第三章一阶系统的时间响应
- 格式:ppt
- 大小:288.00 KB
- 文档页数:21
第3章 系统的时间响应分析在建立系统的数学模型(微分方程或传递函数)之后,就可以采用不同的方法,通过系统的数学模型来分析系统的特性,时间响应分析是重要的方法之一。
第3.1节 时间响应及其组成一、时间响应的概念所谓时间响应指系统在外加激励作用下,其输出量随时间变化的函数关系。
或者说 在输入作用下,系统的输出(响应)在时域的表现形式;在数学上,就是系统的动力学方程在一定初始条件下的解。
自变量为时间t ,因变量为输出()[()]o x t y t二、时间响应的组成分析:第一、二项是由微分方程的初始条件(即系统的初始状态)引起的自由振动,即自由响应。
ω。
应该说第三项的自第三项是由作用力引起的自由振动即自由响应,其振动频率均为nω与作用力频率ω无关,由响应并不完全自由。
因为它的幅值受到F的影响,当然,它的频率n自由即在此。
第四项是由作用力引起的强迫振动即强迫响应,其振动频率即为作用力频率ω。
因此系统的时间响应可从两方面分类:按振动性质可分为自由响应与强迫响应,按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即在“无输入时的系统初态”为零而仅由输入引起的响应)Array所以我们的研究对象是:零状态响应。
另外还有两个需了解的概念:瞬态响应和稳态响应。
瞬态响应:系统在外加激励作用后,从初始状态到最终状态的响应过程称为瞬态响应。
反映了系统的快、稳特性。
稳态响应:时间趋于无穷大时,系统的输出状态为稳态响应。
反映系统的准确性。
三、系统方程的特征根影响系统自由响应的收敛性和振荡第3.2节 典型的输入信号由于系统的输入具有多样性,所以在分析和设计系统时,需要规定一些典型的输入信号,然后比较各系统对典型信号的时间响应。
不同系统或参数不同的同一系统对同一典型信号的时间响应不同,反映出各种系统动态特性的差异,从而可以定出相应的性能指标,对系统的性能予以评定。
尽管在实际中,输入信号很少是典型信号,但由于系统对典型信号的时间响应和对任意信号的时间响应之间存在一定的关系统,所以知道系统对典型信号的响应就可求出对任意输入的响应。
第三章系统的时间响应分析机械⼯程控制基础教案Chp.3时间响应分析基本要求(1) 了解系统时间响应的组成;初步掌握系统特征根的实部和虚部对系统⾃由响应项的影响情况,掌握系统稳定性与特征根实部之间的关系。
(2 ) 了解控制系统时间响应分析中的常⽤的典型输⼊信号及其特点。
(3) 掌握⼀阶系统的定义和基本参数,能够求解⼀阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应;掌握⼀阶系统时间响应曲线的基本形状及意义。
掌握线性系统中,存在微分关系的输⼊,其输出也存在微分关系的基本结论。
(4) 掌握⼆阶系统的定义和基本参数;掌握⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;掌握⼆阶系统性能指标的定义及其与系统特征参数之间的关系。
(5) 了解主导极点的定义及作⽤;(6) 掌握系统误差的定义,掌握系统误差与系统偏差的关系,掌握误差及稳态误差的求法;能够分析系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。
(7) 了解单位脉冲响应函数与系统传递函数之间的关系。
重点与难点重点(1) 系统稳定性与特征根实部的关系。
(2) ⼀阶系统的定义和基本参数,⼀阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应曲线的基本形状及意义。
(3) ⼆阶系统的定义和基本参数;⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;⼆阶系统性能指标的定义及其与系统特征参数之间的关系。
(4) 系统误差的定义,系统误差与系统偏差的关系,误差及稳态误差的求法;系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。
难点(1) ⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;⼆阶系统性能指标的定义及其与系统特征参数之间的关系。
(2) 系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。
建⽴数学模型后进⼀步分析、计算和研究控制系统所具有的各种性能。
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
