2020-2021常州市河海中学八年级数学下期中一模试题(及答案)
- 格式:doc
- 大小:807.00 KB
- 文档页数:20
2020-2021初二数学下期中一模试题附答案(1)一、选择题1.下列命题中,真命题是( ) A .四个角相等的菱形是正方形 B .对角线垂直的四边形是菱形 C .有两边相等的平行四边形是菱形 D .两条对角线相等的四边形是矩形2.一次函数1y ax b 与2y bx a 在同一坐标系中的图像可能是( )A .B .C .D .3.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 4.估计26的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.下列条件中,不能判断△ABC 为直角三角形的是 A .21a =,22b =,23c = B .a :b :c=3:4:5 C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:56.如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .7.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下: 阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.348.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.有一个直角三角形的两边长分别为3和4,则第三边的长为( )A .5B .7C .5D .5或710.如图,要测量被池塘隔开的A ,B 两点的距离,小明在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,并分别找出它们的中点D ,E ,连接DE ,现测得DE =45米,那么AB 等于( )A .90米B .88米C .86米D .84米11.如图所示,▱ABCD 的对角线AC ,BD 相交于点O ,AE EB =,3OE =,5AB =,▱ABCD 的周长( )A .11B .13C .16D .2212.如图,ABC 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .10二、填空题13.已知51,x =-则226x x +-=____________________.14.如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.15.将函数31yx 的图象平移,使它经过点()1,1,则平移后的函数表达式是____.16.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为______.17.化简25=_____384-_____. 18.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .19.2a =3b =,用含,a b 0.54,结果为________. 20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题21.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =+-+-,求此三角形的周长.22.善于学习的小明在学习了一次方程(组),一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论: ① ;② ;③ ;④ ;(2)如果点C 的坐标为(1,3),那么不等式kx +b ≤k 1x +b 1的解集为 .23.已知,如图,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是AB 、BC 的中点,连接DE ,且// DE BC . (1) 求证:BE CF =;(2)连接DF ,若5AB BC ==,6AC =,求四边形BEDF 的面积.24.观察下列各式及验证过程:11122323-=211121223232323-===⨯⨯ 1111323438⎛⎫-= ⎪⎝⎭2111131323423423438⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭11114345415⎛⎫-= ⎪⎝⎭,验证21111414345345345415⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭, (1)按照上述三个等式及其验证过程中的基本思想,猜想111456⎛⎫- ⎪⎝⎭的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式,不需要证明.25.如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可. 详解: A 选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B 选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C 选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D 选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题; 故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.C解析:C【解析】 【分析】可用排除法,对各选项中函数图象的特点逐一分析即可. 【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C. 【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.3.C解析:C 【解析】 【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b- ,得到BC=DE=22a b a ba -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x , ∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x , ∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b+,∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +,∴BD故选:C . 【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.4.D解析:D 【解析】 【分析】寻找小于26的最大平方数和大于26的最小平方数即可. 【详解】解:小于26的最大平方数为25,大于26的最小平方数为36,故252636<<,即:5266<<,故选择D.【点睛】本题考查了二次根式的相关定义.5.D解析:D 【解析】 【分析】 【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形; C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形; D 、而由3+4≠5,可知不能判定三角形是直角三角形. 故选D考点:直角三角形的判定6.A解析:A 【解析】 【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案. 【详解】解:如图所示:过点O 作OP 垂直于直线y =kx +b ,∵OP 垂直于直线y =kx +b , ∴OP <2,且点P 的横坐标<0.故此当x <0时,函数有最小值,且最小值<2,根据选项可知A 符合题意. 故选:A . 【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x <0时,函数有最小值,且最小值小于2是解题的关键.7.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.A【解析】【分析】根据中位线定理可得:AB=2DE=90米.【详解】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=12 AB.∵DE=45米,∴AB=2DE=90米.故选A.【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.11.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB=,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.12.C解析:C【解析】【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】解:∵ABC中,CD AB⊥于D,∴∠ADC=90°,则ADC为直角三角形,∵E是AC的中点,DE=5,∴AC=2DE=10,在Rt ADC中,AD=6,AC=10,∴8CD=,【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.二、填空题13.