轴对称的性质
- 格式:doc
- 大小:136.00 KB
- 文档页数:4
轴对称、中心对称图形的性质及应用一、轴对称图形如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1 已知直线l外有一定点 P,试在l上求两点A、B,使AB=m(定长),且PA+PB最短.分析当把P点沿l方向平移至C(如图1),使PC=m,那么问题就转化为在l上求一点B,使CB+PB为最短.作法过P作PC∥l,使PC=m,作P关于l的对称点P',连结CP'交l于B.在l上作AB=m,点A、B为所求之两点.证在l上另任取A'B'=m,连PA、PA'、PB',CB',A'P',B'P',则PA'=P'A',PB'=P'B',又PA'B'C 为平行四边形,∴CB'=PA'.∵CB'+B'P'>CP',∴ PA'+PB'>PA+PB.例2 如图2,△ABC中,P为∠A外角平分线上一点,求证:PB+PC>AB+AC.分析由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP、CP,则DP=CP,BD=AB+AC.这样,把 AB+AC、AC、PB、PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证 (略)说明通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3 等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD、BC的中点M、N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4 凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.证如图4,连结AA2,EE3.正方形ABCD和正方形A1BCD1关于BC对称;EFGH和E1FG1H1关于BC对称;A1BCD1和A2B1CD1关于 CD1对称;E1FG1H1和 E2F1G1H2关于CD1对称;A2B1CD1和A2B2C1D1关于A2D1对称,E2F1G1H2和E3F2G2H2关于A2D1对称.例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知如图22-5.四边形ABCD中,M、F、N、E分别为各边的中点,且MN、EF为它的对称轴.求证 ABCD是矩形.分析欲证ABCD是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证∵四边形ABCD关于EF成轴对称,∴DC⊥EF,AB⊥EF,∴AB∥DC.同理AD∥BC.∴ABCD是平行四边形.∴DC=AB.又∵DE=DC/2,AF=AB/2.∴DE AF,∴ADEF为平行四边形.∴AD∥EF,而DE⊥EF,∴DE⊥AD,∠D=Rt∠.∴ABCD是矩形.二、中心对称图形如果把一个图形绕着某一点旋转180°后,能和原图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心,能重合的点互为对称点.中心对称图形具有以下性质:(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等.平行四边形是中心对称图形.矩形、菱形、正方形既是中心对称图形,也是轴对称图形.例6 如图6.已知ABCD,O是对角线 AC与BC的交点. EF过O点与AB交于E,与DC交于F.求证:OE=OF.证∵O点是ABCD的对称中心,EF过O点与AB相交于E,与DC相交于F.故E、F两点是以点O为对称中心的对称点.∴OE=OF.例7 △ABC中,底边BC上的两点M、N把BC三等分,BE是AC上的中线,AM、AN分BE 为a,b,c三部分,求:a∶b∶c.分析本题解法很多,我们利用中心对称图形求解.如图7,以E为中心,作已知图形的中心对称图形,则M'C∥AM,N'C ∥AN,于是可得a∶(2b+2c)=1/2,∴a=b+c,①(a+b)∶2c=DN'∶N'A=2∶1,∴a+b=4c,②由①得,a-b=c,③②+③, 2a=5c,∴a=5c/2.②-③,2b=3c,∴b=3c/2.∴ a∶b∶c=5c/2∶3c/2∶c=5∶3∶2.解 (略)例8 若四边形的一组对边相等,延长这一组对边,使各与另一组对边的中点连线的延长线相交,则这两个交角必相等.已知如图8.四边形ABCD中, AD=BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于G、H.求证∠AGE=∠BHE.