高等代数与解析几何第七章节(1-3习题) 线性变换与相似矩阵答案
- 格式:doc
- 大小:1.46 MB
- 文档页数:33
第七章线性变换练习题参考答案一、填空题1.设鸟送,3是线性空间V 的一组基,V 的一个线性变换仃在这组基下的矩 阵是A=(a j 最3,口=x 11x %+2x 8炉V 则仃在基833V l下的矩阵B= 「001、T ,AT,而可逆矩阵T=010满足B=T,AT,ua 在基£132d 3下的坐标为♦0- &'Ax 2.2 .设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间P n 的线性变换仃:仃(与=人3"P n ,则仃,(0)={"A Z=0』w P n },dim (a -1(0))=n —r,dim 二(P n )=r.n 3.复矩阵A=(a j ).的全体特征值的和等于Z a ii ,而全体特征值的积等于i =1 IAJ.4 .设仃是n 维线性空间V 的线性变换,且仃在任一基下的矩阵都相同,则仃为__数乘一变换.5 .数域P 上n 维线性空间V 的全体线性变换所成的线性空间L(V)为工2维线性空间,它与P n>n 同构.6 .设n 阶矩阵A 的全体特征值为入口2,…,4,f(x)为任一多项式,则f(A) 的全体特征值为f(1),f(2),,f(n ).7 .设A 」13i,则向量*'是A 的属于特征值4的特征向量.摩2)⑺0 -1相似,则k =』2 1」9 .设三阶方阵A 的特征多项式为f(?Q=73-2K 2-2九+3,则|A|=)10 .n 阶方阵A 满足A 2=A,则A 的特征值为0和1.f 18.右A =—1<0 01)<011 .线性空间R3上的线性变换为A(X I,X2,X3)=(K十2X3,3X2+3X3,X2—2x i),「102、变换A在基a=(1,0,0)"2=(0,1,0),S=(0,0,1)下的矩阵为033.「21。
」二、判断题1 .设。
是线性空间V的一个线性变换,口1,0(2,…R s W V线性无关,则向量组仃包工虫%),…,仃Q s)也线性无关.(错)2 .设仃为n维线性空间V的一个线性变换,则由仃的秩+仃的零度=n,有V=D(V)㊉仃」(0).(错)未必有V=G(V)@<T-1(0).3 .在线性空间R2中定义变换。
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1)设是线性空间中的一个固定向量,(Ⅰ),,解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(Ⅱ),;解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(2)在中,(Ⅰ),解:不是的线性变换。
因对于,有,,所以。
(Ⅱ);解:是的线性变换。
设,其中,,则有,。
(3)在中,(Ⅰ),解:是的线性变换:设,则,,。
(Ⅱ),其中是中的固定数;解:是的线性变换:设,则,,。
(4)把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换。
因为取,时,有,,即。
(5)在中,设与是其中的两个固定的矩阵,,。
解:是的线性变换。
对,,有,。
习题7.1.2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换。
证明(表示恒等变换),,;并说明是否成立。
证明:在中任取一个向量,则根据,及的定义可知:,,;,,;,,,即,故。
因为,,所以。
因为,,所以。
因为,,所以。
习题7.1.3在中,,,证明。
证明:在中任取一多项式,有。
所以。
习题7.1.4设,是上的线性变换。
若,证明。
证明:用数学归纳法证明。
当时,有命题成立。
假设等式对成立,即。
下面证明等式对也成立。
因有,即等式对也成立,从而对任意自然数都成立。
习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且。
证明:(1)设都是的逆变换,则有,。
进而。
即的逆变换唯一。
(2)因,都是上的可逆线性变换,则有,同理有由定义知是可逆线性变换,为逆变换,有唯一性得。
习题7.1.6设是上的线性变换,向量,且,,,都不是零向量,但。
证明,,,线性无关。
证明:设,依次用可得,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。
第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1 )设「是线性空间「中的一个固定向量,解:当■时,■-. - 显然是’的线性变换;当小时,有■,则□ l闵+觀h 6逐)+e(碣),即此时■不是"的线性变换。