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2 【解析】 【分析】直接代入,根据二次根式的运算法则即可求出答案. 【详解】 解:当51x =-时,原式2(51)2(51)6=-+--52512526=-++--2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.14.【解析】【分析】已知ABCD 是正方形根据正方形性质可知点B 与点D 关于AC 对称DE=PB+PE 求出DE 长即是PB+PE 最小值【详解】∵四边形ABCD 是正方形∴点B 与点D 关于AC 对称连接DE 交AC 于点P 解析:10【解析】 【分析】已知ABCD 是正方形,根据正方形性质可知点B 与点D 关于AC 对称,DE=PB+PE ,求出DE 长即是PB+PE 最小值. 【详解】∵四边形ABCD 是正方形∴点B 与点D 关于AC 对称,连接DE ,交AC 于点P ,连接PB ,则PB+PE=DE 的值最小 ∵CE=1,CD=3,∠ECD=90°∴==DE∴PB+PE【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.15.y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y =3x+1的图象平移得到的∴新直线的k=3可设新直线的解析解析:y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【详解】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为y=3x﹣2.【点睛】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.16.【解析】【分析】【详解】解:如图作CE′⊥AB于E′甲BD于P′连接ACAP′首先证明E′与E重合∵AC关于BD对称∴当P与P′重合时PA′+P′E 的值最小∵菱形ABCD的周长为16面积为8∴AB=解析:【解析】【分析】【详解】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,∵A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,∵菱形ABCD的周长为16,面积为,∴AB=BC=4,∴,由此求出CE的长故答案为3考点:1、轴对称﹣最短问题,2、菱形的性质17.【解析】【分析】(1)根据是负数根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】==﹣2+2=0故答案为:;0【点睛】去绝对值要考虑绝对值符号内的正负正数-52【解析】【分析】(1)根据25是负数,根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】2552384-+2+2=0,520.【点睛】去绝对值要考虑绝对值符号内的正负,正数的绝对值等于其本身,负数的绝对值等于其相反数;立方根的符号与原数相同,算术平方根为非负数18.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质解析:110°【解析】试题解析:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.19.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】将0.54化简后,代入a,b即可.【详解】解:54546936323 0.54100⨯⨯=====,∵2a=,3b=,∴3 0540 .1=ab故答案为:310 ab.【点睛】本题考查了二次根式的乘除法法则的应用,解题的关键是将0.54化简变形,本题属于中等题型.20.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD .三、解答题21.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a =2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】∵3b =∴3a -6≥0,2-a ≥0∴a =2∴b=3∵a ,b 分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a =2.22.(1)①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0;(2)x ≥1. 【解析】【分析】(1)①由于点B 是函数y=kx+b 与x 轴的交点,因此B 点的横坐标即为方程kx+b=0的解;②因为C 点是两个函数图象的交点,因此C 点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b 中,当y >0时,kx+b >0,因此x 的取值范围是不等式kx+b >0的解集; 同理可求得④的结论.(2)由图可知:在C 点右侧时,直线y=kx+b 的函数值要小于直线y=k 1x+b 1的函数值.【详解】 解:(1)根据观察得:①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0. 故答案为:kx +b =0,11y kx b y k x b =+⎧⎨=+⎩,kx +b >0,kx +b <0; (2)∵点C 的坐标为(1,3),∴不等式kx+b≤k1x+b1的解集为x≥1.故答案为:x≥1.【点睛】此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程组之间的内在联系.23.(1)见解析;(2)6【解析】【分析】(1)由平行线的性质和角平分线的概念可得BE=DE,易证四边形DEFC是平行四边形,可得DE=CF,等量代换即可得出结论;(2)易证四边形BEDF是平行四边形,再由BE=DE证得四边形BEDF是菱形,由等腰三角形“三线合一”可得BD⊥EF,根据勾股定理求得BD,根据三角形中位线定理求得EF,根据菱形的面积公式即可得出答案.【详解】(1)证明:∵DE∥BC,∴∠DBC=∠BDE,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠BDE=∠EBD,∴BE=DE,∵E、F是AB、BC的中点,∴EF∥AC,∵DE∥BC,∴四边形DEFC是平行四边形,∴DE=CF,∴BE=CF;(2)∵AB=BC=5,BD平分∠ABC,∴BD⊥AC,CD=12AC=3.在Rt△BDC中,BD∵E、F是AB、BC的中点,∴EF=12AC=3.∵F是BC中点,∴BF=CF,∴DE=BF,DE∥BF,∴四边形BEDF是平行四边形,又∵BE=DE,∴四边形BEDF 是菱形,∴S 菱形BEDF =12BD ·EF =12×4×3 =6.【点睛】本题主要考查了等腰三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,三角形中位线定理,根据三角形中位线定理和平行四边形的判定证出平行四边形是解决(1)的关键,证出四边形BEDF 是菱形是解决(2)的关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出一般规律即可求解.【详解】(111115456524⎛⎫-= ⎪⎝⎭ 21111515456456456524⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭; (221111111n n n n n n ⎛⎫-= ⎪-+-⎝⎭n 为自然数,且n ≥2) . 【点睛】本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键. 25. 3【解析】【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形,∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE ,又∵60DAB ︒∠=,CD=CB,∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质),菱形ABCD 的边长为2,∴CD=2,CE=1, 由勾股定理得22(1) DE=213-=, 3.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.。
