紫外可见吸收光谱
- 格式:ppt
- 大小:1.47 MB
- 文档页数:97
紫外可见吸收光谱法
一、基本原理
紫外可见吸收光谱(UV-VIS)是电子光谱,是材料在吸收10~800nm光波波长范围的光子所引起分子中外层电子在电子能级间跃迁时产生的吸收光谱,低于200nm的吸收光谱属于真空紫外光谱(即远紫外光谱,由于远紫外光被空气所吸收,故称为真空紫外光),通常讲的紫外光谱的波长范围是200~400nm,常用紫外可见光谱仪测试范围为400~800nm的可见光区,紫外可见吸收光谱分析法常称为紫外可见分光光度法。
1.吸收的一般规律
设有一块厚度为x的平板材料,入射光的强度设为I0,通过此材料后光强度变为I。
选取其中一薄层,并认为光通过此薄层的吸收损失-dI正比于在此处的光强度I和薄层的厚度dx,即-dI=α·I·dx,则可得到光强度随厚度呈指数衰减的规律,即朗伯特定律
I = I0 · e -αx(1)式中:α为物质对光的吸收系数,其单位为cm-1。
α的大小取决于材料的性质和光的波长。
对于相同波长的光波,α越大,光被吸收的越多,能透过的光强度就越小。
α随入射光波长(或频率)变化的曲线,叫做吸收光谱。
2.
2.4 紫外-可见光分光光度计系统
(3) 吸收池
吸收池也就是样品室,也称为比色皿。
它是由无色透明、能耐腐蚀的光学玻璃或石英制成的,能透过所需光谱范围内的光线。
玻璃——由于吸收紫外光,仅适用于可见光区;
石英——适用于紫外和可见光区。
(4) 探测器:将光信号转变为电信号的装置,现今使用的分光光度计主要采用光电管或光电倍增管作为探测器。
紫外-可见吸收光谱法(UV-Vis)是一种常用的分析技术,用于研究物质在紫外光和可见光区域的吸收特性。
该技术基于物质分子在特定波长范围内吸收光能的原理,通过测量样品溶液在紫外-可见光谱范围内的吸光度来获取信息。
UV-Vis光谱法可用于定性分析和定量分析。
在定性分析中,通过比较样品的吸收光谱与已知物质的光谱图谱,可以确定样品中存在的化合物或功能基团。
在定量分析中,根据样品吸收的光强度与物质浓度之间的线性关系,可以确定样品中某种物质的浓度。
UV-Vis光谱仪通常由光源、单色器、样品室、光电探测器和数据处理系统组成。
工作原理是通过将光束分为可见光和紫外光两部分,然后透过样品溶液,测量透过样品的光强度和未经样品的光强度之间的差异。
样品吸收的光强度会被转换为吸光度或透射度,并绘制成光谱图。
UV-Vis光谱法在许多领域中得到广泛应用,包括化学、生物化学、环境科学、制药、食品科学等。
它可以用于分析物质的结构、浓度、纯度、反应动力学以及反应机理等方面的研究。
同时,UV-Vis光谱法操作简便、分析速度快,且样品准备相对简单,因此成为了一种常用的分析技术。
紫外可见光吸收光谱紫外可见光吸收光谱是一种重要的分析方法,广泛应用于化学、光学、生物学等领域。
下面我将从什么是紫外可见光吸收光谱、应用领域、分析方法、仪器设备、典型实验步骤以及注意事项等方面进行介绍。
一、什么是紫外可见光吸收光谱紫外可见光吸收光谱又称紫外可见吸收光谱,是物质分子在紫外、可见光区的吸收光谱。
简单来说,就是利用物质吸收光的特性进行分析。
二、应用领域紫外可见光吸收光谱被广泛应用于分析化学、光学、生物医学、环境监测等领域。
如利用紫外可见吸收光谱对生物大分子如DNA、蛋白质等进行分析、对环境中的水质、空气等进行检测,还可用于药物研究等方面。
三、分析方法紫外可见光吸收光谱的分析方法是利用物质吸收光的特性进行分析。
通过分析不同波长的光线在样品中的吸收情况,可以了解样品所含的化学物质的组成及浓度。
四、仪器设备紫外可见光吸收光谱的仪器设备主要有:紫外可见分光光度计,样品池,光源,检测器。
五、典型实验步骤(1)准备样品:取少量样品并将其溶解在适量的溶液中,使其达到稳定状态。
(2)将溶液倒入样品池中,并将样品池放置于紫外可见分光光度计中。
(3)选择波长:根据样品的特性选择合适的波长进行分析。
(4)根据波长设置仪器参数:包括选择光路、调整光栅、检测器增益等。
(5)记录吸收光谱:启动分光光度计进行测试并记录数据。
(6)数据处理:利用计算机等工具对数据进行处理和分析。
六、注意事项(1)在记录数据前,应先了解仪器的基本操作流程,以便能更准确地记录数据。
(2)在取样时应注意取样量,建议取量小,避免影响测试结果。
(3)在进行测试时,应尽可能排除环境因素的影响,以保障测试结果的准确性。
紫外可见吸收光谱原理
紫外可见吸收光谱是一种常用的分析方法,用来研究物质对紫外和可见光的吸收特性。
其原理基于分子吸收光谱和比尔定律。
当紫外可见光线通过样品溶液时,部分光子会被溶液中的分子吸收。
吸收的光子会使分子的电子跃迁到更高的能级,从而产生吸收峰。
通过测量样品溶液的吸收峰强度,可以获得与溶质浓度相关的吸光度数据。
吸光度与溶质浓度之间的关系可以由比尔定律描述。
比尔定律认为吸光度与溶质浓度之间存在线性关系,即吸光度与溶质浓度成正比。
根据比尔定律的表达式A = εlc,其中A为吸光度、ε为摩尔吸光系数、l为光程长度、c为溶质浓度,可以通过测
量吸光度来确定溶质的浓度。
实际测定过程中,常用紫外可见分光光度计进行测量。
分光光度计通过分光装置将入射的光线分成不同波长区域,再通过样品池使光通过样品溶液,在光敏探测器的检测下得到吸光度信号。
然后将吸光度与浓度数据转化并分析,以得出所需的结果。
通过紫外可见吸收光谱,可以研究溶液中溶质的浓度、反应动力学、溶解度等参数,并用于定量分析和质量控制等领域。
这种分析方法广泛应用于化学、生化、制药等领域,并为科学研究和工业生产提供了强有力的支持。