T\a}解:当「时,显然是「的线性变换;T(闵+觀縊讥坷)+丁(%「,即此时L不是「的线性变换。
(2)在匚中,:T|=(心勾+解:「不是:的线性变换。
因对于叩),所以贰加)黑如©)。
J-f(□)解:是二的线性变换。
设■-T (硏丁(E = (2xj -鬲圖+画尼啊/V —vG —(10,0)€ 护有1!:"'二!,有则有左苴中&二(兀心■IIL.. JI. ■KJO|i —、赢I jr .跚)+(2”-兀5L TXa)a眼JCT 三(1Th f 丰乃1(範+为H (西+沟)必(画+另))価+必)二我住+3a:(上c)- T[上q .上吆上3 =心匕、-kxj r +匕勺.2上勺)=jfc(2x1-无|,阳+ 可,2 両(3)在•[;中,([)」- ,解:0是H用的线性变换:设貳⑴居(Q它月旳.,贝U直(/a)+欢))=/(兀+i)+gd+i)=</◎》+龙⑵), a財优论kj\x+5-逝/(劝,唯总F。
(u)处『姦訂芻》,其中•是;中的固定数;解:「-是;一的线性变换:设釁鑰廉8.詰圜,则⑺(7U)+g⑴)=/W+gfe)=次/⑴)卡以gO)),◎(射妙-妙厲)-如y(幼伏訂。
5 穴u(4)把复数域’看作复数域上的线性空间,步②匕加,其中「是一的共轭复数;解:「不是线性变换。
因为取兴习,「-7时,有*鸞日關上(7(仕)=滋二i即0(k&)主去曲空)(5)在:,■ 中,设■与:-是其中的两个固定的矩阵,- U Z&1解:「是"的线性变换。
对1蓟如=P瞒Q= ^PXQ二£啲O习题7.1.2在{中,取直角坐标系-,以-表示空间绕「轴由轴向…方向旋转900的变换,以表示空间绕'轴由--轴向八方向旋转90°的变换,以&表示空间绕轴由 轴向Oy 方向旋转900的变换。
第七章 线性变换练习题参考答案一、填空题1.设123,,εεε是线性空间V 的一组基,V 的一个线性变换σ在这组基下的矩阵是33112233(),,ij A a x x x V αεεε⨯==++∈则σ在基321,,εεε下的矩阵B =1,T AT -而可逆矩阵T =001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭满足1,B T AT -=σα在基123,,εεε下的坐标为123x A x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭ .2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换:(),n A P σσξξξ=∈,则1(0)σ-={}|0,n A P ξξξ=∈,()1dim (0)σ-=n r -,()dim ()n P σ=r .3.复矩阵()ij n n A a ⨯=的全体特征值的和等于1nii i a =∑ ,而全体特征值的积等于||A .4.设σ是n 维线性空间V 的线性变换,且σ在任一基下的矩阵都相同,则σ为__数乘__变换 .5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为2n 维线性空间,它与n n P ⨯同构.6.设n 阶矩阵A 的全体特征值为12,,,n λλλ,()f x 为任一多项式,则()f A 的全体特征值为12(),(),,()n f f f λλλ . 7.设⎪⎪⎭⎫ ⎝⎛=2231A ,则向量⎪⎪⎭⎫ ⎝⎛11是A 的属于特征值 4 的特征向量. 8.若⎪⎪⎪⎭⎫ ⎝⎛--=100001011A 与1010101k B k ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭相似,则k = -1/2 . 9.设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A 3 .10.n 阶方阵A 满足A A =2,则A 的特征值为 0和1 .11.线性空间3R 上的线性变换为A =),,(321x x x 132321(2,33,2)x x x x x x ++-,变换A 在基)1,0,0(),0,1,0(),0,0,1(321===εεε下的矩阵为102033210⎛⎫ ⎪ ⎪ ⎪-⎝⎭.二、判断题1.设σ是线性空间V 的一个线性变换,12,,,s V ααα∈线性无关,则向量组12(),(),,()s σασασα也线性无关. (错) 2.设σ为n 维线性空间V 的一个线性变换,则由σ的秩+σ的零度=n ,有1()(0).V V σσ-=⊕ (错)未必有1()(0).V V σσ-=⊕3.在线性空间2R 中定义变换σ:(,)(1,)x y x y σ=+,则σ是2R 的一个线性变换. (错)零向量的像是(1,0)4.