分析为了使求证的两个角与已知条件发生联系,利用“旋转法”使角或线段搬家而沟通思路.证如图8,以E为对称中心,作△EBC的中心对称图形△EAM(即连结CE并延长CE到M 使EM=EC,连结AM).连结DM,AM=BC=AD,∴∠2=∠3.∵DF=FC,CE=EM,∴DM∥HE,∴∠1=∠2.∵AE=EB, EM=EC,∴AMBC是平行四边形.∴AM∥BH,而DA∥HE,∴∠3=∠BHE.∴∠1=∠BHE,即∠AGE=∠BHE.习题1.如图9 一牧童在A处牧马,牧童家在B处.A、B处距河岸分别为300m、500m,CD =600m,天黑前,牧童从A点将马牵到河边去饮水后再赶回家.那么牧童最少要走多少米?2.证明:任一点关于正方形各边中点的对称点是一个正方形的顶点.3.求证:在四边形ABCD中,如果AB=AD,CB=CD,那么它的面积等于AC·BD/2.4.在直线MN两侧有A,B两点,在MN上求一点P,使P到A、B两点之差最大.5.等腰梯形的周长为22cm,中位线长为 7cm,两条对角线中点连线为3cm,求各边长.。
轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。
在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。
下面将对轴对称的知识点进行总结。
一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。
这个平面被称为轴线或对称轴。
沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。
轴对称可以存在于二维图形、立体物体以及其他几何结构中。
二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。
2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。
3. 对称图形的面积、周长和内角和与其镜像图形相等。
4. 对称图形的对称中心与图形的每一个点距离的平方和最小。
三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。
2. 通过自身对折或平移观察是否可以重合。
3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。
四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。
2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。
3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。
4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。
特别是在图论中,轴对称是许多图形算法的基础。
五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。
2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。
研究轴对称问题可以进一步理解和应用线性代数等数学知识。
六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。
轴对称图形知识点轴对称图形是初中数学中一个很重要的知识点,也是应用十分广泛的一个概念。
轴对称图形可以用于建模、美术、建筑等领域,是我们生活中不可或缺的一部分。
一、轴对称图形的定义及性质轴对称图形,顾名思义,就是指如果平面上一个图形经过一条直线对称后,得到的图形与原来的图形完全一致,那么这个图形就是轴对称图形。
这条直线就被称为轴对称线或对称轴。
轴对称图形的一个显著性质是:对于图形上的任意一对点,它们关于轴对称线是对称的。
我们可以通过画出一条虚线,把两个关于它对称的点连起来,以此获得轴对称图形的对称性。
二、轴对称图形的制作方法制作轴对称图形的方法有几种。
其中一种方法是通过“折纸法”制作轴对称图形。
我们可以把待制作的图形剪下来,然后将其沿着轴对称线对折,再将两部分黏在一起,就可以得到轴对称的图形。
另一种制作轴对称图形的方法是通过使用计算机绘图软件,例如Photoshop、Illustrator等。
这些软件可以帮助我们轻松地制作各种轴对称图形,并且可以灵活地改变图形的颜色、大小等因素。
三、轴对称图形的应用轴对称图形在各个领域中都有很重要的应用。
例如,在美术领域中,我们经常使用轴对称图形进行将来建构,特别是在双面画和复合画中,更是少不了轴对称图形。
