熔体流动速率测试
- 格式:ppt
- 大小:447.50 KB
- 文档页数:8
本文由shiling40521贡献 doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
热塑性塑料熔体流动速率测定 (一)实验目的 掌握用熔体流动速率仪 ( 熔体指数测定仪 ) 测定热塑性塑料熔体流动速率的方法,以预测塑料加工 工艺性能,并建立起熔体流动速率与聚合物相对分子质量大小的关系。
了解仪器的结构、工作原理和使用 方法。
(二)实验原理 塑料熔体在规定的温度和负荷 ( 压力 ) 作用下, 10min 通过标准口模的质量 (g) 称为该塑料的熔 体流动速率 (MFR) ,测得结果表示为: g / 10min 。
该项检测常用于衡量塑料在熔融状态下的流动性相熔体粘度的大小,以预测热加工时流动的难易、充 模速度的快慢等工艺问题。
同时,由于熔体流动速率与聚合物相对分子质量高低有密切关系,对于相同分 子结构的聚合物,熔体流动速率越大,平均相对分子质量越小,因此,熔体流动速率还可以作为制品选材 或用材的参考依据。
(三)试祥与仪器 1 .试样 试样的形状为颗粒状、粉状、小块状、薄片状或其他形状。
吸湿性塑料的试样,实验前必须按产品标准规定的条件进行严格干燥,否则从仪器毛细管挤压出的料 条必定出现气泡等缺陷。
2 .仪器 熔体流动速率仪可因生产厂家的不同、型号不同而控制和操作方式有所不同,但基本原理是相同的。
本实验对仪器的要求是能提供恒温恒压力的挤出速率、并且温度和负荷可调。
(1) 仪器结构 熔体流动速率仪的基本结构见图 (2) 仪器组成 ①熔体压出系统 料筒:用抗腐蚀不锈钢制造,硬度大于 300Hv ,长度 160mm ,内径 φ (9 . 550 ± 0 . 025)mm 轴 线弯曲度不大于 0 . 02 / 100 ,圆筒内壁 ( 光洁度不低于▽8) 的粗糙度 Ra(0 . 32 一 0 . 63) μ m 。
压料活塞: 由抗腐蚀不锈钢制成, 硬度略低于料筒材料。
pbt熔体质量流动速率测试条件
PBT是聚对苯二甲酸丁二醇酯的缩写,是一种工程塑料。
熔体质量流动速率(MFR)是衡量塑料熔体流动性能的指标,通常用于评估塑料的加工性能。
在进行PBT熔体质量流动速率测试时,需要考虑以下条件:
温度,测试温度通常在230°C左右,这是PBT的常规加工温度范围,确保熔体在合适的温度下进行测试。
负荷,通常使用2.16kg的标准负荷进行测试,这是塑料行业常用的负荷标准之一,能够提供相对可靠的比较数据。
时间,测试时间通常为10分钟,这是常见的测试时间,可以确保熔体在一定时间内达到稳定状态,从而得到准确的测试结果。
这些是进行PBT熔体质量流动速率测试时的一般条件。
当然,具体的测试条件还会根据不同的标准和实验室的要求而有所不同。
在进行测试时,确保按照相关标准和方法进行,以获得准确可靠的测试数据。
实验10 塑料熔体流动速率的测定1. 实验目的了解热塑性塑料熔体流动速率与加工性能的关系,掌握熔体流动速率的测试方法。
2. 实验原理熔体流动速率(MFR)的定义是热塑性树脂试样在一定温度、恒定压力下,熔体在10min内流经标准毛细管的质量值,单位是g/(10min),通常用MFR来表示。
熔体流动速率以前称为熔融指数(MI)。
表征高聚物熔体的流动性好坏的参数是熔体的粘度。
熔体流动速率仪实际上是简单的毛细管粘度计,结构简单,它所测量的是熔体流经毛细管的质量流量。
由于熔体密度数据难于获得,故不能计算表观粘度。
但由于质量与体积成一定比例,故熔体流动速率也就表示了熔体的相对的粘度量值。
因而,熔体流动速率可以用作区别各种热塑性材料在熔融状态时的流动性的一个指标。
对于同一类高聚物,可由此来比较出分子量的大小。
一般来说,同类的高聚物,分子量愈高,其强度、硬度、韧性、缺口冲击等物理性能也会相应有所提高。
反之,分子量小,熔体流动速率则增大,材料的流动性就相应好一些。