若σ为n 维线性空间V 的一个线性变换,则σ是可逆的当且仅当1(0)σ-={0}. (正确)σ是可逆的当且仅当σ是双射.5.设σ为线性空间V 的一个线性变换,W 为V 的一个子集,若()W σ是V 的一个子空间,则W 必为V 的子空间. (错)如平面上的向量全体在x 轴上的投影变换,W 为终点在与x 轴平行而不重合的直线上的向量全体,()W σ为x 轴上的向量全体,是V 的一个子空间,但W 不是V 的子空间.6.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A .(正确)7.已知1-=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特征向量与P 有关.( 正确 )1P AP B -=,P 的列向量为A 的特征向量.8.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关.(错)当σ可逆时无关,当σ不可逆时相关.9.α为V 上的非零向量,σ为V 上的线性变换,则})(|{)(1αησηασ==-是V 的子空间.( 错 )不含零向量.三、计算与证明1.判断矩阵A 是否可对角化?若可对角化,求一个可逆矩阵T ,使1T AT -成对角形.133313331A ⎛⎫ ⎪= ⎪ ⎪⎝⎭解:先求矩阵A 的特征值与特征向量.2133313(7)(2)331E A λλλλλλ----=---=-+---. 矩阵A 的特征值为12,37,2λλ==-.当17λ=时,解方程组1231231236330,3630,3360.x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩得矩阵A 属于特征值7的线性无关特征向量为1(1,1,1)'ξ=.当2,32λ=-时,解方程组1231231233330,3330,3330.x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩得矩阵A 属于特征值-2的线性无关特征向量为23(1,1,0)',(1,0,1)'ξξ=-=-.矩阵A 有三个线性无关的特征向量.因此矩阵A 可对角化,取矩阵111110101T ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭有1722T AT -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭2.在线性空间n P 中定义变换σ:122(,,,)(0,,,)n n x x x x x σ=(1)证明:σ是n P 的线性变换.(2)求()n P σ与1(0).σ-(1)证明:112222(,,,)(0,,,)n n n n x y x y x y x y x y σ+++=++ 221212(0,,,)(0,,,)(,,,)(,,,)n n n n x x y y x x x y y y σσ=+=+12122((,,,))(,,,)(0,,,)n n n k x x x kx kx kx kx kx σσ== 212(0,,,)(,,,)n n k x x k x x x σ==.所以σ是n P 的线性变换.(2){}2()(0,,,)|,2,,.n n i P x x x P i n σ=∈=. {}111(0)(,0,,0)|.x x P σ-=∈3.设⎪⎪⎪⎭⎫ ⎝⎛----=a A 33242111与⎪⎪⎪⎭⎫ ⎝⎛=b B 00020002相似.(1)求b a ,的值;(2)求可逆矩阵,使B AP P =-1.解:(1)由矩阵A 与B 相似可得,矩阵A 与B 有相同的迹与行列式,因此有45,46 6.b a b a +=+⎧⎨=-⎩ 所以5,6a b ==.(2)先求矩阵A 的特征值与特征向量.2111||242(6)(2)335E A λλλλλλ---=--=--- 特征值为1,232,6λλ==.当1,22λ=时,解方程组1231231230,2220,3330.x x x x x x x x x +-=⎧⎪--+=⎨⎪+-=⎩得矩阵A 属于特征值-2的线性无关特征向量为12(0,1,1)',(1,0,1)'ξξ==.当16λ=时,解方程组12312312350,2220,330.x x x x x x x x x +-=⎧⎪-++=⎨⎪++=⎩得矩阵A 属于特征值7的线性无关特征向量为1(1,2,3)'ξ=-.因此可取矩阵011102113P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,有B AP P =-1.4.令n n P ⨯表示数域P 上一切n 级方阵所成的向量空间,取定,n n A B P ⨯∈,对任意的n n P X ⨯∈,定义()''X A XA B XB σ=-. 证明σ是n n P ⨯上的一个线性变换.证明:对任意的,,n n X Y P k P ⨯∈∈,有()'()'()''''()(),X Y A X Y A B X Y BA XAB XB A YA B YB X Y σσσ+=+-+=-+-=+()'()'()('')()kX A kX A B kX B k A XA B XB k X σσ=-=-=.因此σ是n n P ⨯上的一个线性变换.。