建筑领域中,轴对称图形被广泛应用于大厦、广场、宫殿等建筑的设计和建造中。
此外,在语言和文字领域,轴对称图形也被用于设计会标、字体等。
四、轴对称图形的实例以下是一些常见的轴对称图形实例:1. 五角星五角星是一个非常常见的轴对称图形。
它由两个重叠的正五角形所组成。
2. 心形心形是一个非常常见的轴对称图形。
它由两个相似的弧形线条组成,以轴对称线为轴对称。
3. 十字架十字架也是一个经典的轴对称图形,由一个直线和一条相交的线段组成。
它在基督教和天主教中有着非常深厚的象征意义。
总的来说,轴对称图形是一个非常重要的初中数学知识点,也是不可或缺的一个概念,可以应用于各个领域。
这个概念的掌握对我们日常生活和工作中的许多方面都会产生巨大的影响。
轴对称的性质:
轴对称的性质:成轴对称的两个图形全等。
如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
这条直线叫做对称轴。
斜放的图形只要能沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称图形。
在轴对称图形中间画一条线,那条线叫对称轴。
折叠后重合的点是对应点,叫做对称点。
轴对称图形具有以下的性质:
(1)成轴对称的两个图形全等;
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线;
①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③线段的垂直平分线上的点与这条线段的两个端点的距离相等。
④对称轴是到线段两端距离相等的点的集合。
初中数学知识点归纳:轴对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
二维几何中的轴对称关系在二维几何中,轴对称是一种重要的几何关系,它描述了一个图形相对于某条直线的对称性。
轴对称关系不仅在数学中有着广泛的应用,而且在日常生活中也随处可见。
本文将探讨轴对称关系的定义、性质以及一些实际应用。
一、轴对称关系的定义轴对称关系是指一个图形在某条直线上的对称性。
具体来说,如果一个图形中的每个点关于某条直线对称,那么我们就说这个图形具有轴对称关系。
这条直线被称为轴线或对称轴。
二、轴对称关系的性质1. 对称性:轴对称关系具有对称性,即图形中的每个点关于轴线对称。
这意味着如果一个点P关于轴线对称得到点P',那么点P'也关于轴线对称得到点P。
换句话说,图形中的每个点都有一个对应的对称点。
2. 轴线上的点:轴对称关系中,轴线上的点保持不变。
这意味着轴线上的点与其对称点重合。
例如,如果一条直线与轴线平行且与轴线上的一点相交,那么它与轴线上的对称点也会相交。
3. 图形的性质:轴对称关系可以保持图形的某些性质不变。
例如,如果一个图形是等边三角形,并且具有轴对称关系,那么它的对称图形也是等边三角形。
三、轴对称关系的实际应用1. 艺术设计:轴对称关系在艺术设计中被广泛应用。
许多艺术品、建筑物和装饰品都利用轴对称关系来创造美感和平衡感。
例如,许多古代建筑物的立面设计中常常使用轴对称来达到对称美。
2. 几何构图:在摄影和绘画中,轴对称关系也被用于构图。
通过将主题或元素放置在轴线两侧,可以创造出平衡和稳定感。
这种构图方法常用于风景摄影和肖像画中。
3. 工程设计:轴对称关系在工程设计中也起到重要的作用。
例如,在建筑设计中,对称结构可以提供更好的力学稳定性和均衡负荷分布。
在机械设计中,对称部件可以减少制造和装配的难度。
4. 数学推理:轴对称关系在数学推理中也有广泛的应用。
通过利用图形的轴对称性,我们可以推导出一些性质和定理。
例如,根据轴对称关系,我们可以证明一个图形的对角线长度相等。
总结:轴对称关系是二维几何中的重要概念,它描述了一个图形相对于某条直线的对称性。
轴对称图形的性质及应用如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1已知直线l 外有一定点 P ,试在l 上求两点A ,B ,使AB m =(定长),且PA PB +最短.分析:当把P 点沿l 方向平移至C (如图1),使PC m =,那么问题就转化为在l 上求一点B ,使CB PB +为最短.作法:过P 作//PC l ,使PC m =,作P 关于l 的对称点P ',连结CP '交l 于B .在l 上作AB m =,点A ,B 为所求之两点.证:在l 上另任取A B m ''=,连PA ,PA ',PB ',CB ',A P '',B P '',则P A PA'''=,PB P B '''=,又PA B C ''为平行四边形,∴CB PA ''=. ∵CB '+B P ''>CP ', ∴PA '+PB '>PA +PB .