紫外可见吸收光谱分析法
- 格式:ppt
- 大小:1.97 MB
- 文档页数:8
第九章紫外可见吸收光谱法§9-1 概述利用紫外可见分光光度计测量物质对紫外可见光的吸收程度〔吸光度〕和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法〔ultraviolet and visible spectrophotometry,UV-VIS〕。
它具有如下特点:〔1〕灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以到达104~105数量级。
(2) 准确度较高其相对误差一般在1%~5%之。
(3) 方法简便操作容易、分析速度快。
(4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定与结构分析〔鉴定有机化合物中的官能团〕。
可对同分异构体进展鉴别。
此外,还可用于配合物的组成和稳定常数的测定。
紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。
例如,甲苯和乙苯的紫外吸收光谱根本一样。
因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。
§9-2 紫外可见吸收光谱法的根本原理当一束紫外可见光〔波长围200~760nm〕通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子那么不被吸收,光子是否被物质所吸收既决定于物质的部结构,也决定于光子的能量。
当光子的能量等于电子能级的能量差时〔即ΔE电 = h f〕,那么此能量的光子被吸收,并使电子由基态跃迁到激发态。
物质对光的吸收特征,可用吸收曲线来描述。
以波长λ为横坐标,吸光度A为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱〔或紫外可见吸收曲线〕。
它能更清楚地描述物质对光的吸收情况〔图9-1〕。
从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长〔λmax〕;低于高吸收峰的峰称为次峰;吸收峰旁边的一个小的曲折称为肩峰;曲线中的低谷称为波谷其所对应的波长称为最小吸〕;在吸收曲线波长最短的一端,吸收强度相当大,但不成峰形的收波长〔λmin局部,称为末端吸收。
紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。
本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。
首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。
在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。
当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。
物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。
为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。
该仪器由光源、样品室、单色器、检测器和计算机等组成。
光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。
样品放在样品室中,光线穿过样品后到达检测器。
检测器将光强度转换为电信号,并将信号输出到计算机进行分析。
紫外可见光谱分析法在各个领域有广泛的应用。
在药物领域,紫外可见光谱可用于药物成分的定量分析。
例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。
在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。
通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。
同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。
此外,紫外可见光谱分析法还在食品行业中得到了应用。
例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。
紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。
综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。