一阶系统时间响应分析一阶系统是指具有一个自由度的线性系统,它的传递函数可以表示为H(s)=K/(τs+1),其中K表示系统的增益,τ表示系统的时间常数。
一阶系统常见于许多实际应用中,包括温度控制、物体的加速度、放电过程等。
在进行一阶系统的时间响应分析时,可以通过单位阶跃响应或冲激响应等方法来研究系统的动态特性。
首先,考虑单位阶跃响应,即在t=0时刻输入信号从0跃迁到1的情况。
对于一阶系统,单位阶跃响应可以表示为y(t)=K(1-e^(-t/τ)),其中y(t)表示系统的输出。
可以看出,单位阶跃响应的特征是在初始时刻输出信号从0逐渐上升,最终趋于K。
其中,时间常数τ决定了系统的时间响应速度。
当τ较大时,单位阶跃响应的上升时间较长,系统的响应较为缓慢。
当τ较小时,单位阶跃响应的上升时间较短,系统的响应较为迅速。
另外,增益K决定了单位阶跃响应的最终稳定值。
当增益K较大时,单位阶跃响应的稳定值也较大;当K较小时,单位阶跃响应的稳定值也较小。
除了单位阶跃响应,冲激响应也是研究系统时间响应特性的重要方法之一、冲激响应可以表示为h(t)=K/τ*e^(-t/τ),其中h(t)表示系统的输出。
冲激响应的特征是系统在接收到一个冲激信号(即瞬间施加一次激励)后的输出情况。
可以看出,冲激响应的形式与单位阶跃响应相似,只是其幅度除以了时间常数τ。
冲激响应的峰值位于t=0时刻,由于单位冲激信号具有单位面积,因此冲激响应的峰值等于系统的增益K。
通过对冲激响应的分析,可以得到系统的频率响应。
频率响应是指系统对各种频率输入信号的响应特性,通常用幅频特性和相频特性来表示。
幅频特性表示了系统对不同频率输入信号的幅度传递特性。
对于一阶系统,幅频特性可以表示为,H(jω),=K/√(1+(ωτ)^2),其中ω为频率。
幅频特性的曲线呈现出一个低通滤波器的形状,即在低频时幅度较大,而在高频时幅度逐渐减小。
该特性说明了一阶系统的低频增益和高频截止频率的关系。
第三章 系统的时间响应3-1 什么是时间响应?答:时间响应是指系统的 响应(输出)在时域上的表现形式或系统的动力学方程在一定初始条件下的解。
3.2 时间响应由哪两部分组成?各部分的定义是什么?答:按分类的原则不同,时间响应有初始状态为零时,由系统的输入引起的响应;零输入响应,即系统的 输入为零时,由初始状态引起的响应。
按响应的性质分为强迫响应和自由响应。
对于稳定的系统,其时间响应又可分为瞬态响应和稳态响应。
3.3时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速性两方面的性能;稳态响应反映了系统响应的准确性。
3.4 设系统的单位脉冲响应函数如下,试求这些系统的传递函数. 1.25(1)()0.0125;t w t e -= (2)()510s i n (44w t t t =++););t-3(3)w(t)=0.1(1-e(4)()0.01w t t= 解:(1)11()()()()()00w t x t L X s L G s X s i --⎡⎤⎡⎤===⎣⎦⎣⎦ ()1X s i=(),()()G s G s L w t =⎡⎤⎡⎤⎣⎦⎣⎦-1w(t)=L 所以,0.01251.251)()()0.0125 1.25t G s L w t L e s -⎡⎤===⎡⎤⎣⎦⎢⎥+⎣⎦((2)()()G s L w t =⎡⎤⎣⎦5510sin(4)sin 4cos422L t t t s s=++=++⎡⎤⎡⎤⎣⎦⎣⎦5452()2222161616s s s s s s =++=++++113(3)()()0.1(1)0.11t G s L w t L e s s s ⎧⎫⎡⎤-⎪⎪⎢⎥==-=-⎡⎤⎨⎬⎣⎦⎢⎥+⎪⎪⎣⎦⎩⎭0.1(31)s s =+ 0.01(4)()()0.012G s L w t L t s ===⎡⎤⎡⎤⎣⎦⎣⎦3.5解11()()110.256min.t TG s xt e ou Ts T -==-+=()因为一阶系统的单位阶跃响应函数为解得,1(2)(),()10121111()()2211G s r t At t Ts A T T t x t L AL A t T Te or Ts s Ts T s s ===+⎡⎤⎡⎤---⎢⎥==-+=-+⎢⎥++⎢⎥⎣⎦⎣⎦因为一阶系统在输入作用下的时间响应()0.256()()()(1) 2.56(1)tt tT t T Te T e t r t x t At AAT e e or----+=-=-=-=-当t=1min e(t) = 2.53度3.6解解:(1)该系统的微分方程可以表示为o i u iR u += ω⎰=i d t C u o 1其传递函数为 111111)()()(+=+=+==Ts RCs CsR Cs s u s u s G i o 其中T=RC 。