少油断路器灭弧室的灭弧过程
- 格式:doc
- 大小:163.50 KB
- 文档页数:5
温馨提示:本套试卷为电工精选题库,总共300道题!题目覆盖电工常考的知识点。
题库说明:本套题库包含(选择题100道,多选题100道,判断题100道)一、单选题(共计100题,每题1分)1.低压配电线路中交流接触器可以起到( )保护。
A.过载B.短路C.失压答案:C2. 电气火灾的引发是由于危险温度的存在,危险温度的引发主要是由于( )。
A.电压波动B.设备负载轻C.电流过大答案:C3. ( )是指继电器不动作时处于断开状态的接点。
A.动断接点B.动合接点C.延时动断接点答案:B4. 直流电机主磁极上两个励磁绕组,一个与电枢绕组串联,一个与电枢绕组并联,称为( )电机。
A.他励B.串励C.并励D.复励答案:D5. 某中性点直接接地的低压220V/380V系统,发现一台电气设备发生一相碰壳,此时如人体接触电气设备,流过人体的电流为( )。
(假设人体电阻Rr为1000Ω)A.30mAB.220mAC.380mAD.1000mA答案:B6. 接在线路中尚未使用的电流互感器的二次线圈应当( )。
A.两端短接并接地B.保持开路C.两端短接D.一端接地答案:A7. 中性点直接接地系统,如电气设备发生一相碰壳,人体接触电气设备相当于发生( )。
A.单相触电B.灼伤C.两相触电答案:A8. 一般电路由( ).负载和中间环节三个基本部分组成。
A.电线B.电压C.电流D.电源答案:D9. 变压器的额定电流是指变压器绕组出线端的( )。
A.额定最大电流B.额定相电流C.额定线电流答案:C10. ( )数据选择器在信号的控制下,从多路数据中选择一路数据作为输出信号。
A.脉冲B.地址C.程序D.时钟答案:B11. 测量1Ω以下小电阻,如果要求精度高,应选用( )。
A.双臂电桥B.毫伏表及电流表C.单臂电桥D.可用表X1Ω档答案:A12. 熔断器的额定电流( )电动机的起动电流。
A.大于B.等于C.小于答案:C13. 根据安全色的含义及规定,电动机的停止按钮的颜色应采用( )。
简述开关电器中常用的灭弧方法三相电路中,由于各种用电器的不同,产生的最大不平衡电流可能是额定电流的几倍,而过电流又是引起火灾的主要原因之一。
在发生过电流时,由于开关触头的作用,电流便以较小的电流I(相量和为对于每个发生过电流的回路来说,只要在灭弧罩上有足够的动触头,而静触头的作用只是防止过大的电流直接通过触头,并保证其他灭弧介质(如间隙)在允许的时间内放电,或者将已经产生的电弧熄灭即可。
常用的灭弧方法有:间隙灭弧、水灭弧和气体灭弧等三种。
(1)间隙灭弧利用空间场所使正常工作时不带电的金属材料(一般采用空气),按电弧的走向形成一个气体间隙的灭弧方法称为间隙灭弧。
①自间隙法;②外间隙法;③自持放电法。
(2)水灭弧用水来熄灭电弧的灭弧方法叫做水灭弧。
在交流电弧的弧柱长度与弧柱截面积之比小于1.2的情况下,可以将电弧稳定地停留在空气间隙内,在长间隙的底部造成很高的气压,促使弧柱中的电子作快速运动,再从阴极表面逸出时与氧分子发生碰撞而发热。
在这种发热和发光的反复作用下,空气被电离成正离子和电子,弧柱被冷却,可防止电弧重燃。
因此,这种灭弧方法适用于短路电流的断路器以及高压电器的电弧熄灭。
对于中小容量电动机的过负荷电流或短路电流,可采用间隙水灭弧。
(3)气体灭弧在空气不足的条件下,靠气体本身的压力形成电弧的熄灭过程。
此方法可分为两种类型,即机械吹扫和电磁吹扫。
气体吹扫适用于电动机的启动和运行过程中的电弧灭弧,在断路器灭弧室或操作机构中采用压缩空气或二氧化碳进行吹扫。
电磁吹扫用于三相弧垂的控制,也可用于真空断路器和少油断路器的电弧熄灭。
实践表明,由于电弧与绝缘的直接作用而产生的热损耗是发生电弧熄灭时的主要热损耗。
所以提高电弧的热损耗速率,对防止电弧重燃是十分重要的。
下面是某些常用的灭弧装置的特点:①电弧熄灭电压高,是用于空载电动机转子灭弧时的灭弧装置。
②电弧熄灭后,能迅速恢复操作电压,防止因电弧再次引燃而引起电气火灾。
断路器灭弧原理和灭弧室一.电弧:电弧或弧光放电是一种物理现象,也是气体放电的一种形式。
开关设备在分断时,会在触头间产生电弧,此时电路中的电流继续流通,直到电弧熄灭,触头间隙成为绝缘介质后,电流才被断开。