2020-2021八年级数学下期中一模试卷(含答案)(4)一、选择题1.下列二次根式中,最简二次根式是( ) A .10B .12C .12D .82.已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形 C .当90ABC ︒∠=时,它是矩形 D .当AC BD =时,它是正方形3.估计26的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间4.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下: 阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.345.有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .46.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( ) A .2B .﹣2C .4D .﹣47.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .38.下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,1,3 C .4,5,6 D .1,3,2 9.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .24010.若x < 0,则2x x-的结果是( )A .0B .-2C .0或-2D .211.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限 12.要使代数式3x -有意义,则x 的取值范围是( ) A .3x ≠B .3x >C .3x ≥D .3x ≤二、填空题13.使二次根式1x -有意义的x 的取值范围是 _____.14.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________. 15.在函数y=1x-中,自变量x 的取值范围是_____. 16.如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.17.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.18.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____. 19.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.20.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=4,则图中阴影部分的面积为_______.三、解答题21.已知方程组2313x y m x y m +=--⎧⎨-=+⎩的解满足x 为负数,y 为非正数(1)求m 的取值范围;(2)化简()2m 3m 2--+(3)在第(1)小题的取值范围内,当m 为何整数时,不等式2mx-x<2m-1的解集为x>1? 22.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F .(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBEF 是菱形;为什么.23.观察下列等式:①2413⨯+= ②3514⨯+= ③4615⨯+=L (1)写出式⑤:___________________;(2)试用含n (n 为自然数,且1n ≥)的等式表示这一规律,并加以验证. 24.在平面直角坐标系中,()()()3,3,7,3,3,6A B C 是ABC ∆的三个顶点,求,,AB BC AC 的长,并判断ABC ∆的形状.25.善于学习的小明在学习了一次方程(组),一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论: ① ;② ;③ ;④ ;(2)如果点C 的坐标为(1,3),那么不等式kx +b ≤k 1x +b 1的解集为 .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可. 【详解】A 10是最简二次根式,本选项正确.B 12=2312C 1222=12A 不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.2.D解析:D【解析】【分析】根据特殊平行四边形的判定方法判断即可.【详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.B解析:B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22BE+=125故选:C.【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D 、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确. 故选D . 【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B 【解析】试题解析:菱形对角线互相垂直平分, ∴BO =OD =12,AO =OC =5,13AB ∴==, 故菱形的周长为52. 故选B.10.D解析:D 【解析】∵x < 0x x =-,∴x x=()22x x x x xx x x ---===.故选D.11.D解析:D 【解析】 【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断. 【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意; 故选:D . 【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.12.B解析:B 【解析】 【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【详解】由题意得,x-3>0, 解得x >3. 故选:B . 【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥0解析:x ≤1 【解析】由题意得:1-x ≥0,解得x ≤1. 故答案为x ≤1.a ≥0.14.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主解析:(答案不唯一,满足02m <<均可) 【解析】 【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m << m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可). 【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.15.x <1【解析】【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x≥0且1−x≠0解得x <1故答案为x <1【点睛】本题考查了函数自变量的取值范围函数自变量的范围解析:x <1 【解析】 【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解. 【详解】解:根据题意得,1-x≥0且1−x≠0, 解得x <1. 故答案为x <1. 【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.【解析】【分析】已知ABCD 是正方形根据正方形性质可知点B 与点D 关于AC 对称DE=PB+PE 求出DE 长即是PB+PE 最小值【详解】∵四边形ABCD 是正方形∴点B 与点D 关于AC 对称连接DE 交AC 于点P 解析:10【解析】 【分析】已知ABCD 是正方形,根据正方形性质可知点B 与点D 关于AC 对称,DE=PB+PE ,求出DE 长即是PB+PE 最小值. 【详解】∵四边形ABCD 是正方形∴点B 与点D 关于AC 对称,连接DE ,交AC 于点P ,连接PB ,则PB+PE=DE 的值最小 ∵CE=1,CD=3,∠ECD=90°∴==DE∴PB+PE【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.17.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt ABCV中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.【详解】解:Rt ABCV中,AC=4m,BC=3m5=m∵1122ABCS AC BC AB CD =⋅=⋅V∴125AC BCCDAB⋅==m=2.4m故答案为2.4 m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.18.y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y=3x+1的图象平移得到的∴新直线的k=3可设新直线的解析解析:y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【详解】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为y=3x﹣2.【点睛】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.19.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【详解】解:∵BD=AD,BE=EC,∴DE=12AC=5,DE∥AC,∵CF=FA,CE=BE,∴EF=12AB=3,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.20.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】由图可知,阴影部分的面积1424 2=⨯⨯=故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE的面积等于△BOF的面积,从而可以判断阴影部分的面积等于矩形面积的一半.