1、已知22P ⨯的线性变换:221011(),(,,)1111X M XN X PM N σ⨯-⎛⎫⎛⎫=∀∈==⎪ ⎪-⎝⎭⎝⎭求σ的特征值与特征向量。
解:取22P ⨯的基11122122,,,E E E E ,则111111122122121211122122212121222221101011()110011100111()110011100011()111011100()11E M E N E E E E E M E N E E E E E M E N E E E M E N σσσσ-⎛⎫⎛⎫⎛⎫===-+-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫===-+-+⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫===-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫==⎪⎝⎭21220110111E E -⎛⎫⎛⎫=-+ ⎪ ⎪-⎝⎭⎝⎭所以σ关于基11122122,,,E E E E 的矩阵为1100110011111111A -⎛⎫ ⎪-⎪= ⎪-- ⎪--⎝⎭。
所以2211001100()(2)11111111A x x f x xI A x x x x --=-==-----,所以A 的特征根为120λλ==和342λλ==, 当120λλ==时,则12341100011001111011110x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,其基础解系为(1,1,0,0),(0,0,1,1), 其对应的特征向量为1122,k X k X +其中111122212212,,,X E E X E E k k =+=+不全为零。
当122λλ==时,则123411000110001111011110x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,其基础解系为(0,0,1,1)-, 其对应的特征向量为33k X ,其中321223,0X E E k =-+≠。
习题7.4习题7.4.1设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题7.4.2设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。
证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。
证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。
现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。
第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1)设是线性空间中的一个固定向量,(Ⅰ),,解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(Ⅱ),;解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(2)在中,(Ⅰ),解:不是的线性变换。
因对于,有,,所以。
(Ⅱ);解:是的线性变换。
设,其中,,则有,。
(3)在中,(Ⅰ),解:是的线性变换:设,则,,。
(Ⅱ),其中是中的固定数;解:是的线性变换:设,则,,。
(4)把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换。
因为取,时,有,,即。
(5)在中,设与是其中的两个固定的矩阵,,。
解:是的线性变换。
对,,有,。
习题7.1.2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换。
证明(表示恒等变换),,;并说明是否成立。
