十进制化k进制
- 格式:ppt
- 大小:297.00 KB
- 文档页数:15
二进制,八进制,十进制,十六进制之间的转换1.什么是二进制二进制是计算技术中广泛采用的一种数制。
二进制数据是用0和1两个数码来表示的数。
它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。
当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。
计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
信息的存储单位位(Bit) :度量数据的最小单位字节(Byte):最常用的基本单位,一个字节有8位b7 b6 b5 b4 b3 b2 b1 b01 0 0 1 0 1 0 1 =27+24+22+20=149K字节1k=1024 byteM(兆)字节 1M=1024KG(吉)字节 1G=1024MT(太)字节 1T=1024G曾经听人说,一个c,c++大神,就靠输入,0和1就可以装好操作系统,不知道是不是真的,嘿嘿2.十进制转换1234[10进制] 0 1 2 3 4 5 6 7 8 9 0 当数位上的值超过9就要进11000+200+30+4=1*103+2*102+3*101+4*100=12341011[2进制] 0 1 当数位上的值超过1就要进11*23+0*22+1*21+1*20=8+0+2+1=111011[8进制]0 1 2 3 4 5 6 7 当数位上的值超过7就要进11*83+1*81+1*80=512+8+1=5211011[16进制]0 1 2 3 4 5 6 7 8 9 A B C D E F 当数位上的值超过15就要进1 1*163+1*161+1*160=4096+16+1=4113当然其他进制转换成10进制是最简单的了,我想聪明的你肯定会了。
3.二进制转换首先来看十进制到二进制:除2取余数最后把余数倒过来 100101比如:十进制数37所以转换成的二进制数字为:100101再来八进制到二进制:一个八进制的位拆分成一个三位的二进制数比如:[八进制]6166拆分成 1101拆分成0016拆分成110所以转换成的二进制数字为:110001110再来十六进制到二进制:一个八进制的位拆分成一个四位的二进制数比如:[十六进制]6166拆分成01101拆分成00016拆分成0110所以转换成的二进制数字为:110000101104.八进制转换十进制到八进制:除8取余数最后把余数倒过来同时我们也可以先将十进制转换成二进制,然后将二进制又转换成八进制比如:2456 转化成八进制数字:46302456/8=307,余0;307/8=38,余3;38/8=4,余6;4/8=0,余4。
各种进制之间的转换方法⑴二进制B转换成八进制Q:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每3位二进制数为一组,不足3位的,小数部分在低位补0,整数部分在高位补0,然后用1位八进制的数字来表示,采用八进制数书写的二进制数,位数减少到原来的1/3。
例:◆二进制数转换成八进制数:= 110 110 . 101 100B↓↓ ↓ ↓6 6 . 5 4 =◆八进制数转换成二进制数:3 6 . 2 4Q↓ ↓ ↓ ↓011 110. 010 100 =◆低位,每4位二进制数为一组,不足4位的,小数部分在低位补0,整数部分在高位补0,然后用1位十六进制的数字来表示,采用十六进制数书写的二进制数,位数可以减少到原来的1/4。
例:◆二进制数转换成十六进制数:.100111B = 1011 0101 1010 . 1001 1100B↓ ↓ ↓ ↓ ↓B 5 A . 9C = 5A◆十六进制数转换成二进制数:= A B . F EH↓ ↓ ↓ ↓1010 1011. 1111 1110 = .1111111B即先把八进制数Q转换成二进制数B,再转换成十六进制数H。
例:◆八进制数转换成十六进制数:= 111 100 000 010 .100 101B= .100101B= 1111 0000 0010 . 1001 0100B= F 0 2 . 9 4H=◆十六进制数转换成八进制数:= 0001 1011 . 1110B== 011 011 . 111B= 3 3 .7Q=⑷二进制数B转换成十进制数D:利用二进制数B按权展开成多项式和的表达式,取基数为2,逐项相加,其和就是相应的十进制数。
例:◆二进制数转换成十进制数:= 1×25+1×24+0×23+0×22+1×21+0×20+1×2-1= 32+16+2+=◆求8位二进制数能表示的最大十进制数值:最大8位二进制数是BB = 1×27+1×26+1×25+1×24+1×23+1×22+1×21+1×20= 255⑸十进制数D转换成二进制数B:十进制数转换成二进制数时,整数部分和小数部分换算算法不同,需要分别进行。
十进制数转换为其他进制数的方法为了使问题简化,首先我们讨论只有整数部分的数的转换。
假设我们要将一个十进制数4009转化成一个16进制数,也就是要将4009表示成(k2k1k)16(这里,k2、k1、k是0~15之间的整数。
我们假设需要用3位16进制数表示)。
则根据16进制数的定义:4009 = k2×162+k1×161+k×160 = k2×162+k1×16+k=(k2×16+k1)×16+k从上面的式子我们看出,k0是4009被16除之后的余数。
因为(k2×16+k1)×16是可以被16整除的,且商数为k2×16+k1。
如果将此商数再次用16去除,则得到的余数是k1,商数为k2。
这向我们指出了求k、k1、k2的方法如下:(1)先用16除4009,得到的商为250,余数为9。