三、解答题21.(1)4m 25-≤<;(2)1-2m ;(3)0 【解析】【分析】(1)解方程组用m 的代数式表示出x 、y ,根据x 为负数,y 为非正数列出关于m 的不等式组,解之求得m 的范围;(2)根据绝对值的性质去绝对值符号,再合并即可得;(3)根据不等式的性质得出2m-1<0,求得m 的范围,结合m 为整数及(1)中m 的范围可得答案.【详解】解:(1)解方程组2313x y m x y m +=--⎧⎨-=+⎩得:m 225m 42x y -⎧=⎪⎪⎨--⎪=⎪⎩, ∵x 为负数,y 为非正数, ∴m 2025m 402-⎧<⎪⎪⎨--⎪≤⎪⎩, 解得:4m 25-≤<; (2)当4m 25-≤<时,m 3m 3m 23m m 212m -=--+=---=-;(3)()2m 12m 1x -<-的解是x 1>,∴2m 10-<,∴12m <, ∵4m 25-≤<, ∴m=0.【点睛】 本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是得出关于m 的不等式组并求解.22.(1)证明见解析;(2)当AB=BC 时,四边形DBEF 是菱形,理由见解析.【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE ∥BC ,然后根据两组对边分别平行的四边形是平行四边形证明.(2)根据邻边相等的平行四边形是菱形证明.【详解】解:(1)∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线.∴DE ∥BC.又∵EF ∥AB ,∴四边形DBFE 是平行四边形.(2)当AB=BC 时,四边形DBEF 是菱形.理由如下:∵D 是AB 的中点,∴BD= AB.∵DE 是△ABC 的中位线,∴DE= BC.∵AB=BC ,∴BD=DE.又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.(16817.⨯+=(2(2)11n n n ++=+(n 为自然数,且1n ≥ ),验证见解析.【解析】【分析】(1)根据规律解答即可;(2)根据完全平方公式以及二次根式的性质解答即可.【详解】解:(1)Q 2413⨯+=3514⨯+= 4615⨯+=L 6817.⨯+=7.=(21.n =+理由如下:∵n 为自然数,且n ≥1,∴1.n ===+【点睛】本题主要考查了二次根式的性质,熟练掌握完全平方公式是解答(2)的关键.24.453AB BC AC ===,,,直角三角形【解析】【分析】在直角坐标系中分别根据坐标和勾股定理求出三条线段的长,然后用勾股定理逆定理判定△ABC 的形状为直角三角形.【详解】 解:()()3373A B ,,,Q 两点的纵坐标相等, ∴线段//AB x 轴,734AB ∴=-=,()() 3336A C ,,,Q 两点的横坐标相等,∴线段//AC y 轴,633AC ∴=-=,而5BC ==, 453AB BC AC ∴===,,,222AB AC BC ∴+=,∴ABC ∆为直角三角形.【点睛】本题考查了勾股定理及勾股定理的逆定理,解题的关键是根据提供的三点的坐标求出线段的长.25.(1)①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0;(2)x ≥1. 【解析】【分析】(1)①由于点B 是函数y=kx+b 与x 轴的交点,因此B 点的横坐标即为方程kx+b=0的解;②因为C 点是两个函数图象的交点,因此C 点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b 中,当y >0时,kx+b >0,因此x 的取值范围是不等式kx+b >0的解集; 同理可求得④的结论.(2)由图可知:在C 点右侧时,直线y=kx+b 的函数值要小于直线y=k 1x+b 1的函数值.【详解】解:(1)根据观察得:①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0. 故答案为:kx +b =0,11y kx b y k x b =+⎧⎨=+⎩,kx +b >0,kx +b <0; (2)∵点C 的坐标为(1,3),∴不等式kx +b ≤k 1x +b 1的解集为x ≥1.故答案为:x ≥1.【点睛】此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程组之间的内在联系.。
江苏省常州市2020版八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有8小题,每小题3分,共24分) (共8题;共24分)1. (3分)已知a<b,二次根式化简为()A . aB . aC . -aD . -a2. (3分)在五边形ABCDE中,若∠A=120°,且其余四个内角度数相等,则∠C等于()A . 60°B . 105°C . 110°D . 115°3. (3分)若,则 =()A . 4B . 2C . -2D . 14. (3分) (2020八上·青岛期末) 甲、乙、丙、丁四位同学在一次数学测验中的平均成绩是90分,而甲、乙、丙三人的平均成绩是88分,下列说法一定正确的是()A . 丁同学的成绩比其他三个同学的成绩都好B . 四位同学成绩的中位数一定是其中一位同学的成绩C . 四位同学成绩的众数一定是90分D . 丁同学成绩是96分5. (3分)一元二次方程ax2+bx+c=0有一个根为0,则必有()A . a=0B . b=0C . c=0D . a+b+c=06. (3分) (2018九上·兴义期末) 兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A . 60(1+x)2=80B . (60+x%)2=80C . 60(1+x)(1+2x)2=80D . 60(1+x%)2=-807. (3分)如图,平行四边形ABCD中,△AOD可以看作是由下列哪个三角形旋转而得到的()A . △AOBB . △DOCC . △BOCD . △BCD8. (3分)(2017·梁子湖模拟) 下列运算正确的是()A . 2a3÷a=6B . (a+b)(a﹣b)=a2﹣b2C . (ab3)2=a2b5D . (a+b)2=a2+b2二、填空题(本题共有8小题,每小题3分,共24分) (共8题;共24分)9. (3分)把的根号外的因式移到根号内等于________。
2020-2021常州市河海中学八年级数学下期末一模试题(及答案)一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >52.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =0 4.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .725.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .6.对于函数y =2x +1下列结论不正确是( )A .它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大7.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.8.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)9.函数的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 10.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m11.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.512.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A .4B .5C .6D .43 二、填空题13.若x=2-1, 则x 2+2x+1=__________.14.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.15.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.16.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.17.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .18.182=__________. 19.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______20.将正比例函数y=﹣3x的图象向上平移5个单位,得到函数_____的图象.三、解答题21.如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?22.如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.23.求证:三角形的一条中位线与第三边上的中线互相平分.和它的一条中位线DE,在给出的图形上,请用尺规作出BC边要求:(1)根据给出的ABC上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.24.