(2) 当l = 0时, 利 u n ( l用 ) v n ( n N ) 由定,理2 知
若 v n 收敛 , 则un也收敛;
n 1
n1
(3) 当l = ∞时, 存在 NZ,当nN时, un 1 , 即
un vn
vn
由定理2可知, 若 v n 发散 , 则un 也发散.
n 1
n1
un,vn
是两个正项级数,
lim
n
un vn
l,
(1) 当0l 时, 两个级数同时收敛或发散 ;
(2) 当l 0且 vn收敛时, un 也收敛 ;
(3) 当l 且 vn 发散时, un也发散 .
特别取 vn
1 np
,
对正项级数 un, 可得如下结论
:
p1, 0l
limn p nnl
n
p1, 0l
un发散 un收敛
n 1
“
” un0,∴部分和数列 Sn单调递增,
又已知 Sn有界, 故Sn收敛 , 从而 u n 也收敛.
n 1
定理2 (比较审敛法) 设 u n , v n 是两个正项级数,
n1 n1
且存在 NZ , 对一切 nN,有unkvn(常数 k > 0 ),
则有
(1) 若强级数 v n 收敛 , 则弱级数 u n 也收敛 ;
n
1
un
un
u n 1 ()u n ()2un1
( )nNuN 1
()k收敛 , 由比较审敛法可知 un收敛 .
(2) 当1或 时 ,必N 存 Z ,u 在 N 0 ,当nN
时 u n 1 1, 从而
un
un1unun1 uN
因此 n l i m unuN0,所以级数发散.