证明:在中任取一个向量,则根据,及的定义可知:,,;,,;,,,即,故。
因为,,所以。
因为,,所以。
因为,,所以。
习题7.1.3在中,,,证明。
证明:在中任取一多项式,有。
所以。
习题7.1.4设,是上的线性变换。
若,证明。
证明:用数学归纳法证明。
当时,有命题成立。
假设等式对成立,即。
下面证明等式对也成立。
因有,即等式对也成立,从而对任意自然数都成立。
习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且。
证明:(1)设都是的逆变换,则有,。
进而。
即的逆变换唯一。
(2)因,都是上的可逆线性变换,则有,同理有由定义知是可逆线性变换,为逆变换,有唯一性得。
习题7.1.6设是上的线性变换,向量,且,,,都不是零向量,但。
证明,,,线性无关。
证明:设,依次用可得,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。
第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量;2)在线性空间V中,A其中V是一固定的向量;3)在P 322 中,A(,,)(,,)x1xxxxxx;2312334)在P 3中,A(,,)(2,,)x1xxxxxxx2312231;5)在P[x]中,A f(x)f(x1);6)在P[x]中,A()(),fxfx其中0 x P是一固定的数;07)把复数域上看作复数域上的线性空间,A。
nn中,A X=BXC其中B,CP 8)在P解1)当0时,是;当0时,不是。
nn是两个固定的矩阵.2)当0时,是;当0时,不是。
3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。
4)是.因取(x1,x2,x3),(y1,y2,y3),有A()=A(x1y1,x2y2,x3y3)=(2x12y1x2y2,x2y2x3y3,x1y1)=(2x1x2,x2x3,x1)(2y1y2,y2y3,y1)=A+A,A(k)A(kx1,kx2,kx3)(2kx1 k x2,k x2k x,3k x)1(2kx1 k x2,k x2k x,3k x)1=k A(),3故A是P上的线性变换。
5)是.因任取f(x)P[x],g(x)P[x],并令u(x)f(x)g(x)则A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)),再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。
6)是.因任取f(x)P[x],g(x)P[x]则.A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)),A(kf(x))kf(x0)k A(f(x))。
7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ; 6) 在P[x ]中,A),()(0x f x f =其中0x ∈P 是一固定的数;7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk ,A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1)设是线性空间中的一个固定向量,(Ⅰ),,解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(Ⅱ),;解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。
(2)在中,(Ⅰ),解:不是的线性变换。
因对于,有,,所以。
(Ⅱ);解:是的线性变换。
设,其中,,则有,。
(3)在中,(Ⅰ),解:是的线性变换:设,则,,。
(Ⅱ),其中是中的固定数;解:是的线性变换:设,则,,。
(4)把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换。
因为取,时,有,,即。
(5)在中,设与是其中的两个固定的矩阵,,。
解:是的线性变换。
对,,有,。
习题7.1.2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换。
证明(表示恒等变换),,;并说明是否成立。
证明:在中任取一个向量,则根据,及的定义可知:,,;,,;,,,即,故。
因为,,所以。
因为,,所以。
因为,,所以。
习题7.1.3在中,,,证明。
证明:在中任取一多项式,有。
所以。
习题7.1.4设,是上的线性变换。
若,证明。
证明:用数学归纳法证明。
当时,有命题成立。