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.25.设a =b =c =(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C . 【点睛】(a≥0(a≤0).2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.C解析:C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.4.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.5.D解析:D【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.7.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.D解析:D【解析】设正比例函数的解析式为y=kx (k≠0),因为正比例函数y=kx 的图象经过点(-1,2),所以2=-k ,解得:k=-2,所以y=-2x ,把这四个选项中的点的坐标分别代入y=-2x 中,等号成立的点就在正比例函数y=-2x 的图象上,所以这个图象必经过点(1,-2).故选D .9.B解析:B【解析】【分析】【详解】由题意得:x +3>0,解得:x >-3.故选B .10.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.11.D解析:D【解析】【分析】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.14.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.15.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN 的长【详解】设CN=x则DN=8-x由折叠的性解析:【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.16.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.18.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.==考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.19.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.20.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k的值不变,只有b发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.三、解答题21.点B将向左移动0.8米.【解析】【分析】根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB2的长度,根据BB1=CB1-CB即可求得BB1的长度.【详解】解:在△ABC中,∠C=90°,∴AC2+BC2=AB2,即AC2+0.72=2.52,∴AC=2.4.在△A1B1C中,∠C=90°,∴A1C2+B1C2=A1B12,即(2.4–0.4)2+B1C 2=2.52,∴B1C=1.5.∴B1B=1.5–0.7=0.8,即点B将向左移动0.8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求CB1的长度是解题的关键.22.见解析【解析】【分析】根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵AE=CF,∴四边形AECF为平行四边形,∴AF=CE.【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.(1)作线段BC的中段线,BC的中点为F,连结AF即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。
2020-2021初二数学下期中一模试卷(附答案)(4)一、选择题1.下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .142136= 2.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+.3.如图,数轴上点A ,B 表示的数分别是1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 表示的数是( )A .3B .5C .6D .7 4.如图,由四个全等的直角三角形拼成的图形,设CE =a ,HG =b ,则斜边BD 的长是( )A .a+bB .a ﹣bC .222a b +D .222a b - 5.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B 310C .105D .3556.平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14B.10和14C.18和20D.10和347.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA=OC;②∠BAD =∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个8.若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是() A.k<3B.k<0C.k>3D.0<k<39.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.12510.已知直角三角形中30°角所对的直角边长是23cm,则另一条直角边的长是()A.4cm B.43 cm C.6cm D.63 cm11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD12.下列各式不成立的是()A8718293=B22233+=C.8184952==D3232=+二、填空题13.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b ,如3※2=32532+=-.那么12※4=_____. 14.化简()2-2的结果是________;3.14π-的相反数是________;364-的绝对值是_________.15.如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.16.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.17.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为____.18.化简|25|-=_____;计算384-+=_____.19.如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.20.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .三、解答题21.已知长方形的长1322a =1183b =.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =+-+-,求此三角形的周长.23.如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:AE=CF .24.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.25.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V (万立方米)与干旱持续时间t (天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米? (2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A 进行判断;根据二次根式的性质对B 、C 进行判断;根据分母有理化和二次根式的性质对D 进行判断.【详解】A 2,所以A 选项错误;B 、原式=B 选项错误;C 、原式=2,所以C 选项错误;D =,所以D 选项正确. 故选D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 2.D解析:D【解析】2=-误;a =,故错误; D. ()2a b =+,正确;故选D.3.B解析:B【解析】【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:.∴故选:B .【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.4.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +, ∴BD =222a b +, 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.5.