发生在开关设备中的电弧简称为开关电弧。
所谓开关作用,就是在具有一定电位的导体电路的一部分上进行导体与绝缘体的相互迅速变化。
1.电弧的组成除正负两极外,整个电弧可以分成三个区域:阴极位降区域、弧柱和阳极位降区域。
2.电弧柱的游离过程在外界能量的作用下,使大量的电子从围绕原子核的轨道上脱离出来,并成为自由电子。
这种从气体中性粒子(原子或分子)中分离出自由电子和正离子的现象称为游离。
游离的结果就变成一个带负电荷的电子和一个带正电荷的离子。
由于自由电子不断碰撞形成游离,碰撞游离不断进行,使得介质中带电质点大量增加,呈现很高的导电,于是在在外加电压作用下,触头间介质被击穿开始导电,形成电流,同时也因发热而发光,这就产生了电弧;由于电弧弧柱温度很高可达5000~13000℃,就产生了热游离和光游离。
游离方式有碰撞游离;热游离;光游离。
影响游离的因素主要有温度;介质的游离电位——游离所需的能量;气体压力。
3、电弧的的去游离(消游离)使弧柱中的游离程度减小,直至电弧熄灭、间隙恢复成绝缘介质的过程,称为去游离(消游离)。
消游离的方式主要有:复合和扩散。
两种带异性电荷的质点互相接触而形成中心质点,称为复合(正负电荷中和)。
在电极表面发生的称表面复合,在间隙空间中发生的称空间复合,空间复合一般在离子间进行称间接空间复合。
复合最主要因素为温度,温度下降时,复合速度就迅速增快。
带电粒子从电弧间隙中散出到周围介质中去,称为扩散,扩散是双极性的,弧柱的直径对扩散影响最大,弧柱直径越小,扩散越强烈。
4、开关电弧的产生强电场发射——热电子发射——碰撞游离——热游离——形成电弧电流。
最终靠热游离维持电弧。
5、交流电弧电弧电流有过零现象,有电压恢复过程和介质强度恢复过程。
少油断路器的灭弧原理和主要结构少油断路器是一种常用的高压,大电流开关设备,用于断开和接通交流电路中的电流。
其具有灭弧性能好、操作可靠等优点,广泛应用于工业生产和电力系统中。
下面我们将详细介绍少油断路器的灭弧原理和主要结构。
1. 灭弧原理少油断路器的灭弧原理是通过使用特殊的介质,将电弧的能量迅速吸收和消耗,以从根本上灭弧,保护电气设备和人员的安全。
(1)介质选择:少油断路器采用的主要是高度纯净的轻质矿物油作为灭弧介质。
这种油具有很高的绝缘性能和灭弧性能,可以有效吸收和消耗电弧的能量。
(2)电弧吸收和消耗:当电路发生短路或过载时,电弧会在断开点之间产生。
在断开点之间的电弧会导致电路的短路和能量的丧失,如果不及时灭弧,会对设备和系统造成严重的损坏。
少油断路器的灭弧过程如下:当触点分离时,断开点之间会形成一定的间隙。
在电弧形成的瞬间,电弧能量会迅速吸引油中的离子和粒子,形成导电通道,电离空气,形成气体电弧。
与此同时,高温产生的蒸汽和气体会进一步膨胀,并以高速喷出的形式将电弧推离断开点。
油中的离子和粒子在电弧高温作用下,会迅速分解和化学反应,进一步将电弧的能量吸收和消耗。
通过高度纯净的轻质矿物油的吸收和消耗,油中的能量转化为声能和热能,实现了电弧的灭灭。
这种灭弧方式非常有效,可以在极短的时间内灭弧,保护电路的正常工作。
2. 主要结构少油断路器的主要结构包括开关部分、弧灭部分和操作与控制部分。
(1)开关部分:开关部分是少油断路器的主要组成部分,其主要包括主触头、固定触头、动触头、触头接触面、触头弹簧等。
主触头和动触头通过弹簧连接,当断路器处于闭合状态时,主触头和动触头相接。
当发生短路或过载时,主触头和动触头分离,产生电弧。
(2)弧灭部分:弧灭部分是少油断路器实现灭弧功能的核心部分,其主要包括灭弧室、油箱、灭弧物质等。
灭弧室位于开关部分的上方,油箱作为油的储存和油冷却的设备。
灭弧物质通常采用高度纯净的轻质矿物油,具有较好的灭弧性能。
少油断路器是一种常见的高压电气设备,用于在电力系统中保护和控制电路。
其中的纵吹灭弧室则是其关键部件之一,其工作原理至关重要。
在本文中,我将深入探讨少油断路器的纵吹灭弧室的工作原理,以便读者能够更全面地理解这一关键设备的作用和工作方式。
1. 纵吹灭弧室纵吹灭弧室是少油断路器的一个重要部件,其作用是在断路器开关的过程中,用来有效地灭弧和排除高压侧的电流。
通过将高压侧的电流引到灭弧室内部,利用特定的介质和结构来实现电流的灭弧和消散。