例2如图2,△ABC 中,P 为∠A 外角平分线上一点,求证:PB +PC >AB +AC .分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证:(略).点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.求证:EFGH的周长不小于.证:如图4,连结AA 2,EE 3.正方形ABCD 和正方形A 1BCD 1关于BC 对称;EFGH和E 1FG 1H 1关于BC 对称;A 1BCD 1和A 2B 1CD 1关于 CD 1对称;E 1FG 1H 1和 E 2F 1G 1H 2关于CD 1对称;A 2B 1CD 1和A 2B 2C 1D 1关于A 2D 1对称,E 2F 1G 1H 2和E 3F 2G 2H 2关于A 2D 1对称.2AA =,又23AE A E =32EE AA ==1122332EF FG GH HE EF FG G H H E EE AA ∴+++=+++==≥例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知:如图5.四边形ABCD 中,M ,F ,N ,E 分别为各边的中点,且MN ,EF 为它的对称轴.求证:ABCD 是矩形.分析:欲证ABCD 是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证:∵四边形ABCD 关于EF 成轴对称,∴DC ⊥EF ,AB ⊥EF , ∴AB ∥DC .同理AD ∥BC .∴ABCD 是平行四边形.∴DC =AB .又∵2DC DE =,2AB AF =.∴D E AF ,∴ADEF 为平行四边形.∴AD ∥EF ,而DE ⊥EF ,∴DE ⊥AD ,∠D =90 .∴ABCD 是矩形.轴对称应用举例山东 徐传军生活中很多图形的形状都有一个共同的特性———轴对称.在日常生活中利用轴对称的性质能解决很多问题,下面举例说明.一、确定方向例1 如图1,四边形ABCD 是长方形的弹子球台面,有黑白两球分别位于E 、F 两点的位置,试问,怎样撞击黑球E ,才能使黑球先碰撞台边DC ,反弹后再击中白球F ?解:作E 点关于直线CD 的对称点E ′,连接FE ′,与CD 的交点P 即为撞击点,点P即为所求.例2 如图2,甲车从A 处沿公路L 向右行驶,乙车从B 处出发,乙车行驶的速度与甲车行驶的速度相同,乙车要在最短的时间追上甲车,请问乙车行驶的方向?解:作AB 的垂直平分线EF ,交直线L 于点C ,乙车沿着BC 方向行驶即可.二、确定点的位置找最小值例3 如图3,AB ∥CD ,AC ⊥CD ,在AC 上找一点E,使得BE +DE 最小.解:作点B 关于AC 的对称点B ′,连接DB ′,交AC 于点E ,点E 就是要找的点.例4如图4,点A是总邮局,想在公路L1上建一分局D,在公路L2上建一分局E,使AD+DE+EA的和最小.解:作点A关于L1和L2的对称点B、C.连接BC,交L1于点D,交L2于点E.点D、E就是要找的点.三、与其他学科结合唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”,望有人对出下联,且表达恰如其分,你能对出下联来吗?对联中有数字万、千、百、十,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨.一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲的摇橹,这时李生突发灵感,对出了下联———“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞“妙妙妙”.这副对联数字对数字,事物对事物,对称美如此的和谐.可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的回味无穷的享受.用轴对称解实际问题山东于秀坤在我们实际生活中,许多问题设计到轴对称的应用,下面介绍几例.例1要在河岸所在直线l上修一水泵站,分别向河岸同侧的A、B两村送水,请你设计水泵站应修在何处,所用管道最短?分析:设水泵站修在C点,此题的实质是求折线AC+BC的最短长度,可作出A点关于直线l的对称点A′,如图1,根据对称性,AC+BC=A′C+BC,所以连结BA′交直线l于点C,点C便是水泵站的位置,因为此时折线长AC+CB化成线段A′B的长,根据两点之间线段最短的道理便可确定点C是水泵的位置.图1 图2例2如图2,角形铁架∠MON小于60°,A、D是OM、ON上的点,为实际应用的需要,须在OM和ON上各找点B、C,使AB+BC+CD最小,问应如何找?