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF ,∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.6.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.7.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA =OC ,∠BAD =∠BCD ,∠BAD +∠ABC =180°,但无法得到AC ⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k 的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴,解得:0<k <3,故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b <0⇔y=kx+b 的图象在二、三、四象限”是解题的关键.9.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°, ∴CF=2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:22AB AC-,故选C.11.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】82272==A选项成立,不符合题意;1829==B选项成立,不符合题意;222==,C选项不成立,符合题意;==D选项成立,不符合题意;故选C.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.二、填空题13.【解析】试题解析:根据题意可得:故答案为解析:1 2【解析】试题解析:根据题意可得:41 124.124882 ====-※故答案为1 . 214.4【解析】分析:根据二次根式的性质相反数的定义绝对值的意义解答即可详解:==2314﹣π的相反数为π﹣31=4故答案为2π﹣3144点睛:本题考查了二次根式的性质相反数的定义绝对值的意义是基础题熟记解析: 3.14π-4【解析】分析:根据二次根式的性质,相反数的定义,绝对值的意义解答即可.=2,3.14﹣π的相反数为π﹣3.14=-=4.故答案为2,π﹣3.14,4.点睛:本题考查了二次根式的性质,相反数的定义,绝对值的意义,是基础题,熟记概念是解题的关键.15.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴22221310=++=DE CE CD∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.16.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24 解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.17.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=解析:6【解析】【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,CF===4设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.【点睛】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.18.【解析】【分析】(1)根据是负数根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】==﹣2+2=0故答案为:;0【点睛】去绝对值要考虑绝对值符号内的正负正数-【解析】【分析】(1)根据是负数,根据负数绝对值等于它的相反数可得到答案;(2)根据立方根和算术平方根的求法可得到答案【详解】+2+2=0,0.【点睛】去绝对值要考虑绝对值符号内的正负,正数的绝对值等于其本身,负数的绝对值等于其相反数;立方根的符号与原数相同,算术平方根为非负数19.(03)【解析】【分析】先根据菱形的性质确定菱形的长度再设B点的坐标为(0y)最后根据两点之间的距离公式即可求得B点的坐标【详解】解:设B点的坐标为(0y)根据菱形的性质得AB=20÷4=5;由两点解析:(0,3)【解析】【分析】先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.【详解】解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;由两点间距离公式可得:22(0-4)(y-0)5+=(y >0),解得y=3所以B 点坐标为(0,3).故答案为(0,3).【点睛】本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.20.【解析】试题分析:∵四边形ABCD 是平行四边形∴AD∥CBAB∥CD∴∠DAB+∠CBA=180°又∵AP 和BP 分别平分∠DAB 和∠CBA∴∠PAB=∠DAB∠PBA=∠ABC∴∠PAB+∠PBA=解析:【解析】试题分析: ∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB=∠DAB ,∠PBA=∠ABC ,∴∠PAB+∠PBA=(∠DAB+∠CBA )=90°,∴∠APB=180°﹣(∠PAB+∠PBA )=90°;∵AB ∥CD ,∴∠PAB=∠DPA ,∴∠DAP=∠DPA ,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt △APB 中,AB=10,AP=8,∴BP==6,∴△APB 的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形. 三、解答题21.(1)622)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()1111223218242322326 2.2323a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝ ∴长方形的周长为6 2. .(2)111132184232 4.2323=⨯⨯= 正方形的面积也为4.4 2.=周长为:428.⨯=628.>∴长方形的周长大于正方形的周长.22.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a =2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】 ∵33652b a a =+-+-∴3a -6≥0,2-a ≥0∴a =2∴b=3∵a ,b 分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a =2.23.详见解析.【解析】试题分析:根据平行四边形的性质可得AB=CD ,AB ∥CD ,再由平行线的性质证得∠ABE=∠CDF ,根据AE ⊥BD ,CF ⊥BD 可得∠AEB=∠CFD=90°,由AAS 证得△ABE ≌△CDF ,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠ABE=∠CDF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定及性质.24.(1)证明详见解析;(2)证明详见解析;(3)10.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,∴AE =DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB .∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点,∴AD =DC=12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形, ∴DF =AB =5, ∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=10. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.25.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸.【解析】【分析】(1)原蓄水量即t=0时v的值,t=50时,v=0,得v与t的函数关系,持续干旱10天后的蓄水量即t=10时v的值;(2)即找到v=400时,相对应的t的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.【详解】解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.。