则k=9;(2)再用上一步的商250除以16,得到的商为15,余数为10。
则k1=10;k2=15。
根据表2-1,k1用16进制符号A表示,k2用16进制符号F表示。
则有:4009 =(FA9)16如果我们将上述计算过程用称为“长除法”的算式表示出来,会更加清晰:16|4009 余数16|250……………9 K16|15……………10 K10……………15 K2在上述算式中,每次我们将得到的余数写在右边,将商写在下面,这样就可以一直除下去。
如此先后得到的余数,就是从低位到高位排列的16进制数各位的数码。
这种方法显然可以推广到更大的数的转化。
例2-1:将整数6890转换为16进制数。
算式为:16|6890 余数16|430 …………………10 k16|26 …………………14 k116|1 …………………10 k20 …………………1 k3则:6890 =(1AEA)16注意,在上面用长除法作数制转换时,我们一直要将除法进行到商为0止。
各种进制之间的转换方法⑴二进制B转换成八进制Q:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每3位二进制数为一组,不足3位的,小数部分在低位补0,整数部分在高位补0,然后用1位八进制的数字来表示,采用八进制数书写的二进制数,位数减少到原来的1/3。
例:◆二进制数转换成八进制数:110110.1011B = 110 110 . 101 100B↓↓↓↓6 6 . 5 4 = 66.54Q◆八进制数36.24Q转换成二进制数:3 6 . 2 4Q↓↓↓↓011 110 . 010 100 = 11110.0101B⑵二进制数B转换成十六进制数H:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每4位二进制数为一组,不足4位的,小数部分在低位补0,整数部分在高位补0,然后用1位十六进制的数字来表示,采用十六进制数书写的二进制数,位数可以减少到原来的1/4。
例:◆二进制数转换成十六进制数|:101101011010.100111B = 1011 0101 1010 . 1001 1100B↓↓↓↓↓B 5 A . 9C = B5A.9CH◆十六进制数转换成二进制数:AB.FEH = A B . F EH↓↓↓↓1010 1011. 1111 1110 = 10101011.1111111B◆十六进制数、十进制数和二进制数对应关系表⑶八进制数Q转换成十六进制数H:八进制数Q和十六进制数H的转换要通过二进制数B 来实现,即先把八进制数Q转换成二进制数B,再转换成十六进制数H。
例:◆八进制数转换成十六进制数:7402.45Q = 7 4 0 2 . 4 5Q↓↓↓↓↓↓111 100 000 010 . 100 101B= 111100000010.100101B= 1111 0000 0010 . 1001 0100B↓↓↓↓↓= F 0 2 . 9 4H = F02.94H◆十六进制数转换成八进制数:1B.EH =1 B. EH↓↓↓0001 1011 . 1110B= 11011.111B= 011 011 . 111B↓↓↓= 3 3 . 7Q = 33.7Q⑷二进制数B转换成十进制数D:利用二进制数B按权展开成多项式和的表达式,取基数为2,逐项相加,其和就是相应的十进制数。
⼩学奥数教程:进制的应⽤_全国通⽤(含答案)1. 了解进制;2. 会对进制进⾏相应的转换;3. 能够运⽤进制进⾏解题⼀、数的进制1.⼗进制:我们常⽤的进制为⼗进制,特点是“逢⼗进⼀”。
在实际⽣活中,除了⼗进制计数法外,还有其他的⼤于1的⾃然数进位制。
⽐如⼆进制,⼋进制,⼗六进制等。
2.⼆进制:在计算机中,所采⽤的计数法是⼆进制,即“逢⼆进⼀”。
因此,⼆进制中只⽤两个数字0和1。
⼆进制的计数单位分别是1、21、22、23、……,⼆进制数也可以写做展开式的形式,例如100110在⼆进制中表⽰为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
⼆进制的运算法则:“满⼆进⼀”、“借⼀当⼆”,乘法⼝诀是:零零得零,⼀零得零,零⼀得零,⼀⼀得⼀。
注意:对于任意⾃然数n ,我们有n 0=1。
3.k 进制:⼀般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进⼀”.1k k >()进位制计数单位是0k ,1k ,2k ,.如⼆进位制的计数单位是02,12,22,,⼋进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=?+?++?+()⼗进制表⽰形式:1010101010n n n n N a a a --=+++;⼆进制表⽰形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下⽅写上k ,表⽰是k 进位制的数如:8352(),21010(),123145(),分别表⽰⼋进位制,⼆进位制,⼗⼆进位制中的数.5.k 进制的四则混合运算和⼗进制⼀样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
⼆、进制间的转换:⼀般地,⼗进制整数化为k 进制数的⽅法是:除以k 取余数,⼀直除到被除数⼩于k 为⽌,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为⼗进制数的⼀般⽅法是:⾸先将k 进制数按k的次幂形式展开,然后按⼗进制数相加即可得结果.如右图所⽰:知识点拨教学⽬标5-8-2.进制的应⽤模块⼀、进制在⽣活中的运⽤【例 1】有个吝啬的⽼财主,总是不想付钱给长⼯。