2. 工作原理在开关过程中,当电流通过断路器时,会产生弧光和弧气。
纵吹灭弧室的工作原理主要包括下列几个步骤:(1)引入弧气:当电流达到一定程度时,断路器会自动引入弧气到纵吹灭弧室内部。
这些弧气将帮助灭弧室内的介质快速离子化,并形成导电通道。
(2)离子化介质:弧气的作用下,纵吹灭弧室内的介质会迅速离子化,形成低阻抗通道。
这将帮助电流快速流过灭弧室,减少弧光和弧气的产生。
(3)灭弧和排除电流:离子化介质的形成将有助于有效地灭除弧光和弧气,并排除高压侧的电流。
这样,断路器就能够实现快速可靠地切断电路,保护电力系统的安全运行。
3. 个人观点和理解纵吹灭弧室作为少油断路器的关键组成部分,其工作原理的了解对于保障电力系统的安全运行至关重要。
它能够快速有效地灭弧和排除电流,避免因电路故障而引发的火灾和事故,对电力系统的稳定性和可靠性起到了重要的保护作用。
重视对纵吹灭弧室工作原理的学习和理解,对于电力行业的从业者和相关专业人士来说,是非常重要和必要的。
回顾总结:通过对少油断路器的纵吹灭弧室工作原理的深度探讨,我们不仅更全面地了解了这一关键设备的作用和工作方式,同时也增加了对电力系统保护和控制的认识。
纵吹灭弧室作为断路器的核心部件,其工作原理直接关系到电力系统的安全性和可靠性。
对其工作原理的深入了解,对于从事相关行业的人员具有重要的指导意义。
以上就是对少油断路器的纵吹灭弧室工作原理的探讨和个人观点,希望本文能够对读者有所帮助,引发更多对电力系统保护装置的关注和研究。
少油断路器灭弧室的灭弧过程
————————————————————————————————作者:————————————————————————————————日期:
少油断路器灭弧室的灭弧过程
为了提高其开断能力,油断路器在触头周围装设了用绝缘材料制成的灭弧室。
油断路器的灭弧室利用油分解产生的气体形成高速气流对电弧进行强烈气吹而使之熄灭。
其工作特点是开断电流愈大,则单位时间内产生的气体愈多,灭弧室中的压力愈高,吹弧力量愈强,因而燃弧时间也愈短;当开断电流减小时,吹弧力量相应减弱,于是燃弧时间增大。
灭弧室装在高强度的绝缘简中,由灭弧片组成,各灭弧片之间隔开一定的距离形成油囊。
灭弧室上部为静触头,分闸时动触头向下运动,当触头分开时,在触头间产生电弧,电弧被圆柱形气泡包围着,气泡壁由灭弧室油囊中的油形成。
由于电弧到气泡壁的距离很短,故油强烈地冷却电弧,使电弧的能量消耗于油的分解和气化上,产生大量气体。
随着动触头向下运动,高压气体通过灭弧片中间的圆孔向上对电弧进行纵吹,待动、静触头之间的距离足够长时,电弧即能熄灭。
纵吹灭弧室结构简单,气体排出的方向与触头运动方向相反,有利于电弧的冷却,但燃弧时间较长,灭弧后新鲜油不易补充,不利于重合闸。
少油断路器的灭弧室结构形式较多,除了纵吹灭弧室外,还有横吹、纵横吹等形式的灭弧室。
当断路器分断有电流的电路时,动、静触头分离产生电弧。
随着动触
杆向下运动,电弧被拉人灭弧室依次与油囊中的油接触,使油蒸发、分解形成高压油气泡,在压力差的作用下,高压油气通过灭弧片中心的圆孔连续对电弧向上纵吹,使电弧冷却并熄灭。
属于自能式灭弧的油断路器,其灭弧能力与电弧电流大小有关。
电弧电流越大,电弧能量越大,产生的油气压力越高,吹弧越强烈,灭弧能力越强。
电弧电流小,则灭弧能力弱,电流过零时弧隙介质介电强度小容易复撼,开断电容电流时还会出现过电压。
为提高油断路器开断小电流电弧的能力,在现代的少油断路器中,设置压油活塞装置。
静触头座内装压油活塞后,触头分离时,弹簧力推动活塞向下运动,将活塞下面的油压人弧隙中,可以消除“真空”现象,迅速提高弧隙的绝缘强度,有利于小电流电弧的熄灭。
断路器也采用逆流原理,导电杆采用下拉式。
即分闸导电杆向下运动,电弧产生的高温高压油向上喷,将电弧中的带电质点迅速向上排出弧道,有利于弧隙绝缘强度的迅速恢复。
导电杆向下运动,将电弧向下拉,与弧根接触的是下部冷油,可以降低电弧和触头的温度,使热游离减弱。
同时向下运动,总有一部分冷油向上挤进灭弧室,形成附加机械油吹,对熄灭小电流电弧极为有利。
少油断路器灭弧室中油量较少,在额定断流容量下,开断一两次后,灭弧室中的油就炭化变黑了,油的绝缘强度将降低。
故少油断路器不适合频繁操作。