分析:学习了轴对称,可以利用对称性化折为直的道理,分别作出点A、点D关于ON、OM的对称点A′、D′,连结A′D′与ON、OM交于B、C,则点B、C便是所求的点.例3如图3,EFGH是一个长方形的弹子球台面,有黑白两球分别位于A、B两点的位置.(1)试问:怎样撞击黑球A,使黑球A先碰撞台边EF反弹后再撞击白球B?(2)怎样撞击黑球A,使黑球先碰撞台边GH反弹后再击台边EF,最后击白球B?图3分析:利用轴对称的性质,分别作出B点关于EF的对称点,A点关于HG的对称点,问题得解.解:(1)①作点B关于EF的对称点B′,②连结AB′交EF于C点,则沿AC撞击A,球A必沿BC反弹击中白球B(如图4).图4 图5(2)如图5,作法类似(1).例4如图5,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?图5 图6 图7解:(1)如图6,取线段AB的中点G,过中点G作AB的垂线,交EF于P,则P到A、B的距离相等.(2)如图7,作点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到A、B 的距离和最短.用轴对称知识解决打台球一题山东于秀坤题目:小强和小勇利用课本上学过的知识来进行台球比赛.(1)小强把白球放在如图1所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看小强这样击打,黑球能进F洞吗?请画图的方法验证你的判断,并说明理由.图1 (2)小勇想通过击打白球撞击黑球,使黑球至多撞台球桌边一次后进A洞,请你猜想小勇有几种方案?并分别在下面的台球桌上画出示意图,解释你的理由.分析:本题是一道操作型探究题,主要根据轴对称的知识的有关进行探究.第(1)题可以通过击打AC边使球反弹进F洞.第(2)题有多种方法.击球入洞需要对每一杆的角度进行适当的估算,实质上等同于几何角度的计算,二者有着密切的关系.要想至多撞台球桌边一次击黑球于F洞.方案可以有以下情况:(1)不击台球桌边,直接用白球撞击黑球;(2)通过白球击CF边反弹再撞击黑球进A洞;(3)用白球撞击DF边反弹撞击黑球进F洞.要想准确撞击黑球,必须找准击球的方向角度,准确估算击球的方向.在数学上,可以借助轴对称的知识来解决问题.解: (1)如图2,将白球与黑球视为两点,过这两点画直线交台球桌边AC于M,过点M 作法线MN⊥AC,在MN右侧∠F′MN=∠PMN,由于射线MF′过F洞,知黑球经过一次反弹后必进入F洞.图2(2)方案1:如图3,视白球、黑球为两点P,G,使A、G、P在同一直线上.方案2:如图4,延长AC到H点,使AC=CH,连接GH交FC于点K,根据轴对称的知识可知,用白球沿GK方向撞击边CF反弹后可进行A洞.方案3:如图5,延长AD到M点,使MD=AD,连结GM交DF于N,根据轴对称知识可知,沿GN方向用白球撞击黑球经反弹后可进入A洞.图3 图4 图5最短线路问题河北欧阳庆红吴立稳同学们,对于最短线路问题你一定很陌生吧?运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短线路问题.另外,从某种意义上说,一笔画问题也属于这类问题,这类问题在生产、科研、生活中应用广泛.请同学们看下面几个生活中的最短线路问题.一、两点一线问题例1 如图1,某同学打台球时想绕过黑球,通过击黑球A,使主球A撞击桌边MN后反弹,来击中白球B.请在图中标明,黑球撞在MN上哪一点才能达到目的?(以球心A、B来代表两球)?分析:要撞击黑球A,使黑球A先撞击台边MN上的P点后反弹击中白球B,需∠APN=∠BPM,如图2,可作点A关于MN的对称点A’,连结A’B交MN于点P,则P点即为所求作的点.作法:(图2):⑴作点A关于MN的对称点A’;⑵连结A’B,交MN于P.则经AP撞击台边MN,必沿P B反弹击中白球B.∴点P就是所要求的点.N图1说明:本题黑球A ,白球B 在MN 的同侧,直接确定撞击点的位置不容易,但若A 、B 在MN 的异侧,击球路线就容易确定了.本题可利用轴对称的特征将A 点转化到MN 的另一侧,设为A ’,连接A ’B 即可确定撞击点.二、一点两线问题例2 在一条大的河流中有一形如三角形的小岛(如图3),岸与小岛有一桥相连.现准备在小岛的三边上各设立一个水质取样点.水利部门在岸边设立了一个观测站,每天有专人从观测站步行去三个取样点取样,然后带回去化验.请问,三个取样点应分别设在什么位置,才能使得每天取样所用时间最短(假设速度一定)? 分析:此题要求时间最短,而速度一定,所以可转化为求最短路程.如图4,小桥DE为必走之路,所以容易得到D 为BC 边上的取样点.