理量是电磁场的电矢量E 和磁矢量B 。
2、波的产生都需要振动的波源机械波的波源,是振动的质点,比如弹簧振子、声带、音叉、琴弦等;电磁场的波源,是震荡的电荷,比如振荡电路、分子、原子甚至原子核等。
二、弹簧振子模型与LC 振荡电路类比由数学知识可知,方程结构上的相似,会导致相同形式的解,要类比研究机械振动和电磁振荡,首先应该从运动方程角度找到两者的相似性。
1、运动方程类比弹簧振子偏离平衡位置的位移为x ,则振子的速度为x v t ∆=∆,振子的加速度为v a t∆=∆,振子的动力学方程为kx a m =-,或者写成v kx t m∆=-∆,或者22d d x kx t m =-;LC 振荡电路中电容器极板上的电荷量为q ,通过电感线圈的电流i 就是电容器的充放电电流,有q i t∆=∆,对电感器,有自感电动势为i e L t ∆=-∆,导线电阻不计时,有电容器两极板间的电压u e =,且有q =Cu ,则电流对时间的变化率为q i e u C t L L L ∆=-=-=-∆,或者22d d q q C t L =-,此即电磁振荡的动力学方程。
大学物理机械振动 篇一:大学物理——机械振动 第十章 机械振动 基本要求 1.掌握简谐振动的基本概念和描述简谐振动的特征量的意义及相互关系。
2.掌握和熟练应用旋转 矢量法分析与解决有关简谐振动的问题。
3.掌握简谐振动的动力学与运动学特征,从而判定一个运动是否为简谐振动。
4.理解简谐振动的 能量特征,并能进行有关的计算。
5.理解两个同振动方向、同频率的简谐振动的合成。
6.了解同振动方向不同频率的简谐振动的合成和相互垂直的两个振动的合成。
7.了解频谱分析、阻尼振动与受迫振动。
8.了解混沌的概念和电磁振荡。
10-1 简谐振动 一. 弹簧振子 ?? f??kx1. 弹性力:2.运动学特征: dxdt 22 特征方程: 2 ??x?0 式中 ?2?K m 其解: x?Acos(?t??) 二. 描述谐振动的物理量 1. 2. 振幅:A 角频率:?? km 3. 频率:?? ? 2?2? 4. 5. 6. 三. 周期:T? ? 相位:?t?? 初相位:? 谐振动中的速度和加速度 v? dxdt??A?sin(?t??)?vmcos(?t??? ? 2 ) a? dvdt ? dxdt 2 2 ??A? 2 cos(?t??)?amcos(?t????) 四. 决定?,A,?的因素 1.? 决定于振动系统,与振动方式无关; 2.A,?决定于初始条件: v0 22 公式法: A?分析法: x0? 2 ? ,??arctg(? v0 ?x0 ) x0?Acos? ? cos?? x0Av0 ??1,?2 { ?0(1,2 象限)?0(3,4 象限) v0??Asin??sin??? 六.谐振动的能量 Ek? 1212mv 2 A? ? 1212 m?Asin(?t??)2 2 222 Ep? kx 2 ?kAcos(?t??)?12 12 12 m?Acos(?t??) 222 E?Ek?Ep? kA 2 ? ?Am 22 Ek? 1T ?0 T 12 m?Asin(?t??)dt? 222 14 mA? 22 ? 14 kA 2 Ep?Ek 例1. 已知 t?0 时 x0? 例2. 已知 t?0 时 x0?0,v0?0,求?思考: 1. 地球, M,R 已知, 中间开一遂道; 小球 m, 从离表面 h 处掉入隧道, 问, 小球是否作谐振动? 2. 复 摆问题(I,m,lc 已知) d?dt 22 A2,v0?0,求? ? mglI c ??0 3. 弹簧串、并联 串联: 1k?1k1 ?1k2 并联:k?k1?k2 10-2 谐振动的旋转矢量表示法 一、幅矢量法 1. 2. 