2020-2021初二数学下期中一模试题含答案(4)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+.2.如图,数轴上点A ,B 表示的数分别是1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 表示的数是( )A .3B .5C .6D .7 3.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米4.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m5.26的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k <3 B .k <0 C .k >3 D .0<k <38.如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm9.下列二次根式:34,18,,125,0.4823-,其中不能与12合并的有()A.1个B.2个C.3个D.4个10.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t 的变化而变化,下列从图象中得到的信息正确的是( )A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃11.下列运算正确的是()A.235+=B.326 2=C.235=D.1333÷=12.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二、填空题13.使二次根式1x -有意义的x 的取值范围是 _____.14.如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.16.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,30ACB ∠=,则AOB ∠的大小为______ .17.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______ 18.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .19.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .20.如图,若▱ABCD 的周长为22 cm ,AC ,BD 相交于点O ,△AOD 的周长比△AOB 的周长小3 cm ,则AB =________。
常州市2020~2021学年度第二学期期中质量调研八年级数学试题一、选择题(每小题2分,共16分)1.下列图形中既是轴对称图形,又是中心对称图形的是 ------------------------------- 【 】AB C .D .2.下列事件中,必然事件的是 ------------------------------------------------------------------ 【 】 A .购买一张彩票,中奖 B .打开电视机,正在播放广告C .任意买一张电影票,座位号是2的倍数D .一个袋中装有5个黑球,从中摸出一个球是黑球3.为了了解2020年常州市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是 ------------------------------------------- 【 】 A .2020年常州市九年级学生是总体 B .每一名九年级学生是个体 C .1000名九年级学生是总体的一个样本 D .样本容量是10004.能确定四边形是平行四边形的条件的是 -------------------------------------------------- 【 】A .一组对边平行,另一组对边相等B .一组对边平行,一组邻角相等C .一组对边平行且相等D .两条对角线相等5.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复, 共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球 ------------------- 【 】A .12个B .16个C .20个D .30个6.若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定满足 -------------------------------------------------------------------------------------------------- 【 】 A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对角线相等且相互平分 7.如图,正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB 等于 - 【 】A .22.5°B .45°C .30°D .135°FABCDOEG(第8题)ABEFCD(第7题)2021.48.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,BD =2AD ,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①∠OBE =21∠ADO ;②EG =EF ;③GF 平分∠AGE ;④EF ⊥GE .其中正确的是 -------------------------------------------------------------------- 【 】A .①②③④B .①②③C .①②④D .②③二、填空题(每小题2分,共20分)9.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”50名,小明打通了一次热线电话,那么他成为“幸运观众”的概率为 .10.将一批数据分成5组,列出分布表,其中第一组与第五组的频率之和是0.27,第二与第四组的频率之和是0.54,那么第三组的频率是.11.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长为 . 12.如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.且∠C =80°,则∠EAB = °.13.菱形ABCD 中,对角线AC =6,BD =8,则菱形ABCD 的面积是 . 14.如图,在□ABCD 中,∠BAD 的平分线AE 交边CD 于点E ,AB =6cm ,BC =4cm ,则EC = cm .15.如图,D 是△ABC 的边BC 上的点,F 是边AB 的中点,且AC =DC ,CE ⊥AD ,若EF =3,则BD = .16.在□ABCD 中,若∠A =3∠B ,则∠D = °.17.如图,E 是菱形ABCD 的对角线BD 上的一点,EF 垂直平分BC ,垂足为F ,且∠DAE=30°,则∠ABC = °.18.把一张矩形纸片ABCD 按如图方式折叠,使顶点B 落在边AD 上(记为点B ′),点A落在点A′处,折痕分别与边AD 、BC 交于点E 、F .若AB =8,BC =16,则线段BFA BF CDEA'B'(第18题)ABFCED(第17题)BDCEAF(第15题)ABCD E(第14题)BDCEA(第12题)BCDOE(第11题)的最大值等于 . 三、解答题:(共64分)19.(6分)如图,平面直角坐标系中,每个小正方形边长都是1,△ABC 的顶点都在正方形网格的格点上.按要求作图: ⑴ △ABC 绕坐标原点O 逆时针旋转90°得到△A 1B 1C 1;⑵ △ABC 关于坐标原点O 中心对称的△A 2B 2C 2;⑶ △A 1B 1C 1中顶点B 1坐标为 .20.(8分)某校就“地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”. ⑴ 被调查的总人数是 人,扇形统计图中C 部分所对应的扇形圆心角的度数为 . ⑵ 补全条形统计图;⑶ 若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有多少人?21.(6分)如图,□ABCD 中,点F 是BC 边的中点,连接DF 并延长交AB 的延长线于点E .求证:AB =BE .A B EFD C22.(6分)如图,在□ABCD 中,对角线AC 、BD 相交于O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.23.(8分)如图,在△ABC 中,AB =BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.24.(10分)如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,若EF =EC ,且EF ⊥EC ,CD =3,求BE 的长.B A E D OF C A D CEF B AEDFCB25.(10分)如图,已知菱形ABOC的对角线AO、BC相交于点G,E是直线AC上的动点,过E作EF∥AO交直线OC于点F,且A(0,4),B(-1,2).以O、G、E、F为顶点的四边形是平行四边形,求E点坐标.ABCDEFM26.(10分)在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M .⑴ 判断四边形AEMF 的形状,并给予证明; ⑵ 若BD =2,CM =3,试求四边形AEMF 的边长.八年级数学参考答案及评分意见一、选择题(每小题2分,共16分)题号 1 2 3 4 5 6 7 8 答案BDDCACAB二、填空题(每小题2分,共20分)9.60110.0.19 11.8 12.20 13.2414.2 15.6 16.45 17.100 18.10 三、解答题:(共64分)19.