在塑料加工成型中,对塑料的流动性常有一定的要求。
如压制大型或形状复杂的制品时,需要塑料有较大的流动性。
如果塑料的流动性太小,常会使塑料在模腔内填塞不紧或树脂与填料分头聚集(树脂流动性比填料大),从而使制品质量下降,甚至成为废品。
而流动性太大时,会使塑料溢出模外,造成上下模面发生不必要的黏合或使导合部件发生阻塞,给脱模和整理工作造成困难,同时还会影响制品尺寸的精度。
由此可知,塑料流动性的好坏,与加工性能关系非常密切。
在实际成型加工过程中,往往是在较高的切变速率的情况下进行的。
为了获得适合的加工工艺,通常要研究熔体黏度对温度和切变应力的依赖关系。
掌握了它们之间的关系以后,可以通过调整温度和切变应力(施加的压力)来使熔体在成型过程中的流动性符合加工以及制品性能的要求。
由于熔体流动速率是在低切变速率的情况下获得,与实际加工的条件相差很远,因此,熔体流动速率的应用上,主要是用来表征由同一工艺流程制成的高聚物其性能的均匀性,并对热塑性高聚物进行质量控制,简便地给出热塑性高聚物熔体流动性的度量,作为加工性能的指标。
熔体流动速率仪的测试方法是怎样的熔体流动速率仪是用来测量聚合物在熔体状态下的流动特性的工具,通常用于监测塑料、橡胶、纺织品等材料的流动性能。
在使用熔体流动速率仪进行测试之前,需要进行一系列的准备工作,包括准备样品、校验仪器、选择测试条件等。
准备样品在进行测试之前,需要准备与被测试材料相似的标准样品。
标准样品的制备需要参照不同的标准或规范,比如 ASTM 标准 D1238,该标准针对塑料熔体流动速率的测试进行了详细的制备方法和测试程序。
需要注意的是,样品的制备应该尽量精确,避免影响测试结果。
并且,在进行测试之前需要对样品进行加热、压力均衡等处理,以获得准确的测试结果。
校验仪器在进行测试之前,需要对熔体流动速率仪进行校验。
校验可以通过对标准样品进行测试,或者通过其他物理方法来检验仪器的准确性。
在校验仪器时,需要注意检查仪器的加热和恒温设备是否正常工作,避免因仪器问题导致测试结果不准确。
选择测试条件在进行测试之前,需要确定合适的测试条件。
测试条件包括测试温度、载荷、筒长度等参数。
在不同的测试规范中,测试条件的选择有所差异。
一般来说,测试温度越高,测试得到的熔体流动速率越大。
载荷和筒的长度也会影响测试结果,在选择测试条件时需要根据具体材料的特性和要求进行灵活调整。
进行测试在完成上述准备工作后,就可以进行熔体流动速率的测试了。
测试时需要按照所选的测试条件逐步加热样品,将样品放入测试筒中,并施加适当的载荷。
测试过程中需要注意仪器的读数,并记录测试结果。
在测试完毕后,需要对测试筒和样品进行清洗,以便下一次测试的进行。
结论熔体流动速率仪的测试方法并不复杂,但需要按照一定的流程进行操作。
在进行测试之前,需要准备标准样品、校验仪器、选择合适的测试条件等。
进行测试时需要注意仪器读数和记录测试结果,最后对测试筒和样品进行清洗,备下次使用。
通过正确的测试方法,可以获得准确的熔体流动速率指标,为制定更加合理的产品生产工艺和材料选择提供参考。
常用塑料熔体流动速率塑料的熔体流动速率是指塑料在一定温度下熔化后,流动的速度。
它是评估塑料流动性能的一个重要指标,直接关系到塑料制品的成型质量。
塑料的熔体流动速率通常使用MFR(melt flow rate)或者MI (melt index)来表示,单位为g/10min。
常用的测试方法是根据ISO 1133标准。
测试时,将一定质量的塑料料粒放入加热筒中,通过提高加热筒的温度使其熔化,然后在一定压力下通过一个标准孔模将熔体流出,流出的塑料重量除以流动的时间,即可得到熔体流动速率。
塑料的熔体流动速率受到多种因素的影响。
首先,塑料的分子结构和分子量对熔体流动速率有重要影响。
分子量较高的塑料具有更高的粘度,流动速率相对较慢;而分子量较低的塑料则具有较低的粘度,熔体流动速率相对较快。