作 x 轴,O 为平衡位置; ? A 在 x 轴上的投影点 P 作谐振动: x?Acos(?t??) 3. T? O ? A 以角速度?旋转一周,P 正好来回一次: 2? P P0 ? 二、参考圆法 1. 2.三、相位差 1. 同频率、同方向的两谐振动的相位差就是它们的初相差,即:????2??1 2. 超前与落后 例 1. 一物体沿 x 轴作简谐振动,振幅 A?12cm,周期 T?2s,t?0 时,位移为 6cm 且向 x 正方向运动,求: 1) 初位相及振动方程; 2) t?0.5s 时,物体的位置、速度和加速度; 3) x0??6cm 处,向 x 轴负方向运动时,物体的速度和加速度,以及从这一位置回到平衡位置所需的最 短时间; 例 2. 设有一音叉的振动为谐振动,角频率为??6.28?10s 2 ?1 以 O 为原点,A 为半径作圆,x 轴; 在图上根据已知求未知 ,音叉尖端的 振幅 A?1mm。
第十章 机械振动与电磁振荡
高玉梅 编
姓名 学号 班级
一、选择题
1、下列表述正确的是( )
A 物体在某一位置附近来回往复的振动是简谐振动
B 质点受到恢复力(恒指向平衡位置的力)的作用,则该质点一定作简谐运动
C 小朋友拍皮球,皮球的运动是简谐运动
D 若某物理量Q 随时间t 的变化满足微分方程2220d Q Q dt
ω+=,则此物理量Q 按简谐运动的规律在变化(ω是由系统本身决定的)
2、如图所示,当简谐振子到达正最大位移处,恰有一泥块从正上方落到振子上,并与振子黏在一起,仍做简谐运动,则下述正确的是( )
A 、振动系统的总能量变大,周期变大
B 、振动系统的总能量不变,周期变大
C 、振动系统的总能量变小,周期变小
D 、振动系统的总能量不变,周期变小
3、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为( )。
(A) θ。
(B) /2π。
(C) 0。
(D) π 。
4、一质点做简谐振动,周期为T ,但质点由平衡位置向ox 轴正方向运动时,由平衡位置运动到1/2最大位移处所需的最短时间为( )。
(A) 14T 。
(B) 112T 。
(C) 16T 。
(D)。
18
T 5、一简谐振动曲线图如图所示,则振动周期为( )。
(A) 2.62 s (B) 2.40 s
(C) 0.42 s (D) 0.382 s
6、一质点做简谐振动,振幅为A ,在起始时刻质点的位移为
/2A ,且向ox 轴正方向运动,代表此简谐运动的旋转矢量图为( )。
(A) (B)
(C) (D)
7、弹簧振子在水平面上作简谐振动时,弹性力在半个周期内所作的功为( )。
(A) (B) (C) (D)
2kA 2/2kA 2/4kA 0二、计算题
1、一质量为0.258m =kg 的物体,在弹性力作用下沿轴运动,弹簧的劲度系数。
(1)求振动的和圆频率ox 25/k N =m T ω;(2)如果振幅2A cm =,在时物体位于0t =01x cm =处,并沿轴反向运动,求初速和初相位ox 0v ϕ;(3)写出振动的表达式。
2、曲线图如图所示,已知振幅为A ,周期为T 。
当0t =时,0/2x A =,试求:
(1)该简谐振动的表达式;(2)a 、b 两点的相位;
(3)从时的位置运动到a 、b 两态所用的时间。
0t =
3、三个沿轴的简谐振动,其表达式依次为:ox ()13cos 3x t cm =,()24cos 32x t c π=+m ,()33cos 3x t c ϕ=+m 。
(1)若某质点同时参与第一、第二两个运动,试求它的合振动表达式;(2)若某质点同时参与第一、第三两个运动,试问当ϕ为何值时,该质点合振动最强烈?(3)若某质点同时参与第二、第三两个运动,试问当ϕ为何值时,该质点合振动最弱?。