假设等式对成立,即。
下面证明等式对也成立。
因有,即等式对也成立,从而对任意自然数都成立。
习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且。
证明:(1)设都是的逆变换,则有,。
进而。
即的逆变换唯一。
(2)因,都是上的可逆线性变换,则有,同理有由定义知是可逆线性变换,为逆变换,有唯一性得。
习题7.1.6设是上的线性变换,向量,且,,,都不是零向量,但。
证明,,,线性无关。
证明:设,依次用可得,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。
有定义知,,,线性无关。
习题7.1.7设是上的线性变换,证明是可逆线性变换的充要条件为既是单射线性变换又是满射线性变换,即是一一变换。
证明:已知是可逆线性变换,即存在。
若,则两端用作用即得,因此是单射线性变换。
若任取,则存在,使得,即是满射线性变换。
已知既是单射线性变换又是满射线性变换,即双射。
现定义新的变换:,定有,且有,规定,有,同时有,即有。
由定义知是可逆线性变换。
习题7.1.8设是上的线性变换,证明(1)是单射线性变换的充要条件为;(2)是单射线性变换的充要条件为把线性无关的向量组变为线性无关的向量组。
证明:(1)已知是单射线性变换,对,则有,由单射得,即。
已知,若,则有,得,即得,故是单射。
(2)已知是单射线性变换。
设线性无关,现证也线性无关。
令,整理有,而是单射,有,已知线性无关,所以,故也线性无关。
已知把线性无关的向量组变为线性无关的向量组。
若,则有,并一定有。
否则若,则说明向量线性无关,而表示把线性无关的向量组变为线性相关的向量组,与条件矛盾。
而由可得,即是单射线性变换。
习题7.1.9设是中全体可逆线性变换所成的子集,证明关于线性变换的乘法构成一个群。
(超范围略)习题7.1.10设,是上的线性变换,且证明(1)若,则;(2)若,则。
证明:(1)因为,。
所以,从而或。
又因为。
故。
(2)因为,,所以。
习题7.1.11设与分别是数域上的维与维线性空间,是的一个有序基,对于中任意个向量,证明存在唯一的线性映射,使,。
证明:先证明存在性。
对任意的,有唯一的线性表达式我们定义显然有,。
现验证为到的一个线性映射。
(1)对任意的向量,因为,由定义得。
(2)对任意的,因为,由定义得。
所以为到的一个线性映射。
再证唯一性:若另有到的一个线性映射,也使得,。
则对任意向量,一定有。
由在中的任意性,可得。
习题7.1.12设与分别是数域上的维与维线性空间,是线性映射。
证明是的子空间,是的子空间。
又若有限,证明。
这时称为的零度,称为的秩。
证明:(1)先证与分别为与的子空间,对,,有,所以,故为的子空间;同理,对,,则,使,,所以所以为的子空间.(2)再证因有限,不妨设,,在中取一个基,再把它扩充为的一个基,则是像空间的一个基.事实上,对,存在,使得。
设,则有即中的任意向量都可由线性表示。
现证向量组线性无关:设,有,即,所以向量可由向量组线性表示,进而有,整理有,又因线性无关,所以必有,因此线性无关,即为的一个基,故。
习题7.1.13证明关于定义7.1.12中所定义的线性映射的加法与数量乘法构成上的一个线性空间。
证明:现证明定义7.1.12中所定义的线性映射的加法与数量乘法都是从到的线性映射。
事实上,对,,有故为到的线性映射。
同理,对,,有,,故为到的线性映射。
另外线性映射的加法与数量乘法显然满足:(1)结合律:;(2)交换律: ;(3)存在零线性映射,对,有;(4)对,有负线性映射,使得;(5);(6);(7);(8)。
其中,所以关于定义7.1.12中所定义的线性映射的加法与数量乘法构成上的一个线性空间。
习题7.1.14证明:。
证明:设为维线性空间,为维线性空间,即,。
取定的一组基和的一组基。
令为到的如下映射:,其中为在基与基下的矩阵。
这样定义的是到的同构映射。
事实上,(1)若,,且,则有,。
由于,对每一个都有,故有,即是单射。
(2),令。
则存在唯一的线性映射使得,并且由此可见,是满射。
(3)对,,有,,其中即有,,所以,故有,所以是到的同构映射。
进而有。
习题7.2习题7.2.1求下列线性变换在所指定的一个基下的矩阵:(1)的线性变换,,其中为固定矩阵。
求,在这个基下的矩阵;(2)设是线性空间的线性变换,求在基下的矩阵;(3)6个函数:,,,,,的所有实系数线性组合构成实数域上一个6维线性空间。
求微分变换在基下的矩阵。
解:(1)由,的定义直接可得:,,,。
所以在这个基下的矩阵为。
,,,。
所以在这个基下的矩阵为。
(2)由直接可得:,,,………………………,………………………。
所以在基下的矩阵为:。