其次,塑料的熔点也会对熔体流动速率造成影响。
熔点较高的塑料在同样的温度下需要更高的能量才能熔化,因此熔体流动速率相对较慢。
再次,塑料的添加剂和填充料也会对熔体流动速率产生影响。
某些添加剂和填充料具有增塑效果,可以使塑料的熔体流动速率增加。
塑料的熔体流动速率在实际应用中具有重要意义。
首先,它可以用来评估塑料的加工性能。
熔体流动速率越大,代表塑料的加工性能越好,适合用来制作薄壁、大型或复杂形状的制品。
其次,熔体流动速率也可以用来预测塑料制品的物理性能。
通常情况下,熔体流动速率较大的塑料制品具有较好的强度和韧性。
此外,熔体流动速率还可用于塑料的配方设计和质量控制。
生产过程中,可以通过调整塑料的熔体流动速率来获得所需的加工性能和产品质量。
不同类型的塑料具有不同的熔体流动速率。
例如,聚乙烯(PE)具有较高的熔体流动速率,适合制作一些注塑和挤出产品;而聚丙烯(PP)的熔体流动速率相对较低,适合制作一些薄膜和纤维制品。
此外,根据具体用途的不同,对塑料熔体流动速率的要求也不同。
例如,制作塑料瓶的PET塑料需要具有较高的熔体流动速率,以便在注塑过程中能够充分填充模具;而制作充气膜的LLDPE塑料则需要具有较低的熔体流动速率,以防止产生不必要的流动。
熔体流动速率的测定实验报告一、实验目的1、了解熔体流动速率的定义和意义。
2、熟悉并掌握熔体流动速率测定仪的使用方法。
3、学会通过实验测定不同塑料材料的熔体流动速率,并分析其性能特点。
二、实验原理熔体流动速率(MFR),也称为熔融指数(MI),是指热塑性塑料在一定温度和负荷下,熔体每 10 分钟通过标准口模的质量,单位为g/10min。
在规定的温度和负荷下,将待测塑料加入到熔体流动速率测定仪的料筒中,加热使其熔融。
然后,在规定的活塞压力作用下,熔融的塑料通过标准口模挤出。
通过测量在一定时间内挤出的塑料质量,即可计算出熔体流动速率。
三、实验设备及材料1、熔体流动速率测定仪:包括料筒、活塞、加热装置、温度控制系统、负荷装置和切割装置等。
2、天平:精度为 001g。
3、标准口模:根据不同的塑料材料选择合适的口模尺寸。
4、待测塑料材料:如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等。
四、实验步骤1、准备工作检查仪器是否正常,清理料筒和口模,确保无杂质残留。
根据待测塑料材料选择合适的标准口模,并安装到仪器上。
将天平调零。
2、称取试样按照相关标准,称取一定质量的待测塑料试样,精确至 001g。
3、装料将称好的试样加入到料筒中,尽量避免试样粘在料筒壁上。
4、设定实验条件根据待测塑料材料的种类,设定合适的温度和负荷。
启动加热装置,使料筒温度达到设定值,并保持恒温一段时间,以确保试样充分熔融。
5、开始实验当料筒温度稳定后,在活塞上加上规定的负荷。
启动切割装置,按照一定的时间间隔(通常为 1min 或 30s)切割挤出的塑料条。
6、测量与记录用天平称量切割下来的塑料条的质量,精确至001g,并记录下来。
重复测量多次,以获取较为准确的数据。
7、实验结束实验完成后,取出剩余的试样,关闭仪器电源,清理仪器。
五、实验数据处理1、计算每次切割的塑料条质量平均值。
2、根据以下公式计算熔体流动速率(MFR):MFR =(600×m)/t其中,MFR 为熔体流动速率(g/10min),m 为平均切割质量(g),t 为切割时间间隔(s)。
熔体流动速率测试标准
熔体流动速率测试标准是用来评估塑料熔体在一定条件下的流动性能的方法和指导原则。
这些标准通常使用熔体流动速率指数(MFR)或熔体流动率(MFR)来描述熔体的流动性能。
一种常用的测试方法是熔体流动速率测试,通过在一定温度下将一定质量的塑料熔体通过标准孔口挤出的时间来评估其流动性能。
这个测试方法通常使用切片法或假设法进行。
熔体流动速率测试标准通常包括以下要素:
1. 测试条件:标准规定了测试所需的温度、压力、塑料样品质量等条件。
这些条件对于不同的塑料材料可能会有所不同。
2. 样品制备:标准规定了样品的制备方法,如样品的形状、尺寸等。
3. 测试设备:标准规定了测试所需的仪器和设备,如挤出仪、标准孔口等。
4. 测试程序:标准规定了测试过程中的步骤和顺序,如样品的预热、挤出等。
5. 测试结果评估:标准规定了如何计算和评估熔体流动速率指数,并提供了相应的公式和计算方法。
常见的熔体流动速率测试标准包括ISO 1133-1、ASTM D1238、GB/T 3682等。
这些标准在全球范围内广泛应用,用于评估塑
料材料的流动性能,为材料选择、生产过程控制和产品性能预测提供了依据。
熔体流动速率的测定实验目的通过本次实验了解聚合物材料熔体流动速率的物理意义并掌握测定聚合物材料熔体流动速率的原理和方法。
实验原理聚合物材料熔体流动速率(MFR)是指在一定温度和负荷下,聚合物材料熔体每10分钟通过标准口模的质量(g/10min)。
在聚合物材料成型加工中,熔体流动速率是用来衡量聚合物材料熔体流动性的一个重要指标,其测试仪器通常称为聚合物材料熔体流动速率测试仪(或熔体流动速率仪)。
对一定结构聚合物材料熔体,若所测得的MFR愈大,表征该聚合物材料的平均分子量愈低,成型时流动性愈好。
但此种仪器测得的流动性能指标,是在低剪切速率下获得的,不存在广泛的应力——应变速率关系,因而不能用来研究聚合物材料熔体粘度与温度、粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。
原料与仪器1.实验用主要原材料:LDPE(中国石油天然气股份有限公司大庆石化公司,18D,ρ=0.945g/cm3)2.实验用主要仪器设备:XNR-400熔体流动速率仪(承德市试验机厂)1台,TG328A分析天平(上海天平仪器厂)1台,手表1只,装料漏斗1个,玻璃镜1个,镊子1个,清洗杆1根,手套若干双实验条件及操作1.实验条件:标准口模内径2.095mm,实验温度190.1℃,口模系数464g·mm3,负荷2160g,LDPE 使用量为4.5g,切样时间间隔为60s2.实验操作流程实验记录及结果记录: 温度:190℃口模系数:464g/mm3负荷:2160g切样1# 2# 3#时间间隔/s 称重/mg45126.645125.545121.8计算:1.切取样条平均质量(W)的计算:W=( W1+W2+W3)/3=(126.6+125.5+121.8)/3=124.6mg式中,W1,W2,W3分别为三个切取样条各自的质量。
2.聚合物物料熔体流动速率(MFR)的计算:MFR=600×0.1246/45g(10min)-1=1.7g/10min结果讨论1.影响测定结果的因素:a.口模直径与粗糙度,料筒长短及光洁度b.聚合物物料的分子量分布:聚合物物料的分子量不能过宽,否则前期流出的熔体主要为低分子量的聚合物,后期流出的物料主要为高分子量的聚合物,这样的话切样时间间隔不变,前面切取的样条质量将明显比后面切取的大。
熔体流动速率测试标准
熔体流动速率是一个用来衡量熔体在一定条件下流动能力的物理性质。
常见的熔体流动速率测试标准包括:
1. ASTM D3835 - 该标准适用于聚合物熔体在恒定剪切力作用下的流动速率测试,包括胶体聚合物、弹性体和塑料材料等。
2. ISO 1133 - 这是国际标准化组织(ISO)发布的用于测量熔体流动速率的标准。
方法采用了挤出法或注射法,在一定的温度和压力条件下,测量熔体通过标准孔口流出的体积或质量。
这个标准适用于聚合物材料的流动速率测量。
3. GB/T 3682 - 这是中国国家标准委员会发布的用于测量熔体流动速率的标准。
方法采用了挤出法,在一定的温度和压力条件下,测量熔体通过标准孔口流出的体积或质量。
这个标准适用于塑料材料的流动速率测量。
这些标准详细说明了测试设备和操作方法,以确保测试结果的准确性和可重复性。
