若能把这些熟练操作员的实践经验加以总结和描述, 并用语言表达出来,它就是一种定性的、不精确的控制规 则。如果用模糊数学将其定量化,就转化为模糊控制算法, 从而形成了模糊控制理论。
模糊控制在最近的短短十多年来发展如此迅速,应主 要归结于模糊控制器的一些明显的特点:
(1) 无需知道被控对象的数学模型 模糊控制是以人对被控系统的
例如,对于一个炉温控制系统,人的控制规则是,若温 度高于某一设定值,操作者就减小给煤量,使之降温。 反之,若温度低于设定值,则加大给煤量,使之升温。 一个熟练的操作人员,凭借自己的经验和观察,经过大 脑的思维判断,给出控制量,可以手动操作达到较好的 控制效果。
以上过程包含了大量的模糊概念.如“高于”、“低于” 等等。而且操作者在观察温度的偏差时,偏差越大,给定的 变化也越大,设法使之变温越快。这里的“越高”、“越快” 也是模糊概念。因此,操作者的观察与思维判断过程,实际 上是一个模糊化及模糊计算的过程。
或者说B是A的一个子集,记为B A。
如果μB(u) =μA(u),则称B=A。
模糊集合的运算与经典集合的运算相类似,只是利用集 合中的特征函数或隶属度函数来定义类似的操作。
设A、B为U中两个模糊子集,隶属函数分别为μB(u) 和 μA(u),则模糊集合的并、交、补运算可以如下定义:
定义2-4 模糊并集运算
A={ (u, A (u)) u U}
μA(u)称为u对A的隶属度,它表示论域U中的元素u隶属
于其模糊子集A的程度,它在[0, 1]闭区间内可以连续取值
μA(u)=1, 表示u 完全属于A μA(u)=0, 表示u 完全不属于A 0<μA(u)<1, 表示u 部分属于A
显然,μA(u)越接近于1, 表示u从属于A的程度越大, 反之,μA(u)越接近于0, 表示u从属于A的程度越小。