常数项级数审敛法
- 格式:ppt
- 大小:2.25 MB
- 文档页数:25
·复习 1 级数的概念。
2 级数的敛散性。
3 级数的性质。
·引入 正像数列一样,对于级数也有两个问题应当研究一是它是否收敛,二是如果收敛,它的和等于什么。
一般情况下要判断一个级数的敛散性,只利用级数收敛和发散的定义和性质,常常是很困难的,因此需要建立判定级数敛散性的判别法。
我们先来考察正项级数的敛散性。
·讲解新课7-2 常数项级数的审敛法(一)一 正项级数及其审敛法定义 如果级数∑∞=1n n u 的每一项都是非负数,即0n u ≥,(1,2)n = ,那么称级数∑∞=1n n u 为正项级数.如果级数∑∞=1n n u 是一个正项级数,那么它的部分和数列{}n S 是一个单调增加数列:12......n S S S ≤≤≤≤,如果数列{}n S 有界,即n S 总不大于某一个常数M ,根据单调有界数列必有极限的准则,正项级数∑∞=1n n u 必收敛于和S ,且n S S M ≤≤;反之,如果正项级数∑∞=1n n u 收敛于和S ,即lim n x S S →∞=,根据有极限的数列必是有界数列的性质可知:∑∞=1n n u 有界,因此可得如下结论:定理 正项级数∑∞=1n n u 收敛的充分必要条件是:它的部分和数列单调有界。
由此定理可知:如果正项级数∑∞=1n n u 发散,则当n →∞时,它的部分和数列n S →∞,即:1n n u ∞==+∞∑1 比较审敛法设有两个正项级数1n n u ∞=∑和1n n v ∞=∑,如果n u ≤n v ),3,2,1( =n 成立,那么(1)若级数1n n v ∞=∑收敛,则级数∑∞=1n n u 也收敛.(2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.用比较判别法时,需要适当地选取一个已知其收敛性的级数作为比较的基准,最常被选用作基准级数的是等比级数和p -级数。
定义 当0p >时 ,11111123L L ppppn nn∞==+++++∑.称为 p -级数特别地:当1p =时,p -级数是调和级数11n n∞=∑。
常数项级数的审敛法定义 形如:级数其中即: 正、负项相间的级数称为交错级数。
列如莱布尼茨判别法 莱布尼茨定理:如果交错级数满足条件则级数收敛,其其和其余项的绝对值注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件.使用本判别法时,关键是第一个条件的验证是否收敛时, 要考察与 大小111()n n n u ∞-=-∑n u >0111,2,3,);n n u u n +≥=L ()(lim 0,n x u →∞=(2)1,s u ≤nr 1.n n r u +≤0n u ≥()n u 1n u +n n u u +≥>10.()111111111(1)=1(1)234n n n n n∞--=--+-++-+∑L L().1112(1)1234(1)n n n n n ∞--=-=-+-++-+∑L L().这是一个交错级数又因为n n u u n n +=>=+1111,且显然收敛速度较慢.收敛。
使用本判别法时,关键是第一个条件的验证是否收敛时, 要考察与大小比较 与大小的方法有: 比值法差值法11111111(1)=1(1)234n n n n n∞--=--+-++-+∑1n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1||.10n u ≥()n u 1n u +n n u u +≥>10.()n u 1n u +11n nu u +<10n n u u +->11n n u u +≥()lim 0n x u →∞=(2)则交错级数111() n n n u ∞-=-∑。