具体的测试方法和参数根据不同的材料类型和应用领域可能会有所不同。
熔体流动速率测试标准熔体流动速率是塑料材料的一个重要物理性能指标,它直接影响着塑料制品的加工性能和使用性能。
因此,对熔体流动速率进行准确、可靠的测试是非常重要的。
本文将介绍熔体流动速率测试的标准方法和注意事项。
首先,熔体流动速率测试应该遵循相应的国家标准或行业标准。
在中国,熔体流动速率测试的标准主要有GB/T 3682-2000《塑料熔体流动速率的测定》和GB/T 1633-2000《塑料熔体流动速率的测定》等。
这些标准规定了熔体流动速率测试的样品制备、试验条件、仪器设备、测试程序、数据处理等方面的要求,确保了测试结果的准确性和可比性。
其次,进行熔体流动速率测试时,需要注意选择合适的试验条件和仪器设备。
试验条件包括试验温度、试验负荷、试验时间等,这些条件会直接影响测试结果。
仪器设备的选择应当符合标准要求,并经过校准和检验,以确保测试的准确性和可靠性。
在进行熔体流动速率测试时,还需要注意样品的制备和处理。
样品的制备应当严格按照标准要求进行,避免因样品制备不当而影响测试结果。
同时,在测试过程中,还需要对样品进行预热处理,以达到试验温度,保证测试结果的准确性。
除此之外,数据处理也是熔体流动速率测试中需要重视的环节。
在测试结束后,需要对测试得到的数据进行处理和分析,计算出熔体流动速率的数值,并进行结果的评定和判定。
同时,还需要对测试过程中的各项数据进行记录和保存,以备日后的查证和分析。
总之,熔体流动速率测试是塑料材料性能测试中的重要内容,它直接关系到塑料制品的加工性能和使用性能。
因此,在进行熔体流动速率测试时,需要严格按照标准要求进行,确保测试结果的准确性和可靠性。
同时,也需要不断提高测试人员的技术水平,加强对测试设备的维护和管理,以保证测试工作的顺利进行和测试结果的可靠性。
[精品]熔体流动速率的测定熔体流动速率是一个重要的物理量,特别是在熔体加工技术中。
熔体流动速率是指在单位时间内,熔体通过固定截面积的物体的速率。
在熔体加工中,熔体流动速率对硬度、密度、尺寸和形状等性质有影响,因此,准确测定熔体流动速率是非常重要的。
熔体流动速率的测定方法有很多种,如质量法、体积法、比重法和密度法等,本文将介绍两种常用的测定方法:比重法和密度法。
一、比重法比重法也称为溢流法,即将熔体倒入一个容器中,通过容器的口径和熔体表面高度的变化来计算熔体流动速率。
比重法的测定仪器主要包括挂钩、比重瓶、电子天平、毛细管等。
操作步骤如下:1. 将比重瓶清洁干净,使其表面干燥。
2. 在比重瓶的挂钩上挂上毛细管,并利用毛细管注入一定数量的熔体。
3. 利用电子天平测量瓶底的质量,然后将熔体倒入瓶中。
4. 测量瓶底的质量,利用两次测量的差值可以得到熔体的质量。
5. 将瓶底的高度测量并记录下来。
7. 根据瓶底的高度差可以计算出熔体流动的体积,再根据时间可以计算出熔体流动速率。
比重法的优点是简单易操作,但其主要限制在于容器的形状和大小会影响测量结果的准确性。
此外,在倒熔体的过程中会产生气泡,对测量结果造成影响。
二、密度法密度法是通过测量流经固定截面积的熔体的密度以计算流动速率的方法。
密度法的测定仪器主要包括密度计、纯水桶、电子天平等。
操作步骤如下:1. 将密度计放入纯水桶中,测量纯水的密度并记录下来。
4. 改变熔体容器的位置,再次测量熔体的密度并记录下来。
密度法的优点在于,它对容器的形状和大小没有限制,且对气泡的影响非常小。
此外,和比重法相比,密度法的准确度更高。
总之,熔体流动速率的测定是一个重要的过程,能够帮助我们更好地了解熔体的性质,并从中改进工艺。
比重法和密度法是两种常用的测定方法,可以根据需求选择合适的方法。
塑料熔体(质量、体积)流动速率及熔体密度的测定摘要介绍塑料熔体(质量、体积)流动速率、熔体密度的测定方法及熔体流动速率比、表观粘度的计算。