关键是确定另外两边上的取样点,这是线段之和最小的问题,我们的想法是将三条线段拼起来,关于线段最短,我们有“两点之间,线段最短”,利用对称便可使问题得到解决.解析:如图4,作点D 关于AB 的对称点F ;点D 关于AC 的对称点G , 连接FG ,交AB 于M ,交AC 于N .∴D 、M 、N 即所求三个取样点.(请同学们试着证一证).三、同类变式 例3 某班举行文艺晚会,桌子摆成两直条(如图5中的AO ,BO ),AO 桌面上摆满了糖果,BO 桌面上摆满了桔子,坐在C 处的学生小亮先拿糖果再拿桔子,然后回到座位,请你帮他设一条行走路线,使其所走的总路程最短?分析:此题是轴对称的特殊应用,需分两种情况讨论:①∠AOB 小于90°;②∠AOB 等于90°。
课题 2.2画图形的对称轴和轴对称图形
课型新授课授课时间2019年9 月日
执笔人陈俊录审稿人八年级数学组总第 2 课时
标准陈述能够按要求作出简单平面图形经过一次对称后的图形
学习目标1、使学生掌握用“连结对称点的线段被对称轴垂直平分”验证一个图形是不是轴对称图形,并能熟练画出轴对称图形的对称轴。
2、使学生能够按要求作出简单平面图形经过一次对称后的图形
教学活动方案随记【创设情景】【确立目标】
1. 画出下面两个图形的对称轴。
2. 叫做轴对称图形。
3. 如果有一个图形、一条直线,那么如何画出这个图形关于这条直线的
对称图形呢?
【自主学习】【合作交流】
探究轴对称的性质
1、如图(1),△ABC和△A′B′C′关于直线MN对称,
点A′、B′、C′分别是点A、B、C的对称点,线段
AA′、BB′、CC′与直线MN有什么关系?
设AA′交对称轴MN于点P,将△ABC和△A′B′C′
沿MN折叠后,点A与A′重合吗?
图
于是有PA=,∠MPA==度
(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?
(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?
3、轴对称的性质:
成轴对称的两个图形中,对应点的连线被垂直平分。
4. 如图,已知点A和L直线,试画出点A关于直线l的对称点A′。
L
A·
5. 如图(3),已知点A和直线l,试画出线段AB关于直线l的对称图形。
5
图(3)
B
A ·
6. 如图(4)已知△ABC ,直线l ,
画出△ABC 关于直线l 的对称图形。
【分组展示】【疑释解惑】
1.如果两个图形关于某条直线成轴对称,那么对应点连线被对称轴_____
2.关于某条直线成轴对称的两个图形是_________;
_________相等,对应角________。
3.已知△ABC ,直线L ,画出△ABC 关于直线L 的对称图形。
A
[来源:学§科§网]
B C
4. 如下图,如何找出它们的对称轴?
A C‘C
B'A'B A C‘C B'A'
B
教 学 活 动 方 案
随记 l A B C l L
【巩固训练】【拓展提升】
1 . P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()
A.OP1⊥OP2B.OP1=OP2
C.OP1⊥OP2且OP1=OP2D.OP1≠OP2
2. 如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法中不一定正确的是()
A.AC=A′C′B.AB∥B′C′C.AA′⊥MN D.BO=B′O
3. 已知两条互不平行的线段AB和A′B′关于直线1对称,AB和A′B′所
在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线1上;
③若A、A′是对应点,则直线1垂直平分线段AA′;④若B、B′是对应
点,则PB=PB′,其中正确的是()
4.(2010•宜昌)如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()
A.A B=A′B′B.B C∥B′C′C.直线l⊥BB′D.∠A′=120°
7
5.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,下列结论中错误的是()
A.△AA′P是等腰三角形B.M N垂直平分AA′,CC′
C.这两个三角形的面积相等D.A B,A′B′的交点不一定在MN
上
【作业布置】
1. △ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,
以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′
(1)求证:△ABD≌△ACD′;
(2)若∠BAC﹦120°,求∠DAE的度数.。