(6分)解:⑴ 如图所示,△A 1B 1C 1即为所求;--------------------------- 2分 ⑵ 如图所示,△A 2B 2C 2即为所求; --------------------------- 4分 ⑶ 由图可知,△A 1B 1C 1中顶点B 1坐标为(-1,-6) -- 6分20.(8分)解:⑴ 50, 216°------------------------------------------------------- 4分⑵ 如图:-------------------------------------------------------------- 6分 ⑶ 1800×10%=180(人) ---------------------------------------- 8分 21.(6分)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ------------------------------------------------------------------------2分∴∠CDF =∠E ,∠C =∠CBE . ∵点F 是BC 边的中点,∴FC =FB . ---------------------------------------------------------------------------------------3分∴△CDF ≌△BEF .∴CD =BE . --------------------------------------------------------------------------------------510 1520 25 30 A B C D 类别人数5530105分∴AB=BE. --------------------------------------------------------------------------------------- 6分22.(6分)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD, ----------------------------------------------------------------------- 1分∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,---------------------------------------------------------------------------- 2分∴DE=BF,--------------------------------------------------------------------------------------- 3分又∵ED∥BF,∴四边形BEDF是平行四边形,------------------------------------------------------------ 4分∵EF⊥BD,--------------------------------------------------------------------------------------- 5分∴□BEDF是菱形.---------------------------------------------------------------------------- 6分23.(8分)证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.------------------------------------------------------------------------ 2分∵四边形ABED是平行四边形,∴BE∥AD,BE=AD, ------------------------------------------------------------------------ 4分∴BE=CD, -------------------------------------------------------------------------------------- 5分∴四边形BECD 是平行四边形. ------------------------------------------------------------6分 ∵BD ⊥AC ,∴∠BDC =90°, ---------------------------------------------------------------------------------7分∴□BECD 是矩形. ----------------------------------------------------------------------------8分24.(10分)证明:∵矩形ABCD ,∴∠A =∠D =90°,AB =CD -------------------------------- 2分 ∴∠1+∠2=90°, --------------------------------------------- 3分 ∵EF ⊥EC , ∴∠FEC =90°,∴∠2+∠3=90°, ∴∠1=∠3, ----------------------- 4分 在△AEF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠EC EF D A 31, ∴△AEF ≌△DCE , ------------------------------------------- 5分 ∴AE =DC , ---------------------------------------------------- 6分 在Rt △ABE 中,∵∠A =90° ∴BE 2=AB 2+AE 2,即:()()22233+=BE ---------- 8分∴BE =6. --------------------------------------------------- 10分ABCDEF123FA 124325.(10分)解:∵菱形ABOC ,∴AO ⊥BC ,AG =OG ,BG =CG --------------------------------------------------------------1分∵A (0,4),B (-1,2)∴G (0,2),C (1,2) ----------------------------------------------------------------------- 2分∴直线AC 和直线OC 的解析式分别为:42+-=x y ,x y 2= ------------------------ 4分设E )42,(+-m m ,则F )2,(m m∴EF =44242+-=-+-m m m --------------------------------------------------------------5分∵以O 、G 、E 、F 为顶点的四边形是平行四边形,∴EF =OG 即:244=+-m -----------------------------------------------------------------6分 解得:m =21或 m =23--------------------------------------------------------------------------- 8分∴E )3,21(或)1,23( ----------------------------------------------------------------------------------10分26.(10分)解:⑴ 四边形AEMF 是正方形 ----------------------------------------------------------------------1分理由如下:∵AD ⊥BC △AEB 是由△ADB 折叠所得∴∠1=∠3,∠E =∠ADB =090,BE =BD , AE =AD ---------------------------2分又∵△AFC 是由△ADC 折叠所得∴∠2=∠4,∠F =∠ADC =090,FC =CD ,AF =AD ----------------------------3分∴AE =AF ------------------------4分又∵∠1+∠2=45°,八年级数学 第 11 页 (共 11 页) ∴∠3+∠4=45°∴∠EAF =90°∴四边形AEMF 是矩形∵AE =AF∴矩形AEMF 是正方形. --------------------------5分⑵ 设正方形AEMF 的边长为x则:BE =BD , CF =CD∴BM =x -2; CD =CF =x -3 -----------------------------------------------------------6分在Rt △BMC 中,由勾股定理得:∵222BC CM BM =+∴222)1(3)2(-=+-x x ---------------------------------------------------------------------8分得:x =6正方形AEMF 的边长为6.------------------------------------------------------------- 10分。