关键词熔体流动速率熔体密度熔体流动速率比表观粘度熔体流动速率,原称熔融指数,其定义为:在规定条件下,一定时间内挤出的热塑性物料的量,也即熔体每10min通过标准口模毛细管的质量,用MFR表示,单位为g/10min。
熔体流动速率可表征热塑性塑料在熔融状态下的粘流特性,对保证热塑性塑料及其制品的质量,对调整生产工艺,都有重要的指导意义。
近年来,熔体流动速率从“质量”的概念上,又引伸到“体积”的概念上,即增加了熔体体积流动速率。
其定义为:熔体每10min通过标准口模毛细管的体积,用MVR表示,单位为cm3/10min[1]。
从体积的角度出发,对表征热塑性塑料在熔融状态下的粘流特性,对调整生产工艺,又提供了一个科学的指导参数。
对于原先的熔体流动速率,则明确地称其为熔体质量流动速率,仍记为MFR。
熔体质量流动速率与熔体体积流动速率已在最近的ISO标准中明确提出,我国的标准也将作相应修订,而在进出口业务中,熔体体积流动速率的测定也将很快得到应用。
1 熔体质量流动速率(MFR)的测定方法熔体质量流动速率的测定,按方法分为切割(手工或自动定时)测定与自动(半自动)测定。
1.1 切割测定根据定义,当熔体在负荷的作用下通过口模毛细管挤出,由操作人员使用切割刀具将流经口模出口的一段熔料割取,并记录该段熔料自口模流出的时间,经称重并换算至流出时间为10min时的质量,即为熔体质量流动速率值MFR。
配置有自动定时切割装置的设备,可根据需要设置切割间隔时间。
任何型号的熔体流动速率测定仪都可进行手工切割测定。
1.2 自动(半自动)测定自动(半自动)测定不需对流出熔料进行切割。
它的原理是:在测定仪上预先设定熔料的流出体积,再由测定仪上的计时器自动记录流出该体积的熔料所需的时间。
这样,只要知道熔料的密度(注意:是该材料在特定试验温度下的熔体密度),即可按(1)式计算出熔体质量流动速率:式中:L───测定仪预先设定的活塞移动有效距离,cm;ρ──熔体密度,g/cm3;t───活塞移动有效距离所需的时间,s。
聚合物熔体流动速率的测定一、实验目的1. 了解热塑性塑料在粘流态时粘性流动的规律。
2.熔体速率仪的使用方法。
二、实验原理所谓熔体流动速率(MFR)是指热塑性塑料熔体在一定的温度、压力下,在10分钟内通过标准毛细管的质量,单位:g/10min。
对于同种高聚物,可用熔体流动速率来比较其分子量的大小,并可作为生产指标。
一般来讲,同一类的高聚物(化学结构相同)若熔体流动速率变小,则其分子量增大,机械强度较高;但其流动性变差,加工性能低;熔体流动速率变大,则分子量减小,强度有所下降,但流动性变好。
研究流动曲线的特性表明,在很低的剪切速率下,聚合物熔体的流动行为是服从牛顿定律的,其粘度不依赖于剪切速率,通常把这种粘度称为最大牛顿粘度或0剪切粘度η0,它是利用η=f(S)关系,从很小的剪切应力(S)外推到零求得的。
根据布契理论,线形聚合物的零剪切粘度与大于临界分子量的重均分子量()的关系式为,式中K是依赖于聚合物类型及测定温度的常数。
许多研究表明,对于分子量分布较窄或分级的高密度聚乙烯,是遵守3.4次方规则的。
但在分子量分布宽时,M的指数有所增大。
如果使指数保持为3.4,则需用某种平均分子量()代替重均分子量,其关系式为:---------------------------------------- (l)式中,。
当分子量分布窄时,接近;当分子量分布宽时,接近Z均分子量。
在实际应用中,不是用零剪切粘度评定分子量,而是用低剪切速率的熔体流动速度(习惯上叫熔融指数)评定的。
经研究,熔融指数与重均分子量的关系如下:-------------------------- (2)但由于熔融指数不只是分子量的函数,也受分子量分布及支链的影响,所以在使用这一公式时应予注意。
按照ASTM规定,聚乙烯的熔融指数是在190℃,负载2.16公斤下,熔体在10分钟内通过标准口型(φ2.095×8mm)的重量,单位为g/10min。