(3)由微分运算性质直接可得:,,,,,。
所以微分变换在基下的矩阵为:。
习题7.2.2设是的一个基,,,,。
已知线性无关。
证明:(1)存在唯一的线性变换,使,;(2)(1)中的在基下的矩阵为;(3)(1)中的在基下的矩阵为。
证明:(1)因为线性无关,所以也是的一个基。
故对的一个基及个向量,定存在唯一的线性变换,使,。
(2)由已知条件有,,其中与都是的基,所以可逆,且有,进而有。
再由(1)得,所以在基下的矩阵为。
(3)类似有,所以在基下的矩阵为。
习题7.2.3在中,定义线性变换为,,,其中,,。
(1)求在基下的矩阵;(2)求在基下的矩阵。
解:(1)由定义知,,所以有。
故在基下的矩阵为:。
(2)类似有。
故在基下的矩阵为:。
习题7.2.4在中,线性变换在基,,下的矩阵是。
求在基下的矩阵。
解:已知,,则有。
即在基下的矩阵为:。
习题7.2.5设数域上3维线性空间的线性变换在基下的矩阵为(1)求在基下的矩阵;(2)求在基下的矩阵;(3)求在基下的矩阵。
解:(1)由已知可得,,。
所以在基下的矩阵为:。
(2)由已知可得,,。
所以在基下的矩阵为:。
(3)由已知可得,,。
所以在基下的矩阵为:。
习题7.2.6在维线性空间中,设有线性变换与向量使,但。
证明:在中存在一个基,使在该基下的矩阵为。
证明:由习题7.1.6知:维线性空间的向量组,,,线性无关,且有个向量,即构成的一组基,而线性变换作用此基有:,,……………,。
故在基,,,下的矩阵为:。
习题7.2.7设是数域上维线性空间的全体线性变换组成的数域上的线性空间,试求,并找出中的一个基。
求证:任取的一组基,令为到的映射:,其中。
由引理7.2.6及定理7.2.7知为同构映射,即。
所以它们的维数相同,而,故。
现取,,使得,即,。
已知,是的一组基,故,为的一组基。
习题7.2.8证明:与维线性空间的全体线性变换都可交换的线性变换是数乘变换。
证明:在某组确定的基下,数域上的维线性空间的线性变换与数域上的阶方阵间建立了一个双射,因为与一切阶方阵可交换的方阵为数量矩阵,所以与一切线性变换可交换的线性变换必是数乘变换。
习题7.2.9设是维线性空间的一个线性变换,如果在的任意一个基下的矩阵都相同,则是数乘变换。
证明:设在基下的矩阵为,只要证明为数量矩阵即可。
设为任意可逆矩阵,令,则也是的一组基,且在这组基下的矩阵为,依题意有。
特别地,当取时,计算可得。
再取,由可得,即为数量矩阵,所以是数乘变换。
习题7.2.10证明:与相似,其中是的一个排列。
证明:用依次表示这两个矩阵,取一个维线性空间及其一组基,对于矩阵,存在的线性变换,使得,由此可得。
因为与是在不同基下的矩阵,所以与相似。
习题7.2.11如果可逆,证明与相似。
证明:因为,所以与相似。
习题7.2.12如果与相似,与相似,试判断下列叙述是否正确?如果不正确,请举反例,否则给出证明。
(1)与相似;(2)与相似;(3)与相似。
答:(1)正确。
证明:由于与相似,与相似,因此存在可逆阵,,使得,,从而有,其中,所以与相似。
(2)不正确。
反例:设,,则有,使,,即,故与相似;再取,则与显然相似。
但,。
设,且满足,即,计算得,即得,故不可逆。
所以与不相似。
(3)不正确。
反例:取同(2),有,,两矩阵秩不同。
显然,与不相似。
习题7.3习题7.3.1设是数域上线性空间,是的线性变换。
如果是的特征值,则对任意多项式,是的特征值,且的属于的特征向量也是的属于的特征向量。
证明:设为的属于的特征向量,即,则对任意自然数,有。
事实上,当时,显然成立。
假设时,有成立。
现证时也成立,即。
故由数学归纳法得式对任意自然数均成立。
设,则有,即。
习题7.3.2对复数域上线性空间上的下述线性变换,求出它的特征值与特征向量,判断是否可以对角化,在可对角化时,求出过度矩阵,并计算。
已知在的一个基下的矩阵为(1);(2);(3);(4)。
解:(1)设在基下的矩阵为,矩阵的特征多项式为。
所以的特征值为,。
先求的属于特征值的特征向量。
解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;再求的属于特征值的特征向量。
解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为。
可以对角化。
取的两个线性无关的特征向量,,即,其中为由基到基的过渡矩阵。
且有。
(2)设在基下的矩阵为,且当时,有,于是矩阵的特征多项式为,所以的特征值为。
求的属于特征值的特征向量。
解齐次线性方程组,求得基础解系为,,因为的属于特征值的两个线性无关的特征向量为,所以以中任意非零向量为其特征向量。
当时,矩阵的特征多项式为,所以的特征值为